stringtranslate.com

Estabilidad del Sistema Solar

La estabilidad del Sistema Solar es un tema de mucha investigación en astronomía . Aunque los planetas han sido históricamente estables como se ha observado, y lo serán en el "corto" plazo, sus débiles efectos gravitacionales entre sí pueden acumularse de maneras que no son predecibles por ningún medio simple.

Por esta razón (entre otras), el Sistema Solar es caótico en el sentido técnico definido por la teoría matemática del caos , [1] y ese comportamiento caótico degrada incluso los modelos numéricos o analíticos a largo plazo más precisos para el movimiento orbital en el Sistema Solar. , por lo que no pueden ser válidos más allá de unas pocas decenas de millones de años en el pasado o en el futuro (alrededor del 1% de su edad actual). [2]

El Sistema Solar es estable en la escala temporal de la existencia humana , y mucho más allá, dado que es poco probable que alguno de los planetas colisione entre sí o sea expulsado del sistema en los próximos miles de millones de años, [3] y que la órbita de la Tierra será relativamente estable. [4]

Desde la ley de gravitación de Newton (1687), matemáticos y astrónomos (como Laplace , Lagrange , Gauss , Poincaré , Kolmogorov , V. Arnold y J. Moser ) han buscado evidencia de la estabilidad de los movimientos planetarios, y esta búsqueda ha condujo a muchos desarrollos matemáticos y a varias "pruebas" sucesivas de la estabilidad del Sistema Solar. [5]

Descripción general y desafíos

Las órbitas de los planetas están abiertas a variaciones a largo plazo. Modelar el Sistema Solar es un caso del problema de la física de los n cuerpos , que generalmente no tiene solución excepto mediante simulación numérica. Debido al comportamiento caótico inherente a las matemáticas, las predicciones a largo plazo sólo pueden ser estadísticas, más que ciertas.

Resonancia

Gráfico que muestra el número de objetos del cinturón de Kuiper a una distancia determinada (en AU ; es decir, la distancia del Sol a la Tierra) del Sol

Una resonancia orbital ocurre cuando los períodos de dos objetos cualesquiera tienen una relación numérica simple. El período más fundamental para un objeto en el Sistema Solar es su período orbital , y las resonancias orbitales impregnan el Sistema Solar. En 1867, el astrónomo estadounidense Daniel Kirkwood observó que los asteroides del cinturón principal no están distribuidos aleatoriamente. [6] Había claros espacios en el cinturón en lugares que correspondían a resonancias con Júpiter . Por ejemplo, no había asteroides en la resonancia 3:1, una distancia de 2,5 AU (370 millones de kilómetros; 230 millones de millas), o en la resonancia 2:1, a 3,3 AU (490 millones de kilómetros; 310 millones de millas). Estos ahora se conocen como las brechas de Kirkwood . Más tarde se descubrió que algunos asteroides orbitaban en estos espacios, pero cuando se analizaron de cerca se determinó que sus órbitas eran inestables y eventualmente saldrían de la resonancia debido a encuentros cercanos con un planeta importante. [ cita necesaria ]

Otra forma común de resonancia en el Sistema Solar es la resonancia de órbita de espín, donde el período de rotación (el tiempo que tarda el planeta o la luna en girar una vez alrededor de su eje) tiene una relación numérica simple con su período orbital. Un ejemplo es la Luna , que se encuentra en una resonancia de órbita de giro de 1:1 que mantiene su cara oculta alejada de la Tierra. (Esta característica también se conoce como bloqueo de marea ). Otro ejemplo es Mercurio , que se encuentra en una resonancia de órbita de giro de 3:2 con el Sol.

Previsibilidad

Las órbitas de los planetas son caóticas en escalas de tiempo más largas, de tal manera que todo el Sistema Solar posee un tiempo de Lyapunov en el rango de 2 a 230 millones de años. [3] En todos los casos, esto significa que las posiciones de los planetas individuales a lo largo de sus órbitas finalmente se vuelven imposibles de predecir con certeza. En algunos casos, las propias órbitas pueden cambiar drásticamente. Tal caos se manifiesta más fuertemente como cambios en la excentricidad , con las órbitas de algunos planetas volviéndose significativamente más – o menos – elípticas . [7] [un]

En los cálculos, las incógnitas incluyen los asteroides , el momento cuadripolar solar , la pérdida de masa del Sol a través de la radiación y el viento solar , la resistencia del viento solar sobre las magnetosferas planetarias, las fuerzas de marea galácticas y los efectos del paso de las estrellas . [8]

Escenarios

Resonancia Neptuno-Plutón

El sistema Neptuno - Plutón se encuentra en una resonancia orbital de 3:2 . CJ Cohen y EC Hubbard en la División Dahlgren del Centro de Guerra Naval de Superficie descubrieron esto en 1965. Aunque la resonancia misma permanecerá estable en el corto plazo, resulta imposible predecir la posición de Plutón con algún grado de precisión, ya que la incertidumbre en la La posición crece en un factor e con cada tiempo de Lyapunov , que para Plutón es de 10 a 20 millones de años. [9] Por lo tanto, en una escala de tiempo de cientos de millones de años, la fase orbital de Plutón se vuelve imposible de determinar, incluso si la órbita de Plutón parece ser perfectamente estable en escalas de tiempo de 10  millones de años (Ito y Tanikawa 2002 MNRAS).

Resonancia de precesión-perihelio 1:1 Mercurio-Júpiter

El planeta Mercurio es especialmente susceptible a la influencia de Júpiter debido a una pequeña coincidencia celeste: el perihelio de Mercurio , el punto donde se acerca más al Sol, precede a un ritmo de aproximadamente 1,5 grados cada 1.000 años, y el perihelio de Júpiter precede sólo un poco. Más lento. En un momento dado, los dos pueden sincronizarse, momento en el cual los constantes tirones gravitacionales de Júpiter podrían acumularse y desviar a Mercurio de su curso, con una probabilidad del 1 al 2%, entre 3 y 4 mil millones de años en el futuro. Esto podría expulsarlo del Sistema Solar por completo [1] o enviarlo en curso de colisión con Venus , el Sol o la Tierra. [10]

La tasa de precesión del perihelio de Mercurio está dominada por las interacciones planeta-planeta, pero alrededor del 7,5% de la tasa de precesión del perihelio de Mercurio proviene de los efectos descritos por la relatividad general . [11] El trabajo de Laskar y Gastineau (descrito a continuación) mostró la importancia de la relatividad general (GR) en la estabilidad a largo plazo del Sistema Solar. Específicamente, sin GR la tasa de inestabilidad de Mercurio sería 60 veces mayor que con GR [12] Al modelar el tiempo de inestabilidad de Mercurio como un proceso de difusión de Fokker-Planck unidimensional , la relación entre el tiempo de inestabilidad de Mercurio y el Mercurio– La resonancia de precesión del perihelio 1:1 de Júpiter se puede investigar estadísticamente. [13] Este modelo de difusión muestra que GR no solo aleja a Mercurio y Júpiter de caer en una resonancia 1:1, sino que también disminuye la velocidad a la que Mercurio se difunde a través del espacio de fase . [14] Por lo tanto, GR no sólo disminuye la probabilidad de inestabilidad de Mercurio, sino que también extiende el tiempo en el que es probable que ocurra.

resonancia de la luna galileana

Las lunas galileanas de Júpiter experimentan una fuerte disipación de marea e interacciones mutuas debido a su tamaño y proximidad a Júpiter. Actualmente, Io , Europa y Ganímedes se encuentran en una resonancia de Laplace de 4:2:1 entre sí, y cada luna interior completa dos órbitas por cada órbita de la siguiente luna exterior. En alrededor de 1.500 millones de años, la migración hacia el exterior de estas lunas atrapará a la cuarta y más externa luna, Calisto , en otra resonancia 2:1 con Ganímedes. Esta resonancia 8:4:2:1 hará que Callisto migre hacia afuera, y puede permanecer estable con aproximadamente un 56% de probabilidad, o interrumpirse y Io generalmente sale de la cadena. [15]

Caos por procesos geológicos

Otro ejemplo es la inclinación axial de la Tierra , que, debido a la fricción generada dentro del manto terrestre por las interacciones de las mareas con la Luna , se volverá caótica entre 1.500 y 4.500 millones de años a partir de ahora. [16] [b]

Influencias externas

Los objetos procedentes del exterior del Sistema Solar también pueden afectarlo. Aunque técnicamente no son parte del Sistema Solar a los efectos de estudiar la estabilidad intrínseca del sistema, pueden cambiarlo. Desafortunadamente, predecir las influencias potenciales de estos objetos extrasolares es incluso más difícil que predecir las influencias de los objetos dentro del sistema simplemente debido a las grandes distancias involucradas. Entre los objetos conocidos con potencial para afectar significativamente al Sistema Solar se encuentra la estrella Gliese 710 , que se espera que pase cerca del sistema en aproximadamente 1.281 millones de años. [17] Aunque no se espera que la estrella afecte sustancialmente las órbitas de los planetas principales, podría alterar sustancialmente la nube de Oort , causando potencialmente una importante actividad cometaria en todo el Sistema Solar. Hay al menos una docena más de estrellas que tienen potencial para acercarse en los próximos millones de años. [18] En 2022, Garett Brown y Hanno Rein de la Universidad de Toronto publicaron un estudio que explora la estabilidad a largo plazo del Sistema Solar en presencia de perturbaciones débiles provenientes de sobrevuelos estelares. Determinaron que si una estrella pasajera alterara el semieje mayor de Neptuno en al menos 0,03  AU (4,49 millones de kilómetros; 2,79 millones de millas), aumentaría 10 veces la posibilidad de inestabilidad durante los siguientes 5 mil millones de años. [b] También estimaron que no es probable que se produzca un sobrevuelo de esta magnitud hasta dentro de 100 mil millones de años. [19]

Estudios recientes

LARGO LARGO, 1982

El Proyecto LonGStOP (Estudio gravitacional a largo plazo de los planetas exteriores) fue un consorcio internacional de dinámicos del Sistema Solar de 1982 liderado por AE Roy . Implicaba la creación de un modelo en una supercomputadora, integrando las órbitas de (únicamente) los planetas exteriores. Sus resultados revelaron varios intercambios curiosos de energía entre los planetas exteriores, pero ningún signo de gran inestabilidad. [20]

Planetario digital, 1988

Otro proyecto implicó la construcción del Digital Orrery por G. Sussman y su grupo del MIT en 1988. El grupo utilizó una computadora de propósito especial cuya arquitectura multiprocesador fue optimizada para integrar las órbitas de los planetas exteriores. Se utilizó para integrarse hasta 845 millones de años, aproximadamente el 20% de la edad del Sistema Solar. En 1988, Sussman y Wisdom encontraron datos utilizando el Orrery que revelaron que la órbita de Plutón muestra signos de caos, debido en parte a su peculiar resonancia con Neptuno . [9]

Si la órbita de Plutón es caótica, entonces técnicamente todo el Sistema Solar es caótico. Esto podría ser más que un tecnicismo, ya que incluso un cuerpo del Sistema Solar tan pequeño como Plutón podría afectar a los demás en un grado perceptible a través de perturbaciones gravitacionales acumulativas . [21]

Laskar, 1989

En 1989, Jacques Laskar, del Bureau des Longitudes de París, publicó los resultados de su integración numérica del Sistema Solar a lo largo de 200 millones de años. Estas no eran las ecuaciones de movimiento completas, sino más bien ecuaciones promediadas similares a las utilizadas por Laplace . El trabajo de Laskar demostró que la órbita de la Tierra es caótica (como lo son las órbitas de todos los planetas interiores ) y que un error tan pequeño como 15 metros al medir la posición de la Tierra hoy haría imposible predecir dónde estaría la Tierra en su órbita dentro de poco más de 100 millones de años.

Laskar y Gastineau, 2009

Jacques Laskar y su colega Mickaël Gastineau adoptaron en 2008 un enfoque más exhaustivo simulando directamente 2.501 futuros posibles. Cada uno de los 2.501 casos tiene condiciones iniciales ligeramente diferentes: la posición de Mercurio varía aproximadamente 1 metro (3,3 pies ) entre una simulación y la siguiente. [22] En 20 casos, Mercurio entra en una órbita peligrosa y a menudo termina chocando con Venus o hundiéndose en el Sol. Al moverse en una órbita tan deformada, es más probable que la gravedad de Mercurio sacuda a otros planetas fuera de sus trayectorias establecidas: en un caso simulado, las perturbaciones de Mercurio enviaron a Marte hacia la Tierra. [12]

Batygin y Laughlin, 2008

Independientemente de Laskar y Gastineau, Batygin y Laughlin también simularon directamente el Sistema Solar dentro de 20 mil millones de años. [b] Sus resultados llegaron a las mismas conclusiones básicas que Laskar y Gastineau, al tiempo que proporcionaron un límite inferior de mil millones de años en la vida útil dinámica del Sistema Solar. [23]

Marrón y Rein, 2020

En 2020, Garett Brown y Hanno Rein, de la Universidad de Toronto, publicaron los resultados de su integración numérica del Sistema Solar a lo largo de 5 mil millones de años. [b] Su trabajo demostró que la órbita de Mercurio es altamente caótica y que un error tan pequeño como 0,38 milímetros (0,015 pulgadas ) al medir la posición de Mercurio hoy haría imposible predecir la excentricidad de su órbita en poco más de 200 millones de años. ' tiempo. [24]

Notas a pie de página

  1. ^ El efecto de la oscilación de la excentricidad orbital sobre la forma de la órbita es análogo al cambio de forma del borde de una campana que suena, ignorando el desplazamiento de lado a lado del centro geométrico de la órbita. La analogía no logra representar todo el cambio orbital, porque mientras el centro gravitacional de la órbita permanece casi fijo en el Sol, su centro geométrico oscila de un lado a otro a la misma velocidad que la oscilación de excentricidad; El centro geométrico de una campana permanece fijo o sólo puede oscilar varios órdenes de magnitud más lentamente de lo que vibra su borde.
  2. ^ abcd El modelado dinámico del Sistema Solar más allá de aproximadamente 4 mil millones de años en el futuro se complica enormemente por la transición del Sol a su fase gigante de vejez : el Sol perderá masa a un ritmo incierto, se calentará y se expandirá enormemente. , todo lo cual cambiará la dinámica de las órbitas planetarias.
    La pérdida de masa solar ralentizará todas las órbitas planetarias, ralentizando uniformemente la escala temporal de cambio en el Sistema Solar. La pérdida de masa también reducirá las perturbaciones solares en los planetas y, en términos relativos, aumentará las perturbaciones de los planetas en el Sol y entre sí. El gas expulsado por el viejo Sol puede perturbar ligeramente las órbitas planetarias, ya sea por arrastre (poco probable) o aumentando las masas planetarias (sólo un poco más probable). [ cita necesaria ]
    El calentamiento y la expansión del Sol afectarán gravemente a algunos de los planetas interiores : al menos eliminará sus atmósferas y posiblemente algunas de sus superficies (reduciendo su masa y, por tanto, disminuyendo sus perturbaciones en otros planetas y en el Sol). El único planeta que seguramente se verá drásticamente afectado es Mercurio , que quedará encerrado dentro del Sol y presumiblemente se disolverá lentamente (por lo tanto, borrará y eliminará por completo sus perturbaciones), si no ha sido expulsado previamente de su órbita solar cercana. [ cita necesaria ]

Ver también

Referencias

  1. ^ ab Laskar, J. (1994). "Caos a gran escala en el sistema solar". Astronomía y Astrofísica . 287 : L9–L12. Código Bib : 1994A y A... 287L... 9L.
  2. ^ Laskar, J .; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, ACM y Levrard, B. (2004). "Una solución numérica a largo plazo para las cantidades de insolación de la Tierra" (PDF) . Astronomía y Astrofísica . 428 (1): 261. Código bibliográfico : 2004A y A...428..261L. doi : 10.1051/0004-6361:20041335 .
  3. ^ ab Hayes, Wayne B. (2007). "¿Es caótico el sistema solar exterior?". Física de la Naturaleza . 3 (10): 689–691. arXiv : astro-ph/0702179 . Código bibliográfico : 2007NatPh...3..689H. doi : 10.1038/nphys728. S2CID  18705038.
  4. ^ Gribbin, John (2004). Profunda simplicidad . Casa al azar.
  5. ^ Laskar, Jacques (2000). Sistema Solar: Estabilidad . Código Bib : 2000eaa..bookE2198L.
  6. ^ Hall, Nina (septiembre de 1994). Explorando el caos. WW Norton & Company. pag. 110.ISBN 9780393312263– a través de libros de Google.
  7. ^ Stewart, Ian (1997). ¿Dios juega a los dados? (2ª ed.). Libros de pingüinos . págs. 246-249. ISBN 978-0-14-025602-4.
  8. ^ Shina (17 de septiembre de 2012). La estabilidad del sistema solar. SlideServe (diapositivas y subtítulos) . Consultado el 26 de octubre de 2017 .— Incluye citas de fuentes.
  9. ^ ab Sussman, Gerald Jay; Sabiduría, Jack (1988). "Evidencia numérica de que el movimiento de Plutón es caótico" (PDF) . Ciencia . 241 (4864): 433–437. Código Bib : 1988 Ciencia... 241.. 433S. doi : 10.1126/ciencia.241.4864.433. hdl : 1721.1/6038 . PMID  17792606. S2CID  1398095 - a través de groups.csail.mit.edu.
  10. ^ Shiga, David (23 de abril de 2008). "El sistema solar podría volverse loco antes de que muera el Sol". Servicio de noticias. Científico nuevo . Archivado desde el original el 31 de diciembre de 2014 . Consultado el 31 de marzo de 2015 .
  11. ^ Parque, Ryan S.; Folkner, William M.; Konopliv, Alexander S.; Williams, James G.; Smith, David E.; Zuber, María T. (22 de febrero de 2017). "Precesión del perihelio de Mercurio desde la nave espacial Messenger". La Revista Astronómica . 153 (3): 121. Código bibliográfico : 2017AJ....153..121P. doi : 10.3847/1538-3881/aa5be2 . hdl : 1721.1/109312 . ISSN  1538-3881. S2CID  125439949.
  12. ^ ab Laskar, J.; Gastineau, M. (2009). "Existencia de trayectorias de colisión de Mercurio, Marte y Venus con la Tierra". Naturaleza . 459 (7248): 817–819. Código Bib :2009Natur.459..817L. doi : 10.1038/naturaleza08096. PMID  19516336. S2CID  4416436.
  13. ^ Mogavero, Federico; Laskar, Jacques (2021). "Dinámica a largo plazo de los planetas interiores del sistema solar". Astronomía y Astrofísica . 655 : A1. arXiv : 2105.14976 . Código Bib : 2021A&A...655A...1M. doi :10.1051/0004-6361/202141007. S2CID  239651491.
  14. ^ Marrón, Garett; Rein, Hanno (10 de marzo de 2023). "Precesión relativista general y estabilidad a largo plazo del sistema solar". Avisos mensuales de la Real Sociedad Astronómica . 521 (3): 4349–4355. arXiv : 2303.05567 . doi :10.1093/mnras/stad719. ISSN  0035-8711.
  15. ^ Lari, Giacomo; Saillenfest, Melaine; Fenucci, Marco (julio de 2020). "Evolución a largo plazo de los satélites galileanos: la captura de Calisto en resonancia". Astronomía y Astrofísica . 639 : A40. arXiv : 2001.01106 . Código Bib : 2020A&A...639A..40L. doi :10.1051/0004-6361/202037445. S2CID  209862163.
  16. ^ de Surgy, O. Nerón; Laskar, J. (febrero de 1997). "Sobre la evolución a largo plazo del giro de la Tierra". Astronomía y Astrofísica . 318 : 975–989. Código Bib : 1997A y A...318..975N.
  17. ^ Bailer-Jones, CAL; Rybizki, J; Andrae, R.; Fouesnea, M. (2018). "Nuevos encuentros estelares descubiertos en la segunda publicación de datos de Gaia". Astronomía y Astrofísica . 616 : A37. arXiv : 1805.07581 . Código Bib : 2018A&A...616A..37B. doi :10.1051/0004-6361/201833456. S2CID  56269929.
  18. ^ Dodgson, Lindsay (8 de enero de 2017). "Una estrella se precipita hacia nuestro sistema solar y podría lanzar millones de cometas directamente hacia la Tierra". Business Insider .
  19. ^ Marrón, Garett; Rein, Hanno (30 de junio de 2022). "Sobre la estabilidad a largo plazo del sistema solar en presencia de perturbaciones débiles procedentes de sobrevuelos estelares". Avisos mensuales de la Real Sociedad Astronómica . 515 (4): 5942–5950. arXiv : 2206.14240 . doi :10.1093/mnras/stac1763 . Consultado el 8 de julio de 2022 .
  20. ^ Roy, AE; Walker, IW; Macdonald, AJ; Williams, IP; Zorro, K.; Murray, CD; et al. (1988). "Proyecto LongGStOP". Vistas en Astronomía . 32 (2): 95-116. Código Bib : 1988VA.....32...95R. doi :10.1016/0083-6656(88)90399-6.
  21. ^ "¿Es estable el sistema solar?". Fortunecity.com . Archivado desde el original el 25 de junio de 2008.
  22. ^ Battersby, Stephen (10 de junio de 2009). "Los planetas del sistema solar podrían salirse de control". Científico nuevo . Consultado el 11 de junio de 2009 .
  23. ^ Batygin, Konstantin (2008). "Sobre la estabilidad dinámica del sistema solar". La revista astrofísica . 683 (2): 1207-1216. arXiv : 0804.1946 . Código bibliográfico : 2008ApJ...683.1207B. doi :10.1086/589232. S2CID  5999697.
  24. ^ Marrón, Garett; Rein, Hanno (2020). "Un depósito de integraciones básicas a largo plazo del sistema solar". Notas de investigación de la Sociedad Astronómica Estadounidense . 4 (12): 221. arXiv : 2012.05177 . Código Bib : 2020RNAAS...4..221B. doi : 10.3847/2515-5172/abd103 . S2CID  228063964.

enlaces externos