Todos los espacios de Banach separables y de dimensión infinita son homeomorfos.
En matemáticas , en las áreas de topología y análisis funcional , el teorema de Anderson-Kadec establece [1] que dos espacios de Banach separables de dimensión infinita o, más generalmente, espacios de Fréchet , son homeomorfos como espacios topológicos. El teorema fue demostrado por Mikhail Kadec (1966) y Richard Davis Anderson .
Declaración
Todo espacio de Fréchet separable de dimensión infinita es homeomorfo al producto cartesiano de un número contable de copias de la línea real.
Preliminares
Norma Kadec: Una norma en un espacio lineal normado se llamaNorma Kadec con respecto a un subconjunto total del espacio dualsi para cada secuenciase cumple la siguiente condición:
- Si para y entonces
Teorema de Eidelheit : Un espacio de Fréchetes isomorfo a un espacio de Banach o tiene un espacio cociente isomorfo a
Teorema de renormalización de Kadec: Todo espacio de Banach separable admite una norma de Kadec con respecto a un subconjunto total contable de La nueva norma es equivalente a la norma original de El conjunto puede tomarse como cualquier subconjunto contable denso en estrella débil de la bola unitaria de
Bosquejo de la prueba
En el argumento a continuación se denota un espacio de Fréchet separable de dimensión infinita y la relación de equivalencia topológica (existencia de homeomorfismo).
Un punto de partida de la prueba del teorema de Anderson-Kadec es la prueba de Kadec de que cualquier espacio de Banach separable de dimensión infinita es homeomorfo a
Del teorema de Eidelheit, basta considerar espacios de Fréchet que no sean isomorfos a un espacio de Banach. En ese caso, tienen un cociente que es isomorfo a Un resultado de Bartle-Graves-Michael demuestra que entonces
para algún espacio de Fréchet
Por otra parte, es un subespacio cerrado de un producto infinito numerable de espacios de Banach separables de espacios de Banach separables. El mismo resultado de Bartle-Graves-Michael aplicado a da un homeomorfismo
para algún espacio de Fréchet . Del resultado de Kadec, el producto numerable de espacios de Banach separables de dimensión infinita es homeomorfo a
La prueba del teorema de Anderson-Kadec consiste en la secuencia de equivalencias
Véase también
Notas
- ^ Bessaga y Pełczyński 1975, pag. 189
Referencias
- Bessaga, C.; Pełczyński, A. (1975), Temas seleccionados en topología de dimensión infinita, Monografie Matematyczne, Warszawa: Panstwowe wyd. naukowé.
- Torunczyk, H. (1981), Caracterización de la topología del espacio de Hilbert , Fundamenta Mathematicae, págs. 247–262.