stringtranslate.com

Absorción de Chappuis

El cielo del crepúsculo occidental después del atardecer , durante la hora azul (alrededor del anochecer náutico ). El color azul intenso de la parte superior se puede atribuir a la absorción de Chappuis.

La absorción de Chappuis ( francés: [ʃapɥi] ) se refiere a la absorción de radiación electromagnética por el ozono , que es especialmente notable en la capa de ozono , que absorbe una pequeña parte de la luz solar en la porción visible del espectro electromagnético . Las bandas de absorción de Chappuis se producen en longitudes de onda entre 400 y 650  nm . Dentro de este rango hay dos máximos de absorción de altura similar a 575 y 603 nm. [1] [2]

En comparación con la absorción de luz ultravioleta por la capa de ozono, conocida como absorciones de Hartley y Huggins, la absorción de Chappuis es claramente más débil. [3] Junto con la dispersión de Rayleigh , contribuye al color azul del cielo y se nota cuando la luz tiene que recorrer un largo camino a través de la atmósfera terrestre . Por este motivo, la absorción de Chappuis sólo tiene un efecto significativo sobre el color del cielo al amanecer y al anochecer , durante la llamada hora azul . [4] Lleva el nombre del químico francés James Chappuis (1854-1934), quien descubrió este efecto. [5]

Historia

James Chappuis fue el primer investigador (en 1880) en notar que la luz que pasa a través del gas ozono tiene un tinte azul. Atribuyó este efecto a la absorción en las partes amarilla, naranja y roja del espectro luminoso. [6] El químico francés Auguste Houzeau ya había demostrado en 1858 que la atmósfera contiene trazas de ozono, por lo que Chappuis supuso que el ozono podría explicar el color azul del cielo. Seguramente era consciente de que ésta no era la única explicación posible, ya que la luz azul que se puede ver desde la superficie de la Tierra está polarizada. La polarización no puede explicarse por la absorción de luz por el ozono, pero sí por la dispersión de Rayleigh , que ya era conocida en la época de Chappuis. Los científicos contemporáneos pensaban que la dispersión de Rayleigh era suficiente para explicar el cielo azul, por lo que finalmente se olvidó la idea de que el ozono podría desempeñar un papel. [5]

A principios de los años cincuenta, Edward Hulburt realizaba investigaciones sobre el cielo al anochecer para verificar las predicciones teóricas sobre la temperatura y la densidad de la atmósfera superior basándose en la luz dispersada medida en la superficie de la Tierra. [7] La ​​idea básica era que después de que el Sol pasa bajo el horizonte, continúa iluminando las capas superiores de la atmósfera. Hulburt deseaba relacionar la intensidad de la luz que llega a la superficie de la Tierra a través de la dispersión de Rayleigh con la abundancia de partículas en cada altitud, cuando la luz del sol atraviesa la atmósfera a diferentes alturas durante el transcurso de la puesta del sol. En sus mediciones, realizadas en 1952 en Sacramento Peak en Nuevo México , encontró que la intensidad de la luz medida era menor en un factor de 2 a 4 que el valor previsto. Sus predicciones se basaron en su teoría y en mediciones que se realizaron en la atmósfera superior sólo unos años antes mediante vuelos de cohetes lanzados no lejos de Sacramento Peak. La magnitud de la desviación entre la predicción y las mediciones fotométricas realizadas en Sacramento Peak excluía un mero error de medición . Hasta entonces, la teoría había predicho que el cielo en el cenit durante la puesta del sol debería aparecer de azul verdoso a gris, y que el color debería cambiar a amarillo durante el anochecer. Obviamente, esto estaba en conflicto con la observación diaria de que el color azul del cielo en el cenit al anochecer cambia sólo imperceptiblemente. Como Hulburt conocía la absorción por el ozono, y como el rango espectral de la absorción de Chappuis había sido medido con mayor precisión sólo unos años antes por la pareja francesa Arlette y Étienne Vassy, ​​intentó tener en cuenta este efecto en sus cálculos. Esto hizo que las mediciones coincidieran completamente con las predicciones teóricas. Los resultados de Hulburt se confirmaron repetidamente en los años siguientes. De hecho, no todos los efectos de color al anochecer con un cielo despejado pueden explicarse por las capas más profundas. Para ello probablemente sea necesario tener en cuenta la extinción espectral provocada por aerosoles en simulaciones teóricas. [8]

Independientemente de Hulburt, el meteorólogo francés Jean Dubois había propuesto unos años antes que la absorción de Chappuis influía en otro fenómeno cromático del cielo al anochecer. Dubois trabajó sobre la llamada " sombra de la Tierra " en su tesis doctoral de los años 1940, y planteó la hipótesis de que este efecto también podría atribuirse a la absorción de Chappuis. [5] Sin embargo, esta conjetura no está respaldada por mediciones más recientes. [9]

Base fisica

La absorción de Chappuis es una absorción continua en el rango de longitud de onda entre 400 y 650 nm. Es causada por la fotodisociación (desintegración) de la molécula de ozono. El máximo de absorción se sitúa en torno a los 603 nm, con una sección transversal de 5,23 · 10 −21  cm 2 . Un segundo máximo, algo más pequeño, ca. 575 nm tiene una sección transversal de 4,83 · 10 −21  cm 2 . [2] La energía de absorbancia en las bandas de Chappuis se encuentra entre 1,8 y 3,1  eV . Los valores medidos implican que el mecanismo de absorción apenas depende de la temperatura; la desviación representa menos del tres por ciento. Alrededor de sus máximos, la absorción de Chappuis es aproximadamente tres órdenes de magnitud más débil que la absorción de luz ultravioleta en el rango de las bandas de Hartley. [10] De hecho, la absorción de Chappuis es uno de los pocos procesos de absorción notables dentro del espectro visible en la atmósfera de la Tierra. [11]

Sobre el espectro de absorción de las bandas de Chappuis en longitudes de onda más cortas se superponen bandas parcialmente irregulares y difusas causadas por vibraciones moleculares . La irregularidad de estas bandas implica que la molécula de ozono sólo se encuentra durante un tiempo extremadamente corto en un estado excitado antes de disociarse. [10] Durante esta breve excitación, experimenta principalmente vibraciones de estiramiento simétricas, aunque con algunas contribuciones de vibraciones de flexión. [1] Una explicación teórica consistente de la estructura de vibración que esté en línea con los datos experimentales fue durante mucho tiempo un problema sin resolver; Incluso hoy en día, no todos los detalles de la absorción de Chappuis pueden explicarse mediante la teoría. [10]

Al igual que cuando absorbe luz ultravioleta, la molécula de ozono puede descomponerse en una molécula de O 2 y un átomo de O durante la absorción de Chappuis. Sin embargo, a diferencia de las absorciones de Hartley y Huggins, los productos de descomposición no permanecen en un estado excitado. La disociación en las bandas de Chappuis es el proceso fotoquímico más importante del ozono en la atmósfera terrestre por debajo de los 30 km de altitud. A esta altitud, se ve compensado por las absorciones en la banda de Hartley. Sin embargo, ni las absorciones de Hartley ni las de Chappuis causan una pérdida significativa de ozono en la estratosfera, a pesar de la alta tasa de fotodisociación potencial, porque el oxígeno elemental tiene una alta probabilidad de encontrar una molécula de O 2 y recombinarse nuevamente en ozono. [12]

Referencias

  1. ^ ab Bogumil, Constanza (2005). Absorcionesspektroskopie von Ozon und anderen, wichtigen, atmosphärischen Spurengasen mit dem SCIAMACHY-Satellitenspektrometer im ultravioletten bis nahinfraroten Spektralbereich (PDF) (Tesis) (en alemán). Universidad de Bremen . págs. 21-26.
  2. ^ ab Brión, J.; Chakir, A.; Charbonnier, J.; Daumont, D.; Parisse, C.; Malicet, J. (1998). "Medidas de espectros de absorción de la molécula de ozono en la región de 350 a 830 nm" (PDF) . Revista de Química Atmosférica . 30 (2): 291–99. Código Bib : 1998JAtC...30..291B. doi :10.1023/A:1006036924364. S2CID  25037900.
  3. ^ Vázquez, M.; Pallé, E.; Rodríguez, P. Montañés (2010-03-12). La Tierra como planeta distante: una piedra Rosetta para la búsqueda de mundos similares a la Tierra. Medios de ciencia y negocios de Springer. pag. 159.ISBN 9781441916846.
  4. ^ Der Brockhaus Wetter und Klima: Phänomene, Vorhersage, Klimawandel (en alemán) (1. Aufl ed.). Leipzig : Brockhaus, F A. 2009. p. 54.ISBN 9783765333811. OCLC  316287956.
  5. ^ a b C Hoeppe, Götz (2007). Por qué el cielo es azul: descubriendo el color de la vida. Prensa de la Universidad de Princeton . págs. 238–53. ISBN 978-0691124537.
  6. ^ Altafila, P.; Chappuis, J. (1880). "Sobre la licuefacción del ozono y sobre el color del estado gaseoso". Cuentas Rendus de la Academia de Ciencias . 91 : 552–525.
  7. ^ Hulburt, EO (1 de julio de 1938). "El brillo del cielo crepuscular y la densidad y temperatura de la atmósfera". JOSÁ . 28 (7): 227–236. doi :10.1364/JOSA.28.000227.
  8. ^ Lee, Raymond L.; Meyer, Wolfgang; Hoeppe, Götz (2011). «Ozono atmosférico y colores del cielo crepuscular antártico» (PDF) . Óptica Aplicada . 50 (28): F162–71. Código Bib : 2011ApOpt..50F.162L. doi :10.1364/AO.50.00F162. PMID  22016241. Archivado desde el original (PDF) el 1 de abril de 2023 . Consultado el 6 de septiembre de 2017 .
  9. ^ Lee, Raymond L. (1 de febrero de 2015). "Medición y modelado del cinturón de Venus del Crepúsculo". Óptica Aplicada . 54 (4): B194–B203. Código Bib : 2015ApOpt..54B.194L. doi :10.1364/AO.54.00B194. ISSN  2155-3165. PMID  25967826.
  10. ^ abc Grebenshchikov, S. Yu.; Qu, Z.-W.; Zhu, H.; Schinke, R. (27 de abril de 2007). "Nuevas investigaciones teóricas de la fotodisociación del ozono en las bandas de Hartley, Huggins, Chappuis y Wulf". Química Física Física Química . 9 (17): 2044–64. Código Bib : 2007PCCP....9.2044G. doi :10.1039/b701020f. ISSN  1463-9084. PMID  17464386.
  11. ^ Fischer, Herbert. "Wechselwirkung zwischen Strahlung und Erdatmosphäre: absorción y emisión" (PDF) . Archivado desde el original (PDF) el 23 de septiembre de 2015.
  12. ^ "Erster Zwischenbericht der Enquete-Kommission" Vorsorge zum Schutz der Erdatmosphäre. "" (PDF) . Archivado desde el original (PDF) el 4 de marzo de 2016.

enlaces externos