Los mínimos cuadrados móviles son un método para reconstruir funciones continuas a partir de un conjunto de muestras puntuales no organizadas mediante el cálculo de una medida de mínimos cuadrados ponderada sesgada hacia la región alrededor del punto en el que se solicita el valor reconstruido.
En gráficos por computadora , el método de mínimos cuadrados móviles es útil para reconstruir una superficie a partir de un conjunto de puntos. A menudo se utiliza para crear una superficie 3D a partir de una nube de puntos mediante submuestreo o sobremuestreo .
En el análisis numérico para manejar contribuciones de geometría donde es difícil obtener discretizaciones, los métodos de mínimos cuadrados móviles también se han utilizado y generalizado para resolver ecuaciones en derivadas parciales en superficies curvas y otras geometrías. [1] [2] [3] Esto incluye métodos numéricos desarrollados para superficies curvas para resolver ecuaciones en derivadas parciales parabólicas escalares [1] [3] y ecuaciones en derivadas parciales hidrodinámicas con valores vectoriales. [2]
En el aprendizaje automático, también se han utilizado métodos de mínimos cuadrados móviles para desarrollar clases de modelos y métodos de aprendizaje. Esto incluye métodos de regresión de funciones [4] y enfoques de regresión de funciones y operadores de redes neuronales, como GMLS-Nets. [5]
Definición
Considere una función y un conjunto de puntos de muestra . Entonces, la aproximación de mínimos cuadrados móviles del grado en el punto es donde minimiza el error de mínimos cuadrados ponderado
sobre todos los polinomios de grado en . es el peso y tiende a cero cuando .
En el ejemplo . El interpolador suave de "orden 3" es un interpolador cuadrático.
^ ab Liang, Jian; Zhao, Hongkai (enero de 2013). "Resolución de ecuaciones diferenciales parciales en nubes de puntos". Revista SIAM de informática científica . 35 (3): A1461–A1486. Código Bibliográfico :2013SJSC...35A1461L. doi :10.1137/120869730. S2CID 9984491.
^ ab Gross, BJ; Trask, N.; Kuberry, P.; Atzberger, PJ (15 de mayo de 2020). "Métodos sin malla en variedades para flujos hidrodinámicos en superficies curvas: un enfoque de mínimos cuadrados móviles generalizados (GMLS)". Journal of Computational Physics . 409 : 109340. arXiv : 1905.10469 . Código Bibliográfico :2020JCoPh.40909340G. doi :10.1016/j.jcp.2020.109340. S2CID 166228451.
^ ab Gross, BJ; Kuberry, P.; Atzberger, PJ (15 de marzo de 2022). "Estadísticas de tiempo de primer paso en superficies de forma general: solucionadores de EDP de superficie que utilizan mínimos cuadrados móviles generalizados (GMLS)". Journal of Computational Physics . 453 : 110932. arXiv : 2102.02421 . Bibcode :2022JCoPh.45310932G. doi :10.1016/j.jcp.2021.110932. ISSN 0021-9991. S2CID 231802303.
^ Wang, Hong-Yan; Xiang, Dao-Hong; Zhou, Ding-Xuan (1 de marzo de 2010). "Método de mínimos cuadrados móviles en la teoría del aprendizaje". Journal of Approximation Theory . 162 (3): 599–614. doi : 10.1016/j.jat.2009.12.002 . ISSN 0021-9045.
^ Trask, Nathaniel; Patel, Ravi G.; Gross, Ben J.; Atzberger, Paul J. (13 de septiembre de 2019). "GMLS-Nets: un marco para aprender a partir de datos no estructurados". arXiv : 1909.05371 [cs.LG].
El poder de aproximación de los mínimos cuadrados móviles David Levin, Mathematics of Computation, Volumen 67, 1517-1531, 1998 [1]
Aproximación de superficie de respuesta por mínimos cuadrados móviles: aplicaciones de formulación y conformado de metales Piotr Breitkopf; Hakim Naceur; Alain Rassineux; Pierre Villon, Computadoras y estructuras, Volumen 83, 17-18, 2005.
Generalización del método de elementos finitos: aproximación difusa y elementos difusos, B Nayroles, G Touzot. Pierre Villon, P, Computational Mechanics Volumen 10, pp 307-318, 1992
Enlaces externos
Una introducción lo más breve posible a los métodos de mínimos cuadrados, mínimos cuadrados ponderados y mínimos cuadrados móviles para la aproximación e interpolación de datos dispersos