La fórmula de interpolación de Whittaker-Shannon o interpolación sinc es un método para construir una función limitada en el tiempo continuo a partir de una secuencia de números reales. La fórmula se remonta a los trabajos de E. Borel en 1898 y ET Whittaker en 1915, y fue citada en los trabajos de JM Whittaker en 1935, y en la formulación del teorema de muestreo de Nyquist-Shannon por Claude Shannon en 1949. También se la conoce comúnmente como fórmula de interpolación de Shannon y fórmula de interpolación de Whittaker . ET Whittaker, quien la publicó en 1915, la llamó la serie Cardinal .
Dada una secuencia de números reales, x [ n ], la función continua
(donde "sinc" denota la función sinc normalizada ) tiene una transformada de Fourier , X ( f ), cuyos valores distintos de cero están confinados a la región | f | ≤ 1/(2 T ). Cuando el parámetro T tiene unidades de segundos, el límite de banda , 1/(2 T ), tiene unidades de ciclos/seg ( hertz ). Cuando la secuencia x [ n ] representa muestras de tiempo, en el intervalo T , de una función continua, la cantidad f s = 1/ T se conoce como la frecuencia de muestreo , y f s /2 es la frecuencia de Nyquist correspondiente . Cuando la función muestreada tiene un límite de banda, B , menor que la frecuencia de Nyquist, x ( t ) es una reconstrucción perfecta de la función original. (Véase Teorema de muestreo .) De lo contrario, los componentes de frecuencia por encima de la frecuencia de Nyquist se "pliegan" en la región sub-Nyquist de X ( f ), lo que resulta en distorsión. (Véase Aliasing .)
La fórmula de interpolación se deriva del artículo sobre el teorema de muestreo de Nyquist-Shannon , que señala que también se puede expresar como la convolución de un tren de impulsos infinito con una función sinc :
Esto equivale a filtrar el tren de impulsos con un filtro de paso bajo ideal ( de pared de ladrillos ) con una ganancia de 1 (o 0 dB) en la banda de paso. Si la frecuencia de muestreo es suficientemente alta, esto significa que la imagen de banda base (la señal original antes del muestreo) se transmite sin cambios y las demás imágenes se eliminan mediante el filtro de pared de ladrillos.
La fórmula de interpolación siempre converge de manera absoluta y localmente uniforme siempre que
Por la desigualdad de Hölder esto se cumple si la secuencia pertenece a cualquiera de los espacios con 1 ≤ p < ∞, es decir
Esta condición es suficiente, pero no necesaria. Por ejemplo, la suma generalmente convergerá si la secuencia de muestra proviene de un muestreo de casi cualquier proceso estacionario , en cuyo caso la secuencia de muestra no es sumable al cuadrado y no está en ningún espacio.
Si x [ n ] es una secuencia infinita de muestras de una función de muestra de un proceso estacionario de sentido amplio , entonces no es miembro de ningún espacio o L p , con probabilidad 1; es decir, la suma infinita de muestras elevada a una potencia p no tiene un valor esperado finito. Sin embargo, la fórmula de interpolación converge con probabilidad 1. La convergencia se puede demostrar fácilmente calculando las varianzas de los términos truncados de la suma, y mostrando que la varianza se puede hacer arbitrariamente pequeña eligiendo un número suficiente de términos. Si la media del proceso es distinta de cero, entonces se deben considerar pares de términos para demostrar también que el valor esperado de los términos truncados converge a cero.
Dado que un proceso aleatorio no tiene una transformada de Fourier, la condición bajo la cual la suma converge a la función original también debe ser diferente. Un proceso aleatorio estacionario sí tiene una función de autocorrelación y, por lo tanto, una densidad espectral según el teorema de Wiener-Khinchin . Una condición adecuada para la convergencia a una función de muestra del proceso es que la densidad espectral del proceso sea cero en todas las frecuencias iguales o superiores a la mitad de la frecuencia de muestreo.