stringtranslate.com

estrella de carbono

Una estrella de carbono ( estrella de tipo C ) es típicamente una estrella ramificada gigante asintótica , una gigante roja luminosa , cuya atmósfera contiene más carbono que oxígeno . [1] Los dos elementos se combinan en las capas superiores de la estrella, formando monóxido de carbono , que consume la mayor parte del oxígeno de la atmósfera, dejando a los átomos de carbono libres para formar otros compuestos de carbono, dando a la estrella una atmósfera " hollín " y una atmósfera sorprendentemente Aspecto rojo rubí . También hay algunas estrellas de carbono enanas y supergigantes , y las estrellas gigantes más comunes a veces se denominan estrellas de carbono clásicas para distinguirlas.

En la mayoría de las estrellas (como el Sol ), la atmósfera es más rica en oxígeno que en carbono. Las estrellas ordinarias que no presentan las características de las estrellas de carbono pero que están lo suficientemente frías como para formar monóxido de carbono se denominan estrellas ricas en oxígeno.

Las estrellas de carbono tienen características espectrales bastante distintivas , [2] y fueron reconocidas por primera vez por sus espectros por Angelo Secchi en la década de 1860, una época pionera en espectroscopia astronómica .

Espectros

Espectros de Echelle de la estrella de carbono UU Aurigae

Por definición, las estrellas de carbono tienen bandas espectrales Swan dominantes de la molécula C 2 . Muchos otros compuestos de carbono pueden estar presentes en niveles elevados, como CH, CN ( cianógeno ), C3 y SiC2 . El carbono se forma en el núcleo y circula hacia sus capas superiores, cambiando drásticamente la composición de las capas. Además del carbono, en los destellos de la cáscara se forman elementos del proceso S , como bario , tecnecio y circonio , que son "dragados" hasta la superficie. [3]

Cuando los astrónomos desarrollaron la clasificación espectral de las estrellas de carbono, tuvieron dificultades considerables al intentar correlacionar los espectros con las temperaturas efectivas de las estrellas. El problema estaba en que todo el carbono atmosférico ocultaba las líneas de absorción normalmente utilizadas como indicadores de temperatura para las estrellas.

Las estrellas de carbono también muestran un rico espectro de líneas moleculares en longitudes de onda milimétricas y submilimétricas . En la estrella de carbono CW Leonis se han detectado más de 50 moléculas circunestelares diferentes. Esta estrella se utiliza a menudo para buscar nuevas moléculas circunestelares.

Secchi

Las estrellas de carbono se descubrieron ya en la década de 1860, cuando el pionero de la clasificación espectral Angelo Secchi erigió la clase Secchi IV para las estrellas de carbono, que a finales de la década de 1890 fueron reclasificadas como estrellas de clase N. [4]

harvard

Utilizando esta nueva clasificación de Harvard, la clase N fue posteriormente mejorada por una clase R para estrellas menos rojas que comparten las bandas de carbono características del espectro. La correlación posterior de este esquema R a N con espectros convencionales mostró que la secuencia RN corre aproximadamente en paralelo con c:a G7 a M10 con respecto a la temperatura de la estrella. [5]

Sistema Morgan-Keenan C

Las últimas clases N se corresponden menos con los tipos M homólogos, porque la clasificación de Harvard se basó sólo parcialmente en la temperatura, pero también en la abundancia de carbono; Así que pronto quedó claro que este tipo de clasificación de estrellas de carbono estaba incompleta. En su lugar, se erigió una nueva estrella de doble número de clase C para hacer frente a la temperatura y la abundancia de carbono. Se determinó que dicho espectro medido para Y Canum Venaticorum era C5 4 , donde 5 se refiere a características dependientes de la temperatura y 4 a la intensidad de las bandas de C 2 Swan en el espectro. (C5 4 a menudo se escribe alternativamente C5,4). [6] Esta clasificación del sistema Morgan-Keenan C reemplazó las clasificaciones RN más antiguas de 1960 a 1993.

El sistema Morgan-Keenan revisado

La clasificación bidimensional Morgan-Keenan C no cumplió con las expectativas de los creadores:

  1. no pudo correlacionarse con las mediciones de temperatura basadas en infrarrojos,
  2. Originalmente era bidimensional, pronto fue mejorado por los sufijos CH, CN, j y otras características que lo hacían poco práctico para análisis en masa de poblaciones de estrellas de carbono de galaxias extrañas.
  3. y poco a poco se fue dando cuenta de que las antiguas estrellas R y N eran en realidad dos tipos distintos de estrellas de carbono, con verdadera importancia astrofísica.

En 1993, Philip Keenan publicó una nueva clasificación revisada de Morgan-Keenan , que define las clases: CN, CR y CH. Posteriormente se agregaron las clases CJ y C-Hd. [7] Este constituye el sistema de clasificación establecido que se utiliza en la actualidad. [8]

Mecanismos astrofísicos

Las estrellas de carbono pueden explicarse por más de un mecanismo astrofísico. Las estrellas de carbono clásicas se distinguen de las no clásicas por su masa, siendo las estrellas de carbono clásicas las más masivas. [11]

En las estrellas de carbono clásicas , aquellas que pertenecen a los tipos espectrales modernos CR y CN, se cree que la abundancia de carbono es producto de la fusión del helio , específicamente el proceso triple alfa dentro de una estrella, que los gigantes alcanzan cerca del final de sus vidas. en la rama gigante asintótica (AGB). Estos productos de fusión han sido llevados a la superficie estelar mediante episodios de convección (el llamado tercer dragado ) después de que se formaron el carbono y otros productos. Normalmente, este tipo de estrella de carbono AGB fusiona hidrógeno en una capa que quema hidrógeno, pero en episodios separados por 10 4 -10 5 años, la estrella se transforma en helio quemado en una capa, mientras que la fusión de hidrógeno cesa temporalmente. En esta fase, la luminosidad de la estrella aumenta y el material del interior de la estrella (especialmente el carbono) asciende. A medida que aumenta la luminosidad, la estrella se expande de modo que cesa la fusión del helio y se reinicia la quema de la capa de hidrógeno. Durante estos destellos de helio en la capa , la pérdida de masa de la estrella es significativa, y después de muchos destellos de helio en la capa, una estrella AGB se transforma en una enana blanca caliente y su atmósfera se convierte en material para una nebulosa planetaria .

Se cree que los tipos no clásicos de estrellas de carbono, pertenecientes a los tipos CJ y CH , son estrellas binarias , donde se observa que una estrella es una estrella gigante (u ocasionalmente una enana roja ) y la otra una enana blanca . La estrella que actualmente se observa como una estrella gigante acretó material rico en carbono cuando todavía era una estrella de la secuencia principal de su compañera (es decir, la estrella que ahora es la enana blanca) cuando esta última todavía era una estrella de carbono clásica. Esa fase de evolución estelar es relativamente breve y la mayoría de estas estrellas terminan finalmente como enanas blancas. Estos sistemas se están observando ahora comparativamente mucho tiempo después del evento de transferencia de masa , por lo que el carbono adicional observado en la actual gigante roja no se produjo dentro de esa estrella. [11] Este escenario también se acepta como el origen de las estrellas de bario , que también se caracterizan por tener fuertes características espectrales de moléculas de carbono y de bario (un elemento de proceso s ). A veces, las estrellas cuyo exceso de carbono proviene de esta transferencia de masa se denominan estrellas de carbono "extrínsecas" para distinguirlas de las estrellas AGB "intrínsecas" que producen carbono internamente. Muchas de estas estrellas de carbono extrínseco no son lo suficientemente luminosas o frías como para haber producido su propio carbono, lo cual fue un enigma hasta que se descubrió su naturaleza binaria.

Las enigmáticas estrellas de carbono deficientes en hidrógeno (HdC), pertenecientes a la clase espectral C-Hd, parecen tener alguna relación con las variables R Coronae Borealis (RCB), pero no son variables en sí mismas y carecen de una cierta radiación infrarroja típica de las RCB. Sólo se conocen cinco HdC:s, y ninguna es binaria, [12] por lo que se desconoce la relación con las estrellas de carbono no clásicas.

Otras teorías menos convincentes, como el desequilibrio del ciclo del CNO y la explosión de helio en el núcleo, también se han propuesto como mecanismos para el enriquecimiento de carbono en las atmósferas de estrellas de carbono más pequeñas.

Otras características

Imagen de luz óptica de la estrella de carbono VX Andromedae.

La mayoría de las estrellas de carbono clásicas son estrellas variables del tipo variable de período largo .

Observando estrellas de carbono

Debido a la insensibilidad de la visión nocturna al rojo y a una lenta adaptación de los bastones oculares sensibles al rojo a la luz de las estrellas, los astrónomos que realizan estimaciones de magnitud de las estrellas variables rojas , especialmente las estrellas de carbono, deben saber cómo lidiar con el efecto Purkinje en para no subestimar la magnitud de la estrella observada.

Generación de polvo interestelar

Debido a su baja gravedad superficial , hasta la mitad (o más) de la masa total de una estrella de carbono puede perderse a través de poderosos vientos estelares . Los restos de la estrella, un "polvo" rico en carbono similar al grafito , pasan a formar parte del polvo interestelar . [13] Se cree que este polvo es un factor importante en el suministro de materias primas para la creación de generaciones posteriores de estrellas y sus sistemas planetarios. El material que rodea una estrella de carbono puede cubrirla hasta el punto de que el polvo absorba toda la luz visible.

Otras clasificaciones

Otros tipos de estrellas de carbono incluyen:

Usar como velas estándar.

Un histograma que muestra el número relativo de estrellas de carbono LMC con una luminosidad determinada en el infrarrojo cercano. El valor mediano está marcado en rojo. Adaptado de Ripoche et al. (2020) [14]

Las estrellas de carbono clásicas son muy luminosas, especialmente en el infrarrojo cercano , por lo que pueden detectarse en galaxias cercanas. Debido a las fuertes características de absorción en sus espectros, las estrellas de carbono son más rojas en el infrarrojo cercano que las estrellas ricas en oxígeno, y pueden identificarse por sus colores fotométricos . [15] Si bien no todas las estrellas de carbono individuales tienen la misma luminosidad, una gran muestra de estrellas de carbono tendrá una función de densidad de probabilidad de luminosidad (PDF) con casi el mismo valor medio, en galaxias similares. Por lo tanto, el valor mediano de esa función se puede utilizar como una vela estándar para determinar la distancia a una galaxia. La forma de la PDF puede variar dependiendo de la metalicidad promedio de las estrellas AGB dentro de una galaxia, por lo que es importante calibrar este indicador de distancia utilizando varias galaxias cercanas cuyas distancias se conocen por otros medios. [14] [16]

Ver también

Referencias

  1. ^ "Estrellas C". lweb.cfa.harvard.edu . Consultado el 23 de julio de 2023 .
  2. ^ Hille, Karl (10 de agosto de 2018). "El Hubble ve una estrella de carbono sorprendente en un cúmulo colorido". NASA . Consultado el 23 de julio de 2023 .
  3. ^ Savina, Michael R.; Davis, Andrés M.; Tripa, C. Emil; Pellin, Michael J.; Clayton, Robert N.; Lewis, Roy S.; Amari, Sachiko; Gallino, Roberto; Lugaro, María (2003). "Isótopos de bario en granos presolares individuales de carburo de silicio del meteorito Murchison". Geochimica et Cosmochimica Acta . 67 (17): 3201. Código bibliográfico : 2003GeCoA..67.3201S. doi :10.1016/S0016-7037(03)00083-8.
  4. ^ Gottesman, S. (primavera de 2009). "Clasificación de espectros estelares: algo de historia". Materiales AST2039 . Consultado el 21 de marzo de 2012 .
  5. ^ Clowes, C. (25 de octubre de 2003). "Estrellas de carbono". peripatus.gen.nz . Archivado desde el original el 5 de febrero de 2012 . Consultado el 21 de marzo de 2012 .
  6. ^ Keenan, ordenador personal; Morgan, WW (1941). "La clasificación de las estrellas rojas de carbono". La revista astrofísica . 94 : 501. Código bibliográfico : 1941ApJ....94..501K. doi :10.1086/144356.
  7. ^ Keenan, ordenador personal (1993). "Clasificación espectral MK revisada de las estrellas rojas de carbono". Publicaciones de la Sociedad Astronómica del Pacífico . 105 : 905. Código bibliográfico : 1993PASP..105..905K. doi : 10.1086/133252 .
  8. ^ "Atlas espectral de estrellas de carbono" . Consultado el 21 de marzo de 2012 .
  9. ^ Tanaka, M.; et al. (2007). "Espectros del infrarrojo cercano de 29 estrellas de carbono: estimaciones simples de la temperatura efectiva". Publicaciones de la Sociedad Astronómica de Japón . 59 (5): 939–953. Código Bib : 2007PASJ...59..939T. doi : 10.1093/pasj/59.5.939 .
  10. ^ McClure, RD; Woodsworth, AW (1990). "La naturaleza binaria de las estrellas de bario y CH. III - Parámetros orbitales". La revista astrofísica . 352 : 709. Código bibliográfico : 1990ApJ...352..709M. doi : 10.1086/168573 .
  11. ^ ab McClure, RD (1985). "El carbono y las estrellas afines". Revista de la Real Sociedad Astronómica de Canadá . 79 : 277. Código bibliográfico : 1985JRASC..79..277M.
  12. ^ Clayton, GC (1996). "Las estrellas R Coronae Borealis". Publicaciones de la Sociedad Astronómica del Pacífico . 108 : 225. Código bibliográfico : 1996PASP..108..225C. doi : 10.1086/133715 .
  13. ^ Wallerstein, George; Knapp, Gillian R. (septiembre de 1998). "ESTRELLAS DE CARBONO". Revista Anual de Astronomía y Astrofísica . 36 (1): 369–433. Código Bib : 1998ARA&A..36..369W. doi :10.1146/annurev.astro.36.1.369.
  14. ^ ab Ripoche, Paul; Hola, Jeremy; Parada, Javiera; Más rico, Harvey (enero de 2020). "Estrellas de carbono como velas estándar: I. La función de luminosidad de las estrellas de carbono en las Nubes de Magallanes". Avisos mensuales de la Real Sociedad Astronómica . 495 (3): 2858–2866. arXiv : 2005.05539 . Código Bib : 2020MNRAS.495.2858R. doi : 10.1093/mnras/staa1346 . Consultado el 14 de diciembre de 2022 .
  15. ^ Molde, J.; Aaronson, M. (septiembre de 1980). "Las ramas gigantes extendidas de los cúmulos globulares de edad intermedia en las Nubes de Magallanes". Revista Astrofísica . 240 : 464–477. Código bibliográfico : 1980ApJ...240..464M. doi : 10.1086/158252 . Consultado el 14 de diciembre de 2022 .
  16. ^ Parada, Javiera; Hola, Jeremy; Más rico, Harvey; Ripoche, Pablo; Rousseau-Nepton, Laurie (febrero de 2021). "Estrellas de carbono como velas estándar - II. La magnitud J mediana como indicador de distancia". Avisos mensuales de la Real Sociedad Astronómica . 501 (1): 933–947. arXiv : 2011.11681 . Código Bib : 2021MNRAS.501..933P. doi :10.1093/mnras/staa3750 . Consultado el 14 de diciembre de 2022 .

enlaces externos