En estadística , el truncamiento da como resultado valores que están limitados por encima o por debajo, lo que da como resultado una muestra truncada . [1] Se dice que una variable aleatoria está truncada desde abajo si, para algún valor umbral , el valor exacto de se conoce para todos los casos , pero se desconoce para todos los casos . De manera similar, el truncamiento desde arriba significa que el valor exacto de se conoce en los casos en que , pero se desconoce cuando . [2]
El truncamiento es similar al concepto de censura estadística , pero distinto de él . Una muestra truncada puede considerarse equivalente a una muestra subyacente en la que se omiten por completo todos los valores fuera de los límites, sin que se lleve un recuento de los omitidos. Con la censura estadística, se registraría una nota que documente qué límite (superior o inferior) se ha excedido y el valor de ese límite. Con el muestreo truncado, no se registra ninguna nota.
Por lo general, los valores que reciben los liquidadores de seguros se truncan por la izquierda, se censuran por la derecha o ambos. Por ejemplo, si los asegurados están sujetos a un límite de póliza u , entonces cualquier monto de pérdida que sea realmente superior a u se informa a la compañía de seguros como exactamente u porque u es el monto que paga la compañía de seguros . La aseguradora sabe que la pérdida real es mayor que u pero no sabe cuál es. Por otro lado, el truncamiento por la izquierda ocurre cuando los asegurados están sujetos a un deducible. Si los asegurados están sujetos a un deducible d , cualquier monto de pérdida que sea menor que d ni siquiera se informará a la compañía de seguros. Si hay un reclamo sobre un límite de póliza de u y un deducible de d , cualquier monto de pérdida que sea mayor que u se informará a la compañía de seguros como una pérdida de porque ese es el monto que la compañía de seguros tiene que pagar. Por lo tanto, los datos de pérdidas de seguros se truncan a la izquierda porque la compañía de seguros no sabe si hay valores por debajo del deducible d porque los asegurados no harán un reclamo. La pérdida de seguros también se censura a la derecha si la pérdida es mayor que u porque u es el máximo que pagará la compañía de seguros. Por lo tanto, solo sabe que su reclamo es mayor que u , no el monto exacto del reclamo.
El truncamiento se puede aplicar a cualquier distribución de probabilidad . Esto generalmente conducirá a una nueva distribución, no una dentro de la misma familia. Por lo tanto, si una variable aleatoria X tiene F ( x ) como su función de distribución, la nueva variable aleatoria Y definida como que tiene la distribución de X truncada al intervalo semiabierto ( a , b ] tiene la función de distribución
para y en el intervalo ( a , b ], y 0 o 1 en caso contrario. Si el truncamiento fuera al intervalo cerrado [ a , b ], la función de distribución sería
para y en el intervalo [ a , b ], y 0 o 1 en caso contrario.
El análisis de datos en los que las observaciones se consideran versiones truncadas de distribuciones estándar se puede realizar utilizando la máxima verosimilitud , donde la verosimilitud se derivaría de la distribución o densidad de la distribución truncada. Esto implica tener en cuenta el factor en la función de densidad modificada que dependerá de los parámetros de la distribución original.
En la práctica, si la fracción truncada es muy pequeña, el efecto del truncamiento puede ignorarse al analizar los datos. Por ejemplo, es común utilizar una distribución normal para modelar datos cuyos valores solo pueden ser positivos pero para los cuales el rango típico de valores está muy alejado de cero. En tales casos, una versión truncada o censurada de la distribución normal puede ser formalmente preferible (aunque habría alternativas); habría muy pocos cambios en los resultados del análisis más complicado. Sin embargo, hay software disponible para la estimación de máxima verosimilitud de modelos incluso moderadamente complicados, como los modelos de regresión , para datos truncados. [3]
En econometría , las variables dependientes truncadas son variables para las que no se pueden realizar observaciones para ciertos valores en un rango determinado. [4] Los modelos de regresión con tales variables dependientes requieren un cuidado especial que reconozca adecuadamente la naturaleza truncada de la variable. La estimación de dicho modelo de regresión truncada se puede realizar en marcos paramétricos, [5] [6] [7] o semi- y no paramétricos. [8] [9]
{{cite journal}}
: CS1 maint: varios nombres: lista de autores ( enlace )