En matemáticas y física , un campo vectorial hamiltoniano en una variedad simpléctica es un campo vectorial definido para cualquier función de energía o hamiltoniano . Nombrado en honor al físico y matemático Sir William Rowan Hamilton , un campo vectorial hamiltoniano es una manifestación geométrica de las ecuaciones de Hamilton en mecánica clásica . Las curvas integrales de un campo vectorial hamiltoniano representan soluciones a las ecuaciones de movimiento en la forma hamiltoniana. Los difeomorfismos de una variedad simpléctica que surgen del flujo de un campo vectorial hamiltoniano se conocen como transformaciones canónicas en física y simplectomorfismos (hamiltonianos) en matemáticas.
Los campos vectoriales hamiltonianos se pueden definir de manera más general en una variedad de Poisson arbitraria . El corchete de Lie de dos campos vectoriales hamiltonianos correspondientes a las funciones f y g en la variedad es en sí mismo un campo vectorial hamiltoniano, con el hamiltoniano dado por el corchete de Poisson de f y g .
Definición
Supóngase que ( M , ω ) es una variedad simpléctica . Como la forma simpléctica ω no es degenerada, establece un isomorfismo lineal a lo largo de las fibras
entre el fibrado tangente TM y el fibrado cotangente T*M , con la inversa
Por lo tanto, las formas uno en una variedad simpléctica M pueden identificarse con campos vectoriales y cada función diferenciable H : M → R determina un único campo vectorial X H , llamado campo vectorial hamiltoniano con el hamiltoniano H , definiendo para cada campo vectorial Y en M ,
Nota : Algunos autores definen el campo vectorial hamiltoniano con el signo opuesto. Hay que tener en cuenta las distintas convenciones que se utilizan en la literatura física y matemática.
Ejemplos
Supóngase que M es una variedad simpléctica de 2 n dimensiones. Entonces, localmente, se pueden elegir coordenadas canónicas ( q 1 , ..., q n , p 1 , ..., p n ) en M , en las que la forma simpléctica se expresa como:
donde d denota la derivada exterior y ∧ denota el producto exterior . Entonces el campo vectorial hamiltoniano con el hamiltoniano H toma la forma:
donde Ω es una matriz cuadrada de 2 n × 2 n
y
La matriz Ω se denota frecuentemente con J .
Supongamos que M = R 2 n es el espacio vectorial simpléctico de 2 n dimensiones con coordenadas canónicas (globales).
- Si entonces
- Si entonces
- Si entonces
- Si entonces
Propiedades
- La asignación f ↦ X f es lineal , de modo que la suma de dos funciones hamiltonianas se transforma en la suma de los campos vectoriales hamiltonianos correspondientes.
- Supóngase que ( q 1 , ..., q n , p 1 , ..., p n ) son coordenadas canónicas en M (ver arriba). Entonces una curva γ( t ) = (q(t),p(t)) es una curva integral del campo vectorial hamiltoniano X H si y sólo si es una solución de las ecuaciones de Hamilton :
- El hamiltoniano H es constante a lo largo de las curvas integrales, porque . Es decir, H (γ( t )) es en realidad independiente de t . Esta propiedad corresponde a la conservación de la energía en la mecánica hamiltoniana .
- En términos más generales, si dos funciones F y H tienen un corchete de Poisson cero (véase más abajo), entonces F es constante a lo largo de las curvas integrales de H y, de manera similar, H es constante a lo largo de las curvas integrales de F. Este hecho es el principio matemático abstracto detrás del teorema de Noether . [nb 1]
- La forma simpléctica ω se conserva mediante el flujo hamiltoniano. De manera equivalente, la derivada de Lie
Soporte de Poisson
La noción de un campo vectorial hamiltoniano conduce a una operación bilineal antisimétrica sobre las funciones diferenciables en una variedad simpléctica M , el corchete de Poisson , definido por la fórmula
donde denota la derivada de Lie a lo largo de un campo vectorial X . Además, se puede comprobar que se cumple la siguiente identidad:
donde el lado derecho representa el corchete de Lie de los campos vectoriales hamiltonianos con hamiltonianos f y g . Como consecuencia (una prueba en el corchete de Poisson ), el corchete de Poisson satisface la identidad de Jacobi :
lo que significa que el espacio vectorial de funciones diferenciables sobre M , dotado del corchete de Poisson, tiene la estructura de un álgebra de Lie sobre R , y la asignación f ↦ X f es un homomorfismo de álgebra de Lie , cuyo núcleo consiste en las funciones localmente constantes (funciones constantes si M está conexo).
Observaciones
- ^ Véase Lee (2003, Capítulo 18) para una declaración y prueba muy concisa del teorema de Noether.
Notas
Obras citadas
- Abraham, Ralph ; Marsden, Jerrold E. (1978). Fundamentos de mecánica . Londres: Benjamin-Cummings. ISBN 978-080530102-1.Véase la sección 3.2 .
- Arnol'd, VI (1997). Métodos matemáticos de la mecánica clásica . Berlín, etc.: Springer. ISBN 0-387-96890-3.
- Frankel, Theodore (1997). La geometría de la física . Cambridge University Press. ISBN 0-521-38753-1.
- Lee, JM (2003), Introducción a las variedades suaves , Springer Graduate Texts in Mathematics, vol. 218, ISBN 0-387-95448-1
- McDuff, Dusa ; Salamon, D. (1998). Introducción a la topología simpléctica . Oxford Mathematical Monographs. ISBN 0-19-850451-9.
Enlaces externos
- Campo vectorial hamiltoniano en nLab