stringtranslate.com

Diodo emisor de luz

Partes de un LED convencional. Las superficies inferiores planas del yunque y el poste incrustados dentro del epoxi actúan como anclajes para evitar que los conductores se salgan con fuerza debido a la tensión mecánica o la vibración.
Imagen de primer plano de un LED de montaje en superficie
Primer plano de un LED con el voltaje aumentando y disminuyendo para mostrar una vista detallada de su funcionamiento
Moderna lámpara LED retrofit con casquillo roscado E27
Lámpara LED moderna con forma de bombilla , disipador de calor de aluminio , cúpula difusora de luz y casquillo de rosca E27 , que utiliza una fuente de alimentación integrada que funciona con voltaje de red.

Un diodo emisor de luz ( LED ) es un dispositivo semiconductor que emite luz cuando la corriente fluye a través de él. Los electrones en el semiconductor se recombinan con los huecos de electrones , liberando energía en forma de fotones . El color de la luz (que corresponde a la energía de los fotones) está determinado por la energía requerida para que los electrones crucen la banda prohibida del semiconductor. [5] La luz blanca se obtiene utilizando múltiples semiconductores o una capa de fósforo emisor de luz en el dispositivo semiconductor. [6]

Los primeros LED, que aparecieron como componentes electrónicos prácticos en 1962, emitían luz infrarroja (IR) de baja intensidad . [7] Los LED infrarrojos se utilizan en circuitos de control remoto , como los que se utilizan con una amplia variedad de productos electrónicos de consumo. Los primeros LED de luz visible eran de baja intensidad y se limitaban al rojo.

Los primeros LED se utilizaban a menudo como lámparas indicadoras, en sustitución de las pequeñas bombillas incandescentes , y en pantallas de siete segmentos . Los desarrollos posteriores produjeron LED disponibles en longitudes de onda visibles , ultravioleta (UV) e infrarrojas con salida de luz alta, baja o intermedia, por ejemplo, LED blancos adecuados para iluminación de interiores y exteriores. Los LED también han dado lugar a nuevos tipos de pantallas y sensores, mientras que sus altas tasas de conmutación son útiles en la tecnología de comunicaciones avanzada con aplicaciones tan diversas como la iluminación de aviación , luces de colores , luces de tira , faros de automóviles , publicidad, iluminación general , señales de tráfico , flashes de cámaras, papel tapiz iluminado , luces de cultivo hortícolas y dispositivos médicos. [8]

Los LED tienen muchas ventajas sobre las fuentes de luz incandescentes, entre ellas, un menor consumo de energía, una vida útil más larga, una mayor robustez física, tamaños más pequeños y una conmutación más rápida. A cambio de estos atributos generalmente favorables, las desventajas de los LED incluyen limitaciones eléctricas a bajo voltaje y, en general, a la alimentación de CC (no de CA), la incapacidad de proporcionar una iluminación constante a partir de una fuente de alimentación eléctrica de CC o CA pulsante y una temperatura máxima de funcionamiento y de almacenamiento más baja.

Los LED son transductores de electricidad en luz. Funcionan a la inversa de los fotodiodos , que convierten la luz en electricidad.

Historia

Descubrimientos y primeros dispositivos

La electroluminiscencia verde de un contacto puntual en un cristal de SiC recrea el experimento original de Round de 1907.
Primer plano de un LED rojo de potencia de 1 vatio

La electroluminiscencia como fenómeno fue descubierta en 1907 por el experimentador inglés H. J. Round de los Laboratorios Marconi , utilizando un cristal de carburo de silicio y un detector de bigotes de gato . [9] [10] El inventor ruso Oleg Losev informó de la creación del primer LED en 1927. [11] Su investigación se distribuyó en revistas científicas soviéticas, alemanas y británicas, pero no se hizo ningún uso práctico del descubrimiento durante varias décadas, en parte debido a las propiedades de producción de luz muy ineficientes del carburo de silicio, el semiconductor utilizado por Losev. [12] [13]

Paquete de LED SMD (dispositivo de montaje superficial) 0603

En 1936, Georges Destriau observó que se podía producir electroluminiscencia cuando se suspendía polvo de sulfuro de cinc (ZnS) en un aislante y se le aplicaba un campo eléctrico alterno. En sus publicaciones, Destriau solía referirse a la luminiscencia como luz de Losev. Destriau trabajó en los laboratorios de Madame Marie Curie , también una de las pioneras en el campo de la luminiscencia con investigaciones sobre el radio . [14] [15]

En 1939, el húngaro Zoltán Bay patentó junto con György Szigeti un dispositivo de iluminación en Hungría basado en carburo de silicio, con una opción de carburo de boro, que emitía luz blanca, blanca amarillenta o blanca verdosa dependiendo de las impurezas presentes. [16] Kurt Lehovec , Carl Accardo y Edward Jamgochian explicaron estos primeros LED en 1951 utilizando un aparato que empleaba cristales de SiC con una fuente de corriente de una batería o un generador de pulsos y con una comparación con una variante, pura, de cristal en 1953. [17] [18]

Rubin Braunstein [19] de la Radio Corporation of America informó sobre la emisión infrarroja del arseniuro de galio (GaAs) y otras aleaciones de semiconductores en 1955. [20] Braunstein observó la emisión infrarroja generada por estructuras de diodos simples que usaban antimoniuro de galio (GaSb), GaAs, fosfuro de indio (InP) y aleaciones de silicio-germanio (SiGe) a temperatura ambiente y a 77  kelvins . En 1957, Braunstein demostró además que los dispositivos rudimentarios podían usarse para comunicaciones no radiales a corta distancia. Como señaló Kroemer [21], Braunstein “… había establecido un enlace de comunicaciones ópticas simple: la música que salía de un tocadiscos se utilizaba mediante una electrónica adecuada para modular la corriente directa de un diodo GaAs. La luz emitida era detectada por un diodo PbS a cierta distancia. Esta señal se introducía en un amplificador de audio y se reproducía mediante un altavoz. Al interceptar el haz se detenía la música. Nos divertimos mucho jugando con esta configuración”.

Un LED GaAs SNX-100 de Texas Instruments de 1962 contenido en una caja metálica con transistor TO-18

En septiembre de 1961, mientras trabajaban en Texas Instruments en Dallas , Texas , James R. Biard y Gary Pittman descubrieron la emisión de luz infrarroja cercana (900 nm) de un diodo túnel que habían construido sobre un sustrato de GaAs. [7] Para octubre de 1961, habían demostrado una emisión de luz eficiente y un acoplamiento de señal entre un emisor de luz de unión pn de GaAs y un fotodetector semiconductor aislado eléctricamente. [22] El 8 de agosto de 1962, Biard y Pittman presentaron una patente titulada "Diodo radiante semiconductor" basada en sus hallazgos, que describía un LED de unión p-n difundido con zinc con un contacto de cátodo espaciado para permitir la emisión eficiente de luz infrarroja bajo polarización directa .

Después de establecer la prioridad de su trabajo basándose en cuadernos de ingeniería anteriores a las presentaciones de GE Labs, RCA Research Labs, IBM Research Labs, Bell Labs y Lincoln Lab en el MIT , la oficina de patentes de EE. UU. emitió a los dos inventores la patente para el diodo emisor de luz infrarroja de GaAs (patente estadounidense US3293513), el primer LED práctico. [7] Inmediatamente después de presentar la patente, Texas Instruments (TI) comenzó un proyecto para fabricar diodos infrarrojos. En octubre de 1962, TI anunció el primer producto LED comercial (el SNX-100), que empleaba un cristal de GaAs puro para emitir una salida de luz de 890 nm. [7] En octubre de 1963, TI anunció el primer LED hemisférico comercial, el SNX-110. [23]

En la década de 1960, varios laboratorios se centraron en los LED que emitirían luz visible. Un dispositivo particularmente importante fue demostrado por Nick Holonyak el 9 de octubre de 1962, mientras trabajaba para General Electric en Syracuse, Nueva York . El dispositivo utilizaba la aleación semiconductora arseniuro de fosfuro de galio (GaAsP). Fue el primer láser semiconductor que emitía luz visible, aunque a bajas temperaturas. A temperatura ambiente todavía funcionaba como un diodo emisor de luz roja. El GaAsP fue la base de la primera ola de LED comerciales que emitían luz visible. Fue producido en masa por las empresas Monsanto y Hewlett-Packard y se utilizó ampliamente para pantallas en calculadoras y relojes de pulsera. [24] [25] [26]

Paquete de LED rojo SMD (dispositivo de montaje superficial) 0603

M. George Craford , [27] un ex estudiante de posgrado de Holonyak, inventó el primer LED amarillo y mejoró el brillo de los LED rojos y rojo-naranjas por un factor de diez en 1972. [28] En 1976, TP Pearsall diseñó los primeros LED de alto brillo y alta eficiencia para telecomunicaciones por fibra óptica inventando nuevos materiales semiconductores específicamente adaptados a las longitudes de onda de transmisión de fibra óptica. [29]

Primer plano del LED rojo

Desarrollo comercial inicial

Pantalla LED de una calculadora científica TI-30 ( c.  1978 ), que utiliza lentes de plástico para aumentar el tamaño de los dígitos visibles
Ocho pequeñas manchas rectangulares, que son los dígitos, conectadas por cables finos similares a cabellos a pistas a lo largo de una placa de circuito.
Radiografía de la pantalla LED de una calculadora de 8 dígitos de los años 70

Hasta 1968, los LED visibles e infrarrojos eran extremadamente costosos, del orden de 200 dólares por unidad, y por lo tanto tenían poco uso práctico. [30] Los primeros LED comerciales de longitud de onda visible usaban semiconductores GaAsP y se usaban comúnmente como reemplazos de lámparas indicadoras incandescentes y de neón , y en pantallas de siete segmentos , primero en equipos costosos como equipos de prueba de laboratorio y electrónica, luego en electrodomésticos como calculadoras, televisores, radios, teléfonos y relojes. [31]

La empresa Hewlett-Packard (HP) se dedicó a la investigación y desarrollo (I+D) de LED prácticos entre 1962 y 1968, por un equipo de investigación dirigido por Howard C. Borden, Gerald P. Pighini en HP Associates y HP Labs . [32] Durante este tiempo, HP colaboró ​​con Monsanto Company en el desarrollo de los primeros productos LED utilizables. [33] Los primeros productos LED utilizables fueron la pantalla LED de HP y la lámpara indicadora LED de Monsanto , ambos lanzados en 1968. [33]

Monsanto fue la primera organización en producir en masa LED visibles, utilizando fosfuro de arseniuro de galio (GaAsP) en 1968 para producir LED rojos adecuados para indicadores. [30] Monsanto había ofrecido previamente suministrar GaAsP a HP, pero HP decidió cultivar su propio GaAsP. [30] En febrero de 1969, Hewlett-Packard presentó el indicador numérico HP modelo 5082-7000, el primer dispositivo LED en utilizar tecnología de circuito integrado ( circuito LED integrado ). [32] Fue la primera pantalla LED inteligente y supuso una revolución en la tecnología de pantallas digitales , sustituyendo al tubo Nixie y convirtiéndose en la base de las pantallas LED posteriores. [34]

En la década de 1970, Fairchild Optoelectronics produjo dispositivos LED que tuvieron éxito comercial a menos de cinco centavos cada uno. Estos dispositivos empleaban chips semiconductores compuestos fabricados con el proceso planar (desarrollado por Jean Hoerni , [35] [36] ). La combinación del procesamiento planar para la fabricación de chips y métodos de empaquetado innovadores permitieron al equipo de Fairchild dirigido por el pionero de la optoelectrónica Thomas Brandt lograr las reducciones de costos necesarias. [37] Los productores de LED han seguido utilizando estos métodos aproximadamente desde 2009. [38]

Los primeros LED rojos eran lo suficientemente brillantes como para usarse como indicadores, ya que la salida de luz no era suficiente para iluminar un área. Las lecturas de las calculadoras eran tan pequeñas que se construían lentes de plástico sobre cada dígito para que fueran legibles. Más tarde, otros colores se hicieron ampliamente disponibles y aparecieron en electrodomésticos y equipos.

Los primeros LED se envasaban en cajas de metal similares a las de los transistores, con una ventana o lente de vidrio para dejar salir la luz. Los LED indicadores modernos se envasan en cajas de plástico moldeado transparente, de forma tubular o rectangular, y a menudo tintadas para que coincidan con el color del dispositivo. Los dispositivos infrarrojos pueden teñirse para bloquear la luz visible. Se han adaptado encapsulados más complejos para una disipación de calor eficiente en LED de alta potencia. Los LED montados en superficie reducen aún más el tamaño del encapsulado. Los LED destinados a usarse con cables de fibra óptica pueden estar provistos de un conector óptico.

LED azul

El primer LED azul -violeta que utiliza nitruro de galio dopado con magnesio fue fabricado en la Universidad de Stanford en 1972 por Herb Maruska y Wally Rhines , estudiantes de doctorado en ciencia e ingeniería de materiales. [39] [40] En ese momento, Maruska estaba de licencia en los Laboratorios RCA , donde colaboró ​​con Jacques Pankove en un trabajo relacionado. En 1971, el año después de que Maruska se fuera a Stanford, sus colegas de la RCA Pankove y Ed Miller demostraron la primera electroluminiscencia azul a partir de nitruro de galio dopado con zinc, aunque el dispositivo posterior que construyeron Pankove y Miller, el primer diodo emisor de luz de nitruro de galio real, emitió luz verde. [41] [42]

En 1974, la Oficina de Patentes de los Estados Unidos otorgó a Maruska, Rhines y al profesor de Stanford David Stevenson una patente por su trabajo en 1972 (patente estadounidense US3819974 A). Hoy en día, el dopaje de magnesio del nitruro de galio sigue siendo la base de todos los LED azules y diodos láser comerciales . A principios de la década de 1970, estos dispositivos eran demasiado tenues para su uso práctico y la investigación sobre dispositivos de nitruro de galio se ralentizó.

En agosto de 1989, Cree introdujo el primer LED azul disponible comercialmente basado en el semiconductor de banda prohibida indirecta , carburo de silicio (SiC). [43] Los LED de SiC tenían una eficiencia muy baja, no más de un 0,03 %, pero emitían en la porción azul del espectro de luz visible. [44] [45]

A finales de los años 1980, los avances clave en el crecimiento epitaxial de GaN y el dopaje de tipo p [46] marcaron el comienzo de la era moderna de los dispositivos optoelectrónicos basados ​​en GaN . Sobre esta base, Theodore Moustakas de la Universidad de Boston patentó un método para producir LED azules de alto brillo utilizando un nuevo proceso de dos pasos en 1991. [47] En 2015, un tribunal estadounidense dictaminó que tres empresas taiwanesas habían infringido la patente anterior de Moustakas y les ordenó pagar derechos de licencia de no menos de 13 millones de dólares. [48]

Dos años más tarde, en 1993, Shuji Nakamura de Nichia Corporation demostró LED azules de alto brillo utilizando un proceso de crecimiento de nitruro de galio (GaN). [49] [50] [51] Estos LED tenían eficiencias del 10%. [52] Paralelamente, Isamu Akasaki e Hiroshi Amano de la Universidad de Nagoya estaban trabajando en el desarrollo de la importante deposición de GaN sobre sustratos de zafiro y la demostración del dopaje de tipo p de GaN. Este nuevo desarrollo revolucionó la iluminación LED, haciendo prácticas las fuentes de luz azul de alta potencia , lo que llevó al desarrollo de tecnologías como Blu-ray . [53] [54]

Nakamura recibió el Premio de Tecnología del Milenio de 2006 por su invención. [55] Nakamura, Hiroshi Amano e Isamu Akasaki recibieron el Premio Nobel de Física en 2014 por "la invención de diodos emisores de luz azul eficientes, que han permitido fuentes de luz blanca brillantes y de ahorro energético". [56]

En 1995, Alberto Barbieri del Laboratorio de la Universidad de Cardiff (GB) investigó la eficiencia y confiabilidad de los LED de alto brillo y demostró un LED de "contacto transparente" usando óxido de indio y estaño (ITO) sobre (AlGaInP/GaAs).

En 2001 [57] y 2002, [58] se demostraron con éxito procesos para el crecimiento de LED de nitruro de galio (GaN) sobre silicio . En enero de 2012, Osram demostró comercialmente LED de InGaN de alta potencia cultivados sobre sustratos de silicio, [59] y los LED de GaN sobre silicio están en producción en Plessey Semiconductors . A partir de 2017, algunos fabricantes están utilizando SiC como sustrato para la producción de LED, pero el zafiro es más común, ya que tiene las propiedades más similares a las del nitruro de galio, lo que reduce la necesidad de modelar la oblea de zafiro (las obleas estampadas se conocen como obleas epi). Samsung , la Universidad de Cambridge y Toshiba están realizando investigaciones sobre LED de GaN sobre Si.

Toshiba ha detenido la investigación, posiblemente debido a los bajos rendimientos. [60] [61] [62] [63] [64] [65] [66] Algunos optan por la epitaxia , que es difícil en el silicio , mientras que otros, como la Universidad de Cambridge, eligen una estructura multicapa, para reducir el desajuste de la red (cristalina) y diferentes relaciones de expansión térmica, para evitar el agrietamiento del chip LED a altas temperaturas (por ejemplo, durante la fabricación), reducir la generación de calor y aumentar la eficiencia luminosa. El modelado del sustrato de zafiro se puede realizar con litografía de nanoimpresión . [67] [68] [69] [70] [71] [72] [73]

El GaN sobre Si es difícil pero deseable, ya que aprovecha la infraestructura de fabricación de semiconductores existente. Permite el empaquetado a nivel de oblea de chips LED, lo que da como resultado paquetes LED extremadamente pequeños. [74]

El GaN se deposita a menudo mediante epitaxia en fase de vapor metalorgánico (MOCVD), [75] y también utiliza despegue .

Los LED blancos y el avance de la iluminación

Aunque se puede crear luz blanca utilizando LED individuales rojos, verdes y azules, esto da como resultado una reproducción de color deficiente , ya que solo se emiten tres bandas estrechas de longitudes de onda de luz. La consecución de LED azules de alta eficiencia fue seguida rápidamente por el desarrollo del primer LED blanco. En este dispositivo se utilizó un LED Y
3
Alabama
5
Oh
12
El recubrimiento de fósforo dopado con cerio de :Ce (conocido como " YAG " o fósforo Ce:YAG) produce luz amarilla a través de la fluorescencia . La combinación de ese amarillo con la luz azul restante parece blanca para el ojo. El uso de diferentes fósforos produce luz verde y roja a través de la fluorescencia. La mezcla resultante de rojo, verde y azul se percibe como luz blanca, con una reproducción cromática mejorada en comparación con las longitudes de onda de la combinación de LED azul/fósforo YAG. [76]

Ilustración de la ley de Haitz , que muestra la mejora en la salida de luz por LED a lo largo del tiempo, con una escala logarítmica en el eje vertical

Los primeros LED blancos eran caros e ineficientes. La emisión de luz aumentó exponencialmente . Las últimas investigaciones y desarrollos han sido propagados por fabricantes japoneses como Panasonic y Nichia , y por fabricantes coreanos y chinos como Samsung , Solstice, Kingsun, Hoyol y otros. Esta tendencia en el aumento de la emisión se ha denominado ley de Haitz en honor a Roland Haitz. [77] [78]

La salida de luz y la eficiencia de los LED azules y casi ultravioleta aumentaron y el costo de los dispositivos confiables disminuyó. Esto llevó a los LED de luz blanca de potencia relativamente alta para iluminación, que están reemplazando la iluminación incandescente y fluorescente. [79] [80]

En 2014 se demostró que los LED blancos experimentales producen 303 lúmenes por vatio de electricidad (lm/W); algunos pueden durar hasta 100.000 horas. [81] [82] Los LED disponibles comercialmente tienen una eficiencia de hasta 223 lm/W a partir de 2018. [83] [84] [85] Un récord anterior de 135 lm/W lo logró Nichia en 2010. [86] En comparación con las bombillas incandescentes, este es un gran aumento en la eficiencia eléctrica y, aunque los LED son más caros de comprar, el costo total de vida útil es significativamente más barato que el de las bombillas incandescentes. [87]

El chip LED está encapsulado dentro de un pequeño molde de plástico blanco [88] [89] aunque a veces un paquete LED puede incorporar un reflector. [90] Puede encapsularse utilizando resina ( a base de poliuretano ), silicona, [91] [92] [93] o epoxi [94] que contenga partículas de fósforo YAG dopado con cerio (en polvo). [95] La viscosidad de las mezclas de fósforo y silicio debe controlarse cuidadosamente. [95] Después de la aplicación de una mezcla de fósforo y silicio en el LED utilizando técnicas como la dispensación por chorro, [96] y permitiendo que los solventes se evaporen, los LED a menudo se prueban y se colocan en cintas para el equipo de colocación SMT para su uso en la producción de bombillas LED. Algunas bombillas LED de "fósforo remoto" utilizan una sola cubierta de plástico con fósforo YAG para uno [97] o varios LED azules, en lugar de utilizar recubrimientos de fósforo en LED blancos de un solo chip. [98] Los fósforos Ce:YAG y el epoxi en los LED [99] pueden degradarse con el uso, y esto es más evidente con concentraciones más altas de Ce:YAG en mezclas de fósforo y silicona, porque el Ce:YAG se descompone con el uso. [100] [101] [102]

La salida de los LED puede cambiar a amarilla con el tiempo debido a la degradación del silicio. [92] Hay varias variantes de Ce:YAG, y los fabricantes en muchos casos no revelan la composición exacta de sus ofertas de Ce:YAG. [103] Hay varios otros fósforos disponibles para LED convertidos con fósforo para producir varios colores como el rojo, que utiliza fósforos de nitrosilicato, [104] [105] y existen muchos otros tipos de materiales de fósforo para LED como fósforos basados ​​en óxidos, oxinitruros, oxihaluros, haluros, nitruros, sulfuros, puntos cuánticos y semiconductores híbridos inorgánicos-orgánicos. Un solo LED puede tener varios fósforos al mismo tiempo. [96] [106] Algunos LED utilizan fósforos hechos de materiales vitrocerámicos o de fósforo/vidrio compuestos. [107] [108] Como alternativa, los propios chips LED pueden recubrirse con una fina capa de material que contenga fósforo, denominada revestimiento conforme. [109] [110]

La temperatura del fósforo durante su funcionamiento y la forma en que se aplica limitan el tamaño de un chip LED. Los LED blancos encapsulados a nivel de oblea permiten obtener LED extremadamente pequeños. [74]

Policromo

En 2024, QPixel presentó un LED policromático que podría reemplazar el modelo de 3 subpíxeles para las pantallas digitales. La tecnología utiliza un semiconductor de nitruro de galio que emite luz de diferentes frecuencias moduladas por cambios de voltaje. Un prototipo de pantalla logró una resolución de 6800 PPP o 3k x 1,5k píxeles. [111]

Física de la producción y emisión de luz.

En un diodo emisor de luz, la recombinación de electrones y huecos de electrones en un semiconductor produce luz (ya sea infrarroja, visible o ultravioleta), un proceso llamado " electroluminiscencia ". La longitud de onda de la luz depende de la banda de energía prohibida de los semiconductores utilizados. Dado que estos materiales tienen un alto índice de refracción, se requieren características de diseño de los dispositivos, como recubrimientos ópticos especiales y forma de matriz, para emitir luz de manera eficiente. [112]

A diferencia de un láser , la luz emitida por un LED no es espectralmente coherente ni siquiera altamente monocromática . Su espectro es lo suficientemente estrecho como para que aparezca al ojo humano como un color puro ( saturado ). [113] [114] Además, a diferencia de la mayoría de los láseres, su radiación no es coherente espacialmente , por lo que no puede acercarse a la característica de intensidad muy alta de los láseres .

LED de un solo color

LED azules

Mediante la selección de diferentes materiales semiconductores , se pueden fabricar LED de un solo color que emiten luz en una banda estrecha de longitudes de onda que van desde el infrarrojo cercano hasta el espectro visible y el ultravioleta. A medida que las longitudes de onda se acortan, debido a la mayor brecha de banda de estos semiconductores, aumenta el voltaje de funcionamiento del LED.

Los LED azules tienen una región activa que consiste en uno o más pozos cuánticos de InGaN intercalados entre capas más gruesas de GaN, llamadas capas de revestimiento. Al variar la fracción relativa de In/Ga en los pozos cuánticos de InGaN, la emisión de luz puede, en teoría, variar de violeta a ámbar.

El nitruro de aluminio y galio (AlGaN) con diferentes fracciones de Al/Ga se puede utilizar para fabricar las capas de revestimiento y de pozo cuántico para LED ultravioleta , pero estos dispositivos aún no han alcanzado el nivel de eficiencia y madurez tecnológica de los dispositivos azules/verdes InGaN/GaN. Si se utiliza GaN sin alear en este caso para formar las capas de pozo cuántico activo, el dispositivo emite luz cercana al ultravioleta con una longitud de onda máxima centrada alrededor de 365 nm. Los LED verdes fabricados a partir del sistema InGaN/GaN son mucho más eficientes y brillantes que los LED verdes producidos con sistemas de materiales sin nitruro, pero los dispositivos prácticos aún muestran una eficiencia demasiado baja para aplicaciones de alto brillo. [ cita requerida ]

Con AlGaN y AlGaInN, se pueden lograr longitudes de onda incluso más cortas. Los emisores de UV cercano en longitudes de onda alrededor de 360-395 nm ya son baratos y se encuentran a menudo, por ejemplo, como reemplazos de lámparas de luz negra para la inspección de marcas de agua UV anti -falsificación en documentos y billetes de banco, y para el curado UV . Diodos sustancialmente más caros, de longitud de onda más corta, están disponibles comercialmente para longitudes de onda de hasta 240 nm. [115] Como la fotosensibilidad de los microorganismos coincide aproximadamente con el espectro de absorción del ADN , con un pico a aproximadamente 260 nm, se esperan LED UV que emitan a 250-270 nm en futuros dispositivos de desinfección y esterilización. Investigaciones recientes han demostrado que los LED UVA disponibles comercialmente (365 nm) ya son dispositivos de desinfección y esterilización efectivos. [116] Las longitudes de onda UV-C se obtuvieron en laboratorios utilizando nitruro de aluminio (210 nm), [117] nitruro de boro (215 nm) [118] [119] y diamante (235 nm). [120]

LED blancos

Existen dos formas principales de producir diodos emisores de luz blanca . Una es utilizar LED individuales que emiten tres colores primarios (rojo, verde y azul) y luego mezclar todos los colores para formar luz blanca. La otra es utilizar un material de fósforo para convertir la luz monocromática de un LED azul o UV en luz blanca de amplio espectro, similar a una lámpara fluorescente . El fósforo amarillo son cristales YAG dopados con cerio suspendidos en el encapsulado o recubiertos sobre el LED. Este fósforo YAG hace que los LED blancos parezcan amarillos cuando están apagados, y el espacio entre los cristales permite que pase algo de luz azul en los LED con conversión parcial de fósforo. Alternativamente, los LED blancos pueden utilizar otros fósforos como el fluorosilicato de potasio dopado con manganeso (IV) (PFS) u otros fósforos diseñados. El PFS ayuda a la generación de luz roja y se utiliza junto con el fósforo Ce:YAG convencional.

En los LED con fósforo PFS, parte de la luz azul pasa a través de los fósforos, el fósforo Ce:YAG convierte la luz azul en luz verde y roja (amarilla), y el fósforo PFS convierte la luz azul en luz roja. El color, el espectro de emisión o la temperatura de color de los LED convertidos con fósforo blanco y otros LED convertidos con fósforo se pueden controlar modificando la concentración de varios fósforos que forman una mezcla de fósforos utilizada en un paquete de LED. [121] [122] [123] [124]

La "blancura" de la luz producida está diseñada para adaptarse al ojo humano. Debido al metamerismo , es posible tener espectros muy diferentes que parezcan blancos. La apariencia de los objetos iluminados por esa luz puede variar a medida que varía el espectro. Este es el problema de la reproducción del color, que es completamente independiente de la temperatura del color. Un objeto naranja o cian podría aparecer con el color incorrecto y mucho más oscuro, ya que el LED o el fósforo no emiten la longitud de onda que reflejan. Los LED con mejor reproducción del color utilizan una mezcla de fósforos, lo que da como resultado una menor eficiencia y una mejor reproducción del color. [ cita requerida ]

Los primeros diodos emisores de luz (LED) blancos se ofrecieron a la venta en el otoño de 1996. [125] Nichia fabricó algunos de los primeros LED blancos que se basaban en LED azules con fósforo Ce:YAG. [126] El Ce:YAG se cultiva a menudo utilizando el método Czochralski . [127]

Sistemas RGB

Curvas espectrales combinadas para LED semiconductores de estado sólido de color azul, amarillo verdoso y rojo de alto brillo. El ancho de banda espectral FWHM es de aproximadamente 24 a 27 nm para los tres colores.
Un LED RGB que proyecta rojo, verde y azul sobre una superficie.

Para mezclar fuentes de luz roja, verde y azul y producir luz blanca se necesitan circuitos electrónicos que controlen la mezcla de colores. Como los LED tienen patrones de emisión ligeramente diferentes, el balance de color puede cambiar según el ángulo de visión, incluso si las fuentes RGB están en un solo paquete, por lo que rara vez se utilizan diodos RGB para producir luz blanca. No obstante, este método tiene muchas aplicaciones debido a la flexibilidad de mezclar diferentes colores [128] y, en principio, este mecanismo también tiene una mayor eficiencia cuántica para producir luz blanca [129] .

Existen varios tipos de LED blancos multicolores: LED blancos dicromáticos, tricromáticos y tetracromáticos . Entre estos diferentes métodos, se encuentran varios factores clave, como la estabilidad del color, la capacidad de reproducción cromática y la eficacia luminosa. A menudo, una mayor eficiencia implica una reproducción cromática menor, lo que supone un equilibrio entre la eficacia luminosa y la reproducción cromática. Por ejemplo, los LED blancos dicromáticos tienen la mejor eficacia luminosa (120 lm/W), pero la menor capacidad de reproducción cromática. Aunque los LED blancos tetracromáticos tienen una excelente capacidad de reproducción cromática, a menudo tienen una eficacia luminosa deficiente. Los LED blancos tricromáticos se encuentran en un punto intermedio, ya que tienen una buena eficacia luminosa (>70 lm/W) y una capacidad de reproducción cromática aceptable. [130]

Uno de los retos es el desarrollo de LED verdes más eficientes. El máximo teórico para los LED verdes es de 683 lúmenes por vatio, pero a fecha de 2010 pocos LED verdes superan los 100 lúmenes por vatio. Los LED azules y rojos se acercan a sus límites teóricos. [ cita requerida ]

Los LED multicolores ofrecen un medio para formar luz de diferentes colores. La mayoría de los colores perceptibles se pueden formar mezclando diferentes cantidades de tres colores primarios. Esto permite un control preciso y dinámico del color. Su potencia de emisión decae exponencialmente con el aumento de la temperatura, [131] lo que da como resultado un cambio sustancial en la estabilidad del color. Estos problemas inhiben el uso industrial. Los LED multicolores sin fósforos no pueden proporcionar una buena reproducción del color porque cada LED es una fuente de banda estrecha. Los LED sin fósforo, si bien son una solución más pobre para la iluminación general, son la mejor solución para las pantallas, ya sea retroiluminación de LCD o píxeles basados ​​en LED directos.

La atenuación de una fuente de LED multicolor para que coincida con las características de las lámparas incandescentes es difícil debido a que las variaciones de fabricación, el tiempo y la temperatura cambian el valor de color real de salida. Para emular la apariencia de las lámparas incandescentes atenuadas, puede requerirse un sistema de retroalimentación con un sensor de color para monitorear y controlar activamente el color. [132]

LED basados ​​en fósforo

Espectro de un LED blanco que muestra la luz azul emitida directamente por el LED basado en GaN (pico a aproximadamente 465 nm) y la luz desplazada por Stokes de banda más ancha emitida por el fósforo Ce 3+ :YAG, que emite aproximadamente a 500–700 nm

Este método implica recubrir LED de un color (principalmente LED azules hechos de InGaN ) con fósforos de diferentes colores para formar luz blanca; los LED resultantes se denominan LED blancos basados ​​en fósforo o LED blancos convertidos en fósforo (pcLED). [133] Una fracción de la luz azul sufre el desplazamiento de Stokes, que la transforma de longitudes de onda más cortas a más largas. Dependiendo del color del LED original, se utilizan varios fósforos de color. El uso de varias capas de fósforo de distintos colores amplía el espectro emitido, lo que aumenta de manera efectiva el índice de reproducción cromática (CRI). [134]

Los LED basados ​​en fósforo tienen pérdidas de eficiencia debido a la pérdida de calor por el desplazamiento de Stokes y también a otros problemas relacionados con el fósforo. Sus eficacias luminosas en comparación con los LED normales dependen de la distribución espectral de la salida de luz resultante y de la longitud de onda original del propio LED. Por ejemplo, la eficacia luminosa de un LED blanco típico basado en fósforo amarillo YAG varía de 3 a 5 veces la eficacia luminosa del LED azul original debido a la mayor sensibilidad del ojo humano al amarillo que al azul (como se modela en la función de luminosidad ).

Debido a la simplicidad de fabricación, el método del fósforo sigue siendo el método más popular para fabricar LED blancos de alta intensidad. El diseño y la producción de una fuente de luz o luminaria que utilice un emisor monocromático con conversión de fósforo es más simple y más económico que un sistema RGB complejo, y la mayoría de los LED blancos de alta intensidad que se encuentran actualmente en el mercado se fabrican utilizando conversión de luz de fósforo. [ cita requerida ]

LED blanco basado en fósforo SMD de tres chips, 1 vatio y 9 voltios

Entre los desafíos que se enfrentan para mejorar la eficiencia de las fuentes de luz blanca basadas en LED se encuentra el desarrollo de fósforos más eficientes. A partir de 2010, el fósforo amarillo más eficiente sigue siendo el fósforo YAG, con menos del 10% de pérdida por desplazamiento de Stokes. Las pérdidas atribuibles a pérdidas ópticas internas debido a la reabsorción en el chip LED y en el propio encapsulado del LED representan normalmente entre el 10% y el 30% de la pérdida de eficiencia. Actualmente, en el área del desarrollo de LED de fósforo, se está dedicando mucho esfuerzo a optimizar estos dispositivos para lograr una mayor salida de luz y temperaturas de funcionamiento más altas. Por ejemplo, la eficiencia se puede aumentar adaptando un mejor diseño del encapsulado o utilizando un tipo de fósforo más adecuado. El proceso de revestimiento conformado se utiliza con frecuencia para abordar el problema de la variación del espesor del fósforo. [ cita requerida ]

Algunos LED blancos basados ​​en fósforo encapsulan LED azules InGaN dentro de resina epoxi recubierta de fósforo. Como alternativa, el LED puede combinarse con un fósforo remoto, una pieza de policarbonato preformada recubierta con el material de fósforo. Los fósforos remotos proporcionan una luz más difusa, lo que es deseable para muchas aplicaciones. Los diseños de fósforo remoto también son más tolerantes a las variaciones en el espectro de emisiones de los LED. Un material de fósforo amarillo común es el granate de aluminio e itrio dopado con cerio (Ce 3+ :YAG). [ cita requerida ]

Los LED blancos también se pueden fabricar recubriendo los LED de luz ultravioleta cercana (NUV) con una mezcla de fósforos de europio de alta eficiencia que emiten rojo y azul, más sulfuro de zinc dopado con cobre y aluminio (ZnS:Cu, Al) que emite verde. Este es un método análogo al modo en que funcionan las lámparas fluorescentes . Este método es menos eficiente que los LED azules con fósforo YAG:Ce, ya que el desplazamiento de Stokes es mayor, por lo que se convierte más energía en calor, pero produce luz con mejores características espectrales, que reproducen mejor el color. Debido a la mayor emisión radiativa de los LED ultravioleta que de los azules, ambos métodos ofrecen un brillo comparable. Una preocupación es que la luz ultravioleta puede filtrarse de una fuente de luz que no funciona y causar daños a los ojos o la piel humanos. [ cita requerida ]

Se está utilizando un nuevo estilo de obleas compuestas de nitruro de galio sobre silicio (GaN-on-Si) para producir LED blancos utilizando obleas de silicio de 200 mm. Esto evita el costoso sustrato de zafiro típico en tamaños de obleas relativamente pequeños de 100 o 150 mm. [135] El aparato de zafiro debe estar acoplado a un colector tipo espejo para reflejar la luz que de otro modo se desperdiciaría. Se predijo que desde 2020, el 40% de todos los LED de GaN se fabrican con GaN-on-Si. La fabricación de material de zafiro de gran tamaño es difícil, mientras que el material de silicio de gran tamaño es más barato y más abundante. Las empresas de LED que cambien de utilizar zafiro a silicio deberían suponer una inversión mínima. [136]

LED blancos mixtos

Matriz de LED blancos modulables en un reflector

Existen en el mercado LED RGBW que combinan unidades RGB con un LED blanco fosforoso. De esta manera, se conserva el color extremadamente ajustable del LED RGB, pero se permite optimizar la reproducción y la eficiencia del color cuando se selecciona un color cercano al blanco. [137]

Algunas unidades de LED de fósforo blanco son "blancos modulables", ya que combinan dos extremos de temperaturas de color (comúnmente 2700K y 6500K) para producir valores intermedios. Esta característica permite a los usuarios cambiar la iluminación para adaptarla al uso actual de una sala multifunción. [138] Como se ilustra con una línea recta en el diagrama de cromaticidad, las mezclas simples de dos blancos tendrán un sesgo rosado, que se vuelve más severo en el medio. Una pequeña cantidad de luz verde, proporcionada por otro LED, podría corregir el problema. [139] Algunos productos son RGBWW, es decir, RGBW con blanco modulable. [140]

Una última clase de LED blanco con luz mixta es la de luz tenue a cálida. Se trata de bombillas LED blancas de 2700 K comunes con un pequeño LED rojo que se enciende cuando se atenúa la bombilla. De esta manera, el color se vuelve más cálido, emulando una bombilla incandescente. [140]

Otros LED blancos

Otro método utilizado para producir LED de luz blanca experimentales no utilizaba fósforos en absoluto y se basaba en seleniuro de zinc (ZnSe) cultivado homoepitaxialmente sobre un sustrato de ZnSe que emitía simultáneamente luz azul desde su región activa y luz amarilla desde el sustrato. [141]

Diodos orgánicos emisores de luz (OLED)

En un diodo orgánico emisor de luz ( OLED ), el material electroluminiscente que compone la capa emisora ​​del diodo es un compuesto orgánico . El material orgánico es eléctricamente conductor debido a la deslocalización de los electrones pi causada por la conjugación sobre toda o parte de la molécula, y el material, por lo tanto, funciona como un semiconductor orgánico . [142] Los materiales orgánicos pueden ser pequeñas moléculas orgánicas en una fase cristalina o polímeros . [143]

Las ventajas potenciales de los OLED incluyen pantallas delgadas y de bajo costo con un bajo voltaje de activación, un amplio ángulo de visión y un alto contraste y gama de colores . [144] Los LED de polímero tienen el beneficio adicional de pantallas imprimibles y flexibles . [145] [146] [147] Los OLED se han utilizado para hacer pantallas visuales para dispositivos electrónicos portátiles como teléfonos celulares, cámaras digitales, iluminación y televisores. [143] [144]


Tipos

Los LED se producen en una variedad de formas y tamaños. El color de la lente de plástico suele ser el mismo que el color real de la luz emitida, pero no siempre. Por ejemplo, el plástico violeta se utiliza a menudo para los LED infrarrojos, y la mayoría de los dispositivos azules tienen carcasas incoloras. Los LED modernos de alta potencia, como los que se utilizan para iluminación y retroiluminación, se encuentran generalmente en encapsulados de tecnología de montaje superficial (SMT) (no se muestra).

Los LED se fabrican en diferentes paquetes para diferentes aplicaciones. Se puede empaquetar una o varias uniones de LED en un dispositivo en miniatura para usarlo como indicador o lámpara piloto. Una matriz de LED puede incluir circuitos de control dentro del mismo paquete, que pueden ir desde una simple resistencia , un control de parpadeo o cambio de color, o un controlador direccionable para dispositivos RGB. Los dispositivos de emisión de luz blanca de mayor potencia se montarán en disipadores de calor y se utilizarán para iluminación. Las pantallas alfanuméricas en formato de matriz de puntos o de barras están ampliamente disponibles. Los paquetes especiales permiten la conexión de LED a fibras ópticas para enlaces de comunicación de datos de alta velocidad.

Miniatura

Imagen de LED de montaje superficial en miniatura en los tamaños más comunes. Pueden ser mucho más pequeños que un  LED tipo lámpara tradicional de 5 mm, que se muestra en la esquina superior izquierda.
Paquete de LED en miniatura de montaje en superficie muy pequeño (1,6 × 1,6 × 0,35  mm) de color rojo, verde y azul con detalles de unión de cables dorados

En su mayoría, se trata de LED de una sola matriz que se utilizan como indicadores y vienen en varios tamaños, desde 1,8 mm a 10 mm, en paquetes de montaje en superficie y con orificio pasante . [148] Las corrientes nominales típicas varían de alrededor de 1 mA a más de 20 mA. Los LED se pueden soldar a una tira de PCB flexible para formar una cinta LED que se utiliza popularmente para decoración.

Las formas más comunes de los envases incluyen los redondos, con una parte superior abovedada o plana, los rectangulares con una parte superior plana (como los que se usan en las pantallas de gráficos de barras) y los triangulares o cuadrados con una parte superior plana. La encapsulación también puede ser transparente o teñida para mejorar el contraste y el ángulo de visión. Los dispositivos infrarrojos pueden tener un tinte negro para bloquear la luz visible mientras dejan pasar la radiación infrarroja, como el Osram SFH 4546. [149]

Los LED de 5 V y 12 V son LED miniatura comunes que tienen una resistencia en serie para conexión directa a una fuente de alimentación de 5  V o 12  V. [150]

De alta potencia

Diodos emisores de luz de alta potencia unidos a una base de estrella LED ( Luxeon , Lumileds )

Los LED de alta potencia (HP-LED) o LED de alto rendimiento (HO-LED) pueden funcionar con corrientes que van desde cientos de mA hasta más de un amperio, en comparación con las decenas de mA de otros LED. Algunos pueden emitir más de mil lúmenes. [151] [152] Se han logrado densidades de potencia de LED de hasta 300 W/cm2 . Dado que el sobrecalentamiento es destructivo, los HP-LED deben montarse en un disipador de calor para permitir la disipación del calor. Si no se elimina el calor de un HP-LED, el dispositivo falla en segundos. Un HP-LED a menudo puede reemplazar una bombilla incandescente en una linterna o colocarse en una matriz para formar una potente lámpara LED .

Algunos LED de alta potencia de esta categoría son la serie Nichia 19, Lumileds Rebel Led, Osram Opto Semiconductors Golden Dragon y Cree X-lamp. A partir de septiembre de 2009, algunos LED de alta potencia fabricados por Cree superan los 105 lm/W. [153]

Ejemplos de la ley de Haitz —que predice un aumento exponencial de la salida de luz y la eficacia de los LED a lo largo del tiempo— son la serie de LED CREE XP-G, que alcanzó 105  lm/W en 2009 [153] y la serie Nichia 19 con una eficacia típica de 140  lm/W, lanzada en 2010. [154]

Accionado por CA

Los LED desarrollados por Seoul Semiconductor pueden funcionar con corriente alterna sin un convertidor de corriente continua. En cada semiciclo, una parte del LED emite luz y otra parte está apagada, y esto se invierte durante el siguiente semiciclo. La eficiencia de este tipo de LED de alto rendimiento es normalmente de 40  lm/W. [155] Una gran cantidad de elementos LED en serie pueden funcionar directamente con voltaje de línea. En 2009, Seoul Semiconductor lanzó un LED de alto voltaje de corriente continua, llamado 'Acrich MJT', capaz de funcionar con corriente alterna con un circuito de control simple. La baja disipación de energía de estos LED les otorga más flexibilidad que el diseño original de LED de corriente alterna. [156]

Banda

Varios puntos LED que se reflejan como una tira de iluminación continua

Una tira , cinta o listón de luces LED es una placa de circuito flexible llena de diodos emisores de luz de montaje superficial (LED SMD) y otros componentes que, por lo general, vienen con un respaldo adhesivo. Tradicionalmente, las tiras de luces se habían utilizado únicamente en iluminación de acento, retroiluminación, iluminación de tareas y aplicaciones de iluminación decorativa, como la iluminación de cornisas .

Las tiras de luces LED se originaron a principios de la década de 2000. Desde entonces, la mayor eficacia luminosa y los SMD de mayor potencia han permitido que se utilicen en aplicaciones como iluminación de tareas de alto brillo, reemplazos de luminarias fluorescentes y halógenas, aplicaciones de iluminación indirecta, inspección ultravioleta durante procesos de fabricación, diseño de escenografía y vestuario y cultivo de plantas.

Específico de la aplicación

LED RGB SMD
Imagen compuesta de una etiqueta de identificación de solapa con matriz de LED de 11 × 44 que utiliza LED SMD de tipo 1608/0603. Arriba: un poco más de la mitad de la pantalla de 21 × 86 mm . Centro: primer plano de los LED con luz ambiental. Abajo: LED con su propia luz roja.
Brillante
Los LED intermitentes se utilizan como indicadores para llamar la atención sin necesidad de dispositivos electrónicos externos. Los LED intermitentes se parecen a los LED estándar, pero contienen un regulador de voltaje integrado y un circuito multivibrador que hace que el LED parpadee con un período típico de un segundo. En los LED de lente difusa, este circuito es visible como un pequeño punto negro. La mayoría de los LED intermitentes emiten luz de un solo color, pero los dispositivos más sofisticados pueden parpadear entre varios colores e incluso desvanecerse a través de una secuencia de colores utilizando la mezcla de colores RGB. Los LED SMD intermitentes en el formato 0805 y otros formatos están disponibles desde principios de 2019.
Parpadeo
Electrónica integrada Los circuitos electrónicos simples integrados en el paquete LED existen desde al menos 2011 y producen un patrón de intensidad LED aleatorio que recuerda a una vela parpadeante . [157] La ​​ingeniería inversa en 2024 ha sugerido que algunos LED parpadeantes con modos automáticos de suspensión y activación podrían estar usando un microcontrolador integrado de 8 bits para tal funcionalidad. [158]
Bicolor
Los LED bicolores contienen dos emisores LED diferentes en una caja. Hay dos tipos de estos. Un tipo consta de dos matrices conectadas a los mismos dos cables antiparalelos entre sí. El flujo de corriente en una dirección emite un color, y la corriente en la dirección opuesta emite el otro color. El otro tipo consta de dos matrices con cables separados para ambas matrices y otro cable para el ánodo o cátodo común para que puedan controlarse de forma independiente. La combinación bicolor más común es rojo/verde tradicional . Otras incluyen ámbar/verde tradicional, rojo/verde puro, rojo/azul y azul/verde puro.
RGB tricolor
Los LED tricolores contienen tres emisores LED diferentes en una caja. Cada emisor está conectado a un cable separado para que puedan controlarse de forma independiente. Una disposición de cuatro cables es típica con un cable común (ánodo o cátodo) y un cable adicional para cada color. Otros tienen solo dos cables (positivo y negativo) y tienen un controlador electrónico incorporado. Los LED RGB constan de un LED rojo, uno verde y uno azul. [159] Al ajustar independientemente cada uno de los tres, los LED RGB son capaces de producir una amplia gama de colores. A diferencia de los LED de color dedicado, estos no producen longitudes de onda puras. Es posible que los módulos no estén optimizados para una mezcla de colores uniforme.
Decorativo-multicolor
Los LED decorativos multicolor incorporan varios emisores de diferentes colores alimentados por solo dos cables de salida. Los colores se conmutan internamente variando el voltaje de alimentación.
Alfanumérico
Los LED alfanuméricos están disponibles en formato de siete segmentos , de estrella y de matriz de puntos . Las pantallas de siete segmentos manejan todos los números y un conjunto limitado de letras. Las pantallas de estrella pueden mostrar todas las letras. Las pantallas de matriz de puntos suelen utilizar 5×7 píxeles por carácter. Las pantallas LED de siete segmentos se utilizaron ampliamente en las décadas de 1970 y 1980, pero el uso creciente de pantallas de cristal líquido , con sus menores necesidades de energía y mayor flexibilidad de visualización, ha reducido la popularidad de las pantallas LED numéricas y alfanuméricas.
RGB digital
Los LED direccionables RGB digitales contienen su propia electrónica de control "inteligente". Además de la alimentación y la tierra, proporcionan conexiones para la entrada y salida de datos, el reloj y, a veces, una señal estroboscópica. Están conectados en cadena , lo que permite que los LED individuales de una tira de luz LED larga se controlen fácilmente mediante un microcontrolador. Los datos enviados al primer LED de la cadena pueden controlar el brillo y el color de cada LED independientemente de los demás. Se utilizan cuando se necesita una combinación de control máximo y electrónica mínima visible, como cadenas para Navidad y matrices de LED. Algunos incluso tienen frecuencias de actualización en el rango de kHz, lo que permite aplicaciones de video básicas. Estos dispositivos se conocen por su número de pieza (WS2812 es común) o una marca como NeoPixel .
Filamento
Un filamento LED consiste en múltiples chips LED conectados en serie sobre un sustrato longitudinal común que forma una varilla delgada que recuerda a un filamento incandescente tradicional. [160] Estos se están utilizando como una alternativa decorativa de bajo costo para las bombillas tradicionales que se están eliminando gradualmente en muchos países. Los filamentos utilizan un voltaje bastante alto, lo que les permite funcionar de manera eficiente con voltajes de red. A menudo, se emplean un rectificador simple y un limitador de corriente capacitivo para crear un reemplazo de bajo costo para una bombilla tradicional sin la complejidad del convertidor de bajo voltaje y alta corriente que necesitan los LED de matriz única. [161] Por lo general, se empaquetan en bombillas similares a las lámparas que fueron diseñadas para reemplazar, y se llenan con gas inerte a una presión ligeramente inferior a la ambiental para eliminar el calor de manera eficiente y evitar la corrosión.
Matrices de chip en placa
Los LED montados en superficie se producen frecuentemente en matrices de chip en placa (COB), lo que permite una mejor disipación del calor que con un solo LED de salida luminosa comparable. [162] Los LED se pueden organizar alrededor de un cilindro y se denominan "luces de mazorca de maíz" debido a las filas de LED amarillos. [163]

Consideraciones de uso

Fuentes de energía

Circuito LED simple con resistencia para limitar la corriente

La corriente en un LED u otros diodos aumenta exponencialmente con el voltaje aplicado (ver ecuación del diodo Shockley ), por lo que un pequeño cambio en el voltaje puede causar un gran cambio en la corriente. La corriente a través del LED debe ser regulada por un circuito externo, como una fuente de corriente constante , para evitar daños. Dado que la mayoría de las fuentes de alimentación comunes son fuentes de voltaje (casi) constante, las luminarias LED deben incluir un convertidor de energía, o al menos una resistencia limitadora de corriente. En algunas aplicaciones, la resistencia interna de baterías pequeñas es suficiente para mantener la corriente dentro de la clasificación del LED. [ cita requerida ]

Los LED son sensibles al voltaje. Deben recibir un voltaje superior a su voltaje umbral y una corriente inferior a su valor nominal. La corriente y la vida útil cambian en gran medida con un pequeño cambio en el voltaje aplicado. Por lo tanto, requieren una fuente de alimentación regulada por corriente (normalmente, solo una resistencia en serie para los LED indicadores). [166]

Disminución de la eficiencia : la eficiencia de los LED disminuye a medida que aumenta la corriente eléctrica . El calentamiento también aumenta con corrientes más altas, lo que compromete la vida útil del LED. Estos efectos imponen límites prácticos a la corriente que pasa por un LED en aplicaciones de alta potencia. [167]

Polaridad eléctrica

A diferencia de una lámpara incandescente tradicional, un LED se enciende solo cuando se aplica voltaje en la dirección directa del diodo. No fluye corriente y no se emite luz si se aplica voltaje en la dirección inversa. Si el voltaje inverso excede el voltaje de ruptura , que normalmente es de unos cinco voltios, fluye una gran corriente y el LED se dañará. Si la corriente inversa está lo suficientemente limitada como para evitar daños, el LED de conducción inversa es un diodo de ruido útil . [ cita requerida ]

Por definición, la banda prohibida de energía de cualquier diodo es mayor cuando está polarizado en forma inversa que cuando está polarizado en forma directa. Debido a que la energía de la banda prohibida determina la longitud de onda de la luz emitida, el color no puede ser el mismo cuando está polarizado en forma inversa. La tensión de ruptura inversa es lo suficientemente alta como para que la longitud de onda emitida no pueda ser lo suficientemente similar como para seguir siendo visible. Aunque existen paquetes de LED duales que contienen un LED de color diferente en cada dirección, no se espera que ningún elemento LED pueda emitir luz visible cuando está polarizado en forma inversa. [ cita requerida ]

No se sabe si podría existir algún diodo Zener que emitiera luz solo en modo de polarización inversa. Excepcionalmente, este tipo de LED conduciría si se conectara al revés.

Apariencia

Propiedades de la luz

Fiabilidad

Fabricación

La fabricación de LED implica varios pasos, incluida la epitaxia, el procesamiento del chip, la separación del chip y el empaquetado. [177]

En un proceso típico de fabricación de LED, la encapsulación se realiza después de sondear, trocear, transferir la matriz de la oblea al encapsulado y unir con cables o montar un chip invertido, [178] quizás utilizando óxido de indio y estaño , un conductor eléctrico transparente. En este caso, los cables de unión se unen a la película de ITO que se ha depositado en los LED.

El circuito de chip invertido en placa (COB) es una técnica que se puede utilizar para fabricar LED. [179]

Colores y materiales

Los LED convencionales están hechos de una variedad de materiales semiconductores inorgánicos , la siguiente tabla muestra los colores disponibles con rango de longitud de onda, caída de voltaje y material:

Aplicaciones

LED de luces de circulación diurna de un automóvil

Los usos de los LED se dividen en cinco categorías principales:

La aplicación de LED en horticultura ha revolucionado el cultivo de plantas al proporcionar soluciones de iluminación personalizables y de bajo consumo energético que optimizan el crecimiento y desarrollo de las plantas. [192] Los LED ofrecen un control preciso sobre los espectros de luz, la intensidad y los fotoperiodos, lo que permite a los productores adaptar las condiciones de iluminación a las necesidades específicas de las diferentes especies de plantas y etapas de crecimiento. Esta tecnología mejora la fotosíntesis, mejora el rendimiento de los cultivos y reduce los costos de energía en comparación con los sistemas de iluminación tradicionales. Además, los LED generan menos calor, lo que permite una colocación más cercana a las plantas sin riesgo de daño térmico, y contribuyen a las prácticas agrícolas sostenibles al reducir la huella de carbono y extender las temporadas de crecimiento en entornos controlados. [193] El espectro de luz afecta el crecimiento, el perfil de metabolitos y la resistencia contra los fitopatógenos fúngicos de las plántulas de Solanum lycopersicum . [194] Los LED también se pueden utilizar en micropropagación . [195]

Indicadores y señales

El bajo consumo de energía , el bajo mantenimiento y el pequeño tamaño de los LED han propiciado su uso como indicadores de estado y pantallas en una variedad de equipos e instalaciones. Las pantallas LED de gran superficie se utilizan como pantallas en estadios, pantallas decorativas dinámicas y señales de mensajes dinámicos en autopistas. Las pantallas de mensajes delgadas y ligeras se utilizan en aeropuertos y estaciones de tren, y como pantallas de destino para trenes, autobuses, tranvías y transbordadores.

Señales de tráfico LED rojas y verdes

La luz de un solo color es ideal para semáforos y señales, señales de salida , iluminación de vehículos de emergencia , luces de navegación de barcos y luces navideñas basadas en LED.

Debido a su larga vida útil, tiempos de conmutación rápidos y visibilidad a plena luz del día debido a su alto rendimiento y enfoque, los LED se han utilizado en luces de freno y señales de giro de automóviles. El uso en frenos mejora la seguridad, debido a una gran reducción en el tiempo necesario para encenderse completamente, o un tiempo de subida más rápido, aproximadamente 0,1 segundos más rápido [ cita requerida ] que una bombilla incandescente. Esto les da a los conductores que van detrás más tiempo para reaccionar. En un circuito de intensidad dual (marcadores traseros y frenos), si los LED no se pulsan a una frecuencia lo suficientemente rápida, pueden crear una matriz fantasma , donde aparecen imágenes fantasma del LED si los ojos escanean rápidamente la matriz. Están comenzando a aparecer los faros LED blancos. El uso de LED tiene ventajas de estilo porque los LED pueden formar luces mucho más delgadas que las lámparas incandescentes con reflectores parabólicos .

Debido a su bajo costo relativo, los LED de bajo rendimiento también se utilizan en muchos usos temporales, como barras luminosas y lámparas arrojadizas. Los artistas también han utilizado LED para el arte LED .

Iluminación

Con el desarrollo de LED de alta eficiencia y alta potencia, se ha hecho posible el uso de LED en iluminación y alumbrado. Para fomentar el cambio a lámparas LED y otras luces de alta eficiencia, en 2008 el Departamento de Energía de los EE. UU. creó el concurso L Prize . La bombilla LED de Philips Lighting North America ganó el primer concurso el 3 de agosto de 2011, después de completar con éxito 18 meses de pruebas intensivas de campo, laboratorio y producto. [196]

Para una arquitectura sostenible es necesaria una iluminación eficiente . A partir de 2011, algunas bombillas LED proporcionan hasta 150 lm/W e incluso los modelos económicos de gama baja suelen superar los 50 lm/W, de modo que un LED de 6 vatios podría lograr los mismos resultados que una bombilla incandescente estándar de 40 vatios. La menor emisión de calor de los LED también reduce la demanda de sistemas de aire acondicionado . En todo el mundo, los LED se adoptan rápidamente para desplazar a las fuentes menos efectivas, como las lámparas incandescentes y las lámparas fluorescentes compactas , y reducir el consumo de energía eléctrica y sus emisiones asociadas. Los LED alimentados por energía solar se utilizan como farolas y en la iluminación arquitectónica .

La robustez mecánica y la larga vida útil se utilizan en la iluminación de automóviles , motocicletas y bicicletas . Las luces de calle LED se utilizan en postes y en estacionamientos. En 2007, el pueblo italiano de Torraca fue el primer lugar en convertir su iluminación pública a LED. [197]

Cabin lighting on recent[when?] Airbus and Boeing jetliners uses LED lighting. LEDs are also being used in airport and heliport lighting. LED airport fixtures currently include medium-intensity runway lights, runway centerline lights, taxiway centerline and edge lights, guidance signs, and obstruction lighting.

LEDs are also used as a light source for DLP projectors, and to backlight newer LCD television (referred to as LED TV), computer monitor (including laptop) and handheld device LCDs, succeeding older CCFL-backlit LCDs although being superseded by OLED screens. RGB LEDs raise the color gamut by as much as 45%. Screens for TV and computer displays can be made thinner using LEDs for backlighting.[198]

LEDs are small, durable and need little power, so they are used in handheld devices such as flashlights. LED strobe lights or camera flashes operate at a safe, low voltage, instead of the 250+ volts commonly found in xenon flashlamp-based lighting. This is especially useful in cameras on mobile phones, where space is at a premium and bulky voltage-raising circuitry is undesirable.

LEDs are used for infrared illumination in night vision uses including security cameras. A ring of LEDs around a video camera, aimed forward into a retroreflective background, allows chroma keying in video productions.

LED for miners, to increase visibility inside mines
Los Angeles Vincent Thomas Bridge illuminated with blue LEDs

LEDs are used in mining operations, as cap lamps to provide light for miners. Research has been done to improve LEDs for mining, to reduce glare and to increase illumination, reducing risk of injury to the miners.[199]

LEDs are increasingly finding uses in medical and educational applications, for example as mood enhancement.[200] NASA has even sponsored research for the use of LEDs to promote health for astronauts.[201]

Data communication and other signalling

Light can be used to transmit data and analog signals. For example, lighting white LEDs can be used in systems assisting people to navigate in closed spaces while searching necessary rooms or objects.[202]

Assistive listening devices in many theaters and similar spaces use arrays of infrared LEDs to send sound to listeners' receivers. Light-emitting diodes (as well as semiconductor lasers) are used to send data over many types of fiber optic cable, from digital audio over TOSLINK cables to the very high bandwidth fiber links that form the Internet backbone. For some time, computers were commonly equipped with IrDA interfaces, which allowed them to send and receive data to nearby machines via infrared.

Because LEDs can cycle on and off millions of times per second, very high data bandwidth can be achieved.[203] For that reason, visible light communication (VLC) has been proposed as an alternative to the increasingly competitive radio bandwidth.[204] VLC operates in the visible part of the electromagnetic spectrum, so data can be transmitted without occupying the frequencies of radio communications.

Machine vision systems

Machine vision systems often require bright and homogeneous illumination, so features of interest are easier to process. LEDs are often used.

Barcode scanners are the most common example of machine vision applications, and many of those scanners use red LEDs instead of lasers. Optical computer mice use LEDs as a light source for the miniature camera within the mouse.

LEDs are useful for machine vision because they provide a compact, reliable source of light. LED lamps can be turned on and off to suit the needs of the vision system, and the shape of the beam produced can be tailored to match the system's requirements.

Biological detection

The discovery of radiative recombination in aluminum gallium nitride (AlGaN) alloys by U.S. Army Research Laboratory (ARL) led to the conceptualization of UV light-emitting diodes (LEDs) to be incorporated in light-induced fluorescence sensors used for biological agent detection.[205][206][207] In 2004, the Edgewood Chemical Biological Center (ECBC) initiated the effort to create a biological detector named TAC-BIO. The program capitalized on semiconductor UV optical sources (SUVOS) developed by the Defense Advanced Research Projects Agency (DARPA).[207]

UV-induced fluorescence is one of the most robust techniques used for rapid real-time detection of biological aerosols.[207] The first UV sensors were lasers lacking in-field-use practicality. In order to address this, DARPA incorporated SUVOS technology to create a low-cost, small, lightweight, low-power device. The TAC-BIO detector's response time was one minute from when it sensed a biological agent. It was also demonstrated that the detector could be operated unattended indoors and outdoors for weeks at a time.[207]

Aerosolized biological particles fluoresce and scatter light under a UV light beam. Observed fluorescence is dependent on the applied wavelength and the biochemical fluorophores within the biological agent. UV induced fluorescence offers a rapid, accurate, efficient and logistically practical way for biological agent detection. This is because the use of UV fluorescence is reagentless, or a process that does not require an added chemical to produce a reaction, with no consumables, or produces no chemical byproducts.[207]

Additionally, TAC-BIO can reliably discriminate between threat and non-threat aerosols. It was claimed to be sensitive enough to detect low concentrations, but not so sensitive that it would cause false positives. The particle-counting algorithm used in the device converted raw data into information by counting the photon pulses per unit of time from the fluorescence and scattering detectors, and comparing the value to a set threshold.[208]

The original TAC-BIO was introduced in 2010, while the second-generation TAC-BIO GEN II, was designed in 2015 to be more cost-efficient, as plastic parts were used. Its small, light-weight design allows it to be mounted to vehicles, robots, and unmanned aerial vehicles. The second-generation device could also be utilized as an environmental detector to monitor air quality in hospitals, airplanes, or even in households to detect fungus and mold.[209][210]

Other applications

LED costume for stage performers
LED wallpaper by Meystyle
A large LED display behind a disc jockey
Seven-segment display that can display four digits and points
LED panel light source used in an early experiment on potato growth during Shuttle mission STS-73 to investigate the potential for growing food on future long duration missions

The light from LEDs can be modulated very quickly so they are used extensively in optical fiber and free space optics communications. This includes remote controls, such as for television sets, where infrared LEDs are often used. Opto-isolators use an LED combined with a photodiode or phototransistor to provide a signal path with electrical isolation between two circuits. This is especially useful in medical equipment where the signals from a low-voltage sensor circuit (usually battery-powered) in contact with a living organism must be electrically isolated from any possible electrical failure in a recording or monitoring device operating at potentially dangerous voltages. An optoisolator also lets information be transferred between circuits that do not share a common ground potential.

Many sensor systems rely on light as the signal source. LEDs are often ideal as a light source due to the requirements of the sensors. The Nintendo Wii's sensor bar uses infrared LEDs. Pulse oximeters use them for measuring oxygen saturation. Some flatbed scanners use arrays of RGB LEDs rather than the typical cold-cathode fluorescent lamp as the light source. Having independent control of three illuminated colors allows the scanner to calibrate itself for more accurate color balance, and there is no need for warm-up. Further, its sensors only need be monochromatic, since at any one time the page being scanned is only lit by one color of light.

Since LEDs can also be used as photodiodes, they can be used for both photo emission and detection. This could be used, for example, in a touchscreen that registers reflected light from a finger or stylus.[211] Many materials and biological systems are sensitive to, or dependent on, light. Grow lights use LEDs to increase photosynthesis in plants,[212] and bacteria and viruses can be removed from water and other substances using UV LEDs for sterilization.[116] LEDs of certain wavelengths have also been used for light therapy treatment of neonatal jaundice and acne.[213]

UV LEDs, with spectra range of 220 nm to 395 nm, have other applications, such as water/air purification, surface disinfection, glue curing, free-space non-line-of-sight communication, high performance liquid chromatography, UV curing dye printing, phototherapy (295nm Vitamin D, 308nm Excimer lamp or laser replacement), medical/ analytical instrumentation, and DNA absorption.[206][214]

LEDs have also been used as a medium-quality voltage reference in electronic circuits. The forward voltage drop (about 1.7 V for a red LED or 1.2V for an infrared) can be used instead of a Zener diode in low-voltage regulators. Red LEDs have the flattest I/V curve above the knee. Nitride-based LEDs have a fairly steep I/V curve and are useless for this purpose. Although LED forward voltage is far more current-dependent than a Zener diode, Zener diodes with breakdown voltages below 3 V are not widely available.

The progressive miniaturization of low-voltage lighting technology, such as LEDs and OLEDs, suitable to incorporate into low-thickness materials has fostered experimentation in combining light sources and wall covering surfaces for interior walls in the form of LED wallpaper.

Research and development

Key challenges

LEDs require optimized efficiency to hinge on ongoing improvements such as phosphor materials and quantum dots.[215]

The process of down-conversion (the method by which materials convert more-energetic photons to different, less energetic colors) also needs improvement. For example, the red phosphors that are used today are thermally sensitive and need to be improved in that aspect so that they do not color shift and experience efficiency drop-off with temperature. Red phosphors could also benefit from a narrower spectral width to emit more lumens and becoming more efficient at converting photons.[216]

In addition, work remains to be done in the realms of current efficiency droop, color shift, system reliability, light distribution, dimming, thermal management, and power supply performance.[215]

Early suspicions were that the LED droop was caused by elevated temperatures. Scientists showed that temperature was not the root cause of efficiency droop.[217] The mechanism causing efficiency droop was identified in 2007 as Auger recombination, which was taken with mixed reaction.[167] A 2013 study conclusively identified Auger recombination as the cause.[218]

Potential technology

A new family of LEDs are based on the semiconductors called perovskites. In 2018, less than four years after their discovery, the ability of perovskite LEDs (PLEDs) to produce light from electrons already rivaled those of the best performing OLEDs.[219] They have a potential for cost-effectiveness as they can be processed from solution, a low-cost and low-tech method, which might allow perovskite-based devices that have large areas to be made with extremely low cost. Their efficiency is superior by eliminating non-radiative losses, in other words, elimination of recombination pathways that do not produce photons; or by solving outcoupling problem (prevalent for thin-film LEDs) or balancing charge carrier injection to increase the EQE (external quantum efficiency). The most up-to-date PLED devices have broken the performance barrier by shooting the EQE above 20%.[220]

In 2018, Cao et al. and Lin et al. independently published two papers on developing perovskite LEDs with EQE greater than 20%, which made these two papers a mile-stone in PLED development. Their device have similar planar structure, i.e. the active layer (perovskite) is sandwiched between two electrodes. To achieve a high EQE, they not only reduced non-radiative recombination, but also utilized their own, subtly different methods to improve the EQE.[220]

In the work of Cao et al.,[221] researchers targeted the outcoupling problem, which is that the optical physics of thin-film LEDs causes the majority of light generated by the semiconductor to be trapped in the device.[222] To achieve this goal, they demonstrated that solution-processed perovskites can spontaneously form submicrometre-scale crystal platelets, which can efficiently extract light from the device. These perovskites are formed via the introduction of amino acid additives into the perovskite precursor solutions. In addition, their method is able to passivate perovskite surface defects and reduce nonradiative recombination. Therefore, by improving the light outcoupling and reducing nonradiative losses, Cao and his colleagues successfully achieved PLED with EQE up to 20.7%.[221]

Lin and his colleague used a different approach to generate high EQE. Instead of modifying the microstructure of perovskite layer, they chose to adopt a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. In other words, they still used flat emissive layer, but tried to optimize the balance of electrons and holes injected into the perovskite, so as to make the most efficient use of the charge carriers. Moreover, in the perovskite layer, the crystals are perfectly enclosed by MABr additive (where MA is CH3NH3). The MABr shell passivates the nonradiative defects that would otherwise be present perovskite crystals, resulting in reduction of the nonradiative recombination. Therefore, by balancing charge injection and decreasing nonradiative losses, Lin and his colleagues developed PLED with EQE up to 20.3%.[223]

Health and safety

Certain blue LEDs and cool-white LEDs can exceed safe limits of the so-called blue-light hazard as defined in eye safety specifications such as "ANSI/IESNA RP-27.1–05: Recommended Practice for Photobiological Safety for Lamp and Lamp Systems".[224] One study showed no evidence of a risk in normal use at domestic illuminance,[225] and that caution is only needed for particular occupational situations or for specific populations.[226] In 2006, the International Electrotechnical Commission published IEC 62471 Photobiological safety of lamps and lamp systems, replacing the application of early laser-oriented standards for classification of LED sources.[227]

While LEDs have the advantage over fluorescent lamps, in that they do not contain mercury, they may contain other hazardous metals such as lead and arsenic.[228]

In 2016 the American Medical Association (AMA) issued a statement concerning the possible adverse influence of blueish street lighting on the sleep-wake cycle of city-dwellers. Industry critics claim exposure levels are not high enough to have a noticeable effect.[229]

Environmental issues

See also

References

  1. ^ "HJ Round was a pioneer in the development of the LED". www.myledpassion.com. Archived from the original on October 28, 2020. Retrieved April 11, 2017.
  2. ^ "The life and times of the LED — a 100-year history" (PDF). The Optoelectronics Research Centre, University of Southampton. April 2007. Archived from the original (PDF) on September 15, 2012. Retrieved September 4, 2012.
  3. ^ US Patent 3293513, "Semiconductor Radiant Diode", James R. Biard and Gary Pittman, Filed on Aug. 8th, 1962, Issued on Dec. 20th, 1966.
  4. ^ "Inventor of Long-Lasting, Low-Heat Light Source Awarded $500,000 Lemelson-MIT Prize for Invention". Washington, D.C. Massachusetts Institute of Technology. April 21, 2004. Archived from the original on October 9, 2011. Retrieved December 21, 2011.
  5. ^ Edwards, Kimberly D. "Light Emitting Diodes" (PDF). University of California, Irvine. p. 2. Archived from the original (PDF) on February 14, 2019. Retrieved January 12, 2019.
  6. ^ Lighting Research Center. "How is white light made with LEDs?". Rensselaer Polytechnic Institute. Archived from the original on May 2, 2021. Retrieved January 12, 2019.
  7. ^ a b c d Okon, Thomas M.; Biard, James R. (2015). "The First Practical LED" (PDF). EdisonTechCenter.org. Edison Tech Center. Retrieved February 2, 2016.
  8. ^ Peláez, E. A; Villegas, E. R (2007). "LED power reduction trade-offs for ambulatory pulse oximetry". 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 2007. pp. 2296–9. doi:10.1109/IEMBS.2007.4352784. ISBN 978-1-4244-0787-3. ISSN 1557-170X. PMID 18002450. S2CID 34626885.
  9. ^ Round, H. J. (1907). "A note on carborundum". Electrical World. 19: 309.
  10. ^ Margolin J. "The Road to the Transistor". jmargolin.com.
  11. ^ Losev, O. V. (1927). "Светящийся карборундовый детектор и детектирование с кристаллами" [Luminous carborundum detector and detection with crystals]. Телеграфия и Телефония без Проводов [Wireless Telegraphy and Telephony] (in Russian). 5 (44): 485–494. English translation: Losev, O. V. (November 1928). "Luminous carborundum detector and detection effect and oscillations with crystals". Philosophical Magazine. 7th series. 5 (39): 1024–1044. doi:10.1080/14786441108564683.
  12. ^ Zheludev, N. (2007). "The life and times of the LED: a 100-year history" (PDF). Nature Photonics. 1 (4): 189–192. Bibcode:2007NaPho...1..189Z. doi:10.1038/nphoton.2007.34. Archived from the original (PDF) on May 11, 2011. Retrieved April 11, 2007.
  13. ^ Lee, Thomas H. (2004). The design of CMOS radio-frequency integrated circuits. Cambridge University Press. p. 20. ISBN 978-0-521-83539-8.
  14. ^ Destriau, G. (1936). "Recherches sur les scintillations des sulfures de zinc aux rayons". Journal de Chimie Physique. 33: 587–625. doi:10.1051/jcp/1936330587.
  15. ^ McGraw-Hill Concise Encyclopedia of Physics: electroluminescence. (n.d.) McGraw-Hill Concise Encyclopedia of Physics. (2002).
  16. ^ "Brief history of LEDs" (PDF).
  17. ^ Lehovec, K; Accardo, C. A; Jamgochian, E (1951). "Injected Light Emission of Silicon Carbide Crystals". Physical Review. 83 (3): 603–607. Bibcode:1951PhRv...83..603L. doi:10.1103/PhysRev.83.603. Archived from the original on December 11, 2014.
  18. ^ Lehovec, K; Accardo, C. A; Jamgochian, E (1953). "Injected Light Emission of Silicon Carbide Crystals". Physical Review. 89 (1): 20–25. Bibcode:1953PhRv...89...20L. doi:10.1103/PhysRev.89.20.
  19. ^ "Rubin Braunstein". UCLA. Archived from the original on March 11, 2011. Retrieved January 24, 2012.
  20. ^ Braunstein, Rubin (1955). "Radiative Transitions in Semiconductors". Physical Review. 99 (6): 1892–1893. Bibcode:1955PhRv...99.1892B. doi:10.1103/PhysRev.99.1892.
  21. ^ Kroemer, Herbert (September 16, 2013). "The Double-Heterostructure Concept: How It Got Started". Proceedings of the IEEE. 101 (10): 2183–2187. doi:10.1109/JPROC.2013.2274914. S2CID 2554978.
  22. ^ Matzen, W. T. ed. (March 1963) "Semiconductor Single-Crystal Circuit Development", Texas Instruments Inc., Contract No. AF33(616)-6600, Rept. No ASD-TDR-63-281.
  23. ^ Carr, W. N.; G. E. Pittman (November 1963). "One-watt GaAs p-n junction infrared source". Applied Physics Letters. 3 (10): 173–175. Bibcode:1963ApPhL...3..173C. doi:10.1063/1.1753837.
  24. ^ Kubetz, Rick (May 4, 2012). "Nick Holonyak, Jr., six decades in pursuit of light". University of Illinois. Archived from the original on July 10, 2020. Retrieved July 7, 2020.
  25. ^ Holonyak Nick; Bevacqua, S. F. (December 1962). "Coherent (Visible) Light Emission from Ga(As1−x Px) Junctions". Applied Physics Letters. 1 (4): 82. Bibcode:1962ApPhL...1...82H. doi:10.1063/1.1753706. Archived from the original on October 14, 2012.
  26. ^ Wolinsky, Howard (February 5, 2005). "U. of I.'s Holonyak out to take some of Edison's luster". Chicago Sun-Times. Archived from the original on March 28, 2006. Retrieved July 29, 2007.
  27. ^ Perry, T. S. (1995). "M. George Craford [biography]". IEEE Spectrum. 32 (2): 52–55. doi:10.1109/6.343989.
  28. ^ "Brief Biography — Holonyak, Craford, Dupuis" (PDF). Technology Administration. Archived from the original (PDF) on August 9, 2007. Retrieved May 30, 2007.
  29. ^ Pearsall, T. P.; Miller, B. I.; Capik, R. J.; Bachmann, K. J. (1976). "Efficient, Lattice-matched, Double Heterostructure LEDs at 1.1 mm from GaxIn1−xAsyP1−y by Liquid-phase Epitaxy". Appl. Phys. Lett. 28 (9): 499. Bibcode:1976ApPhL..28..499P. doi:10.1063/1.88831.
  30. ^ a b c Schubert, E. Fred (2003). "1". Light-Emitting Diodes. Cambridge University Press. ISBN 978-0-8194-3956-7.
  31. ^ Rostky, George (March 1997). "LEDs cast Monsanto in Unfamiliar Role". Electronic Engineering Times (944).
  32. ^ a b Borden, Howard C.; Pighini, Gerald P. (February 1969). "Solid-State Displays" (PDF). Hewlett-Packard Journal: 2–12. Archived (PDF) from the original on November 5, 2023.
  33. ^ a b Kramer, Bernhard (2003). Advances in Solid State Physics. Springer Science & Business Media. p. 40. ISBN 9783540401506.
  34. ^ "Hewlett-Packard 5082-7000". The Vintage Technology Association. Archived from the original on November 17, 2014. Retrieved August 15, 2019.
  35. ^ US 3025589, Hoerni, J. A., "Method of Manufacturing Semiconductor Devices", issued Mar 20, 1962 
  36. ^ Patent number: 3025589 Retrieved May 17, 2013
  37. ^ Bausch, Jeffrey (December 2011). "The Long History of Light Emitting Diodes". Hearst Business Communications.
  38. ^ Park, S. -I.; Xiong, Y.; Kim, R. -H.; Elvikis, P.; Meitl, M.; Kim, D. -H.; Wu, J.; Yoon, J.; Yu, C. -J.; Liu, Z.; Huang, Y.; Hwang, K. -C.; Ferreira, P.; Li, X.; Choquette, K.; Rogers, J. A. (2009). "Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays" (PDF). Science. 325 (5943): 977–981. Bibcode:2009Sci...325..977P. CiteSeerX 10.1.1.660.3338. doi:10.1126/science.1175690. OSTI 1876039. PMID 19696346. S2CID 8062948. Archived from the original (PDF) on October 24, 2015.
  39. ^ "Nobel Shocker: RCA Had the First Blue LED in 1972". IEEE Spectrum. October 9, 2014,
  40. ^ "Oregon tech CEO says Nobel Prize in Physics overlooks the actual inventors". The Oregonian. October 16, 2014
  41. ^ Schubert, E. Fred (2006) Light-emitting diodes (2nd ed.), Cambridge University Press. ISBN 0-521-86538-7 pp. 16–17
  42. ^ Maruska, H. (2005). "A Brief History of GaN Blue Light-Emitting Diodes". LIGHTimes Online – LED Industry News. Archived June 11, 2012, at the Wayback Machine
  43. ^ Major Business and Product Milestones. Cree.com. Retrieved on March 16, 2012. Archived April 13, 2011, at the Wayback Machine
  44. ^ Edmond, John A.; Kong, Hua-Shuang; Carter, Calvin H. (April 1, 1993). "Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC". Physica B: Condensed Matter. 185 (1): 453–460. Bibcode:1993PhyB..185..453E. doi:10.1016/0921-4526(93)90277-D. ISSN 0921-4526.
  45. ^ "History & Milestones". Cree.com. Cree. Archived from the original on February 16, 2017. Retrieved September 14, 2015.
  46. ^ "GaN-based blue light emitting device development by Akasaki and Amano" (PDF). Takeda Award 2002 Achievement Facts Sheet. The Takeda Foundation. April 5, 2002. Retrieved November 28, 2007.
  47. ^ Moustakas, Theodore D. U.S. patent 5686738A "Highly insulating monocrystalline gallium nitride thin films" Issue date: March 18, 1991
  48. ^ Brown, Joel (December 7, 2015). "BU Wins $13 Million in Patent Infringement Suit". BU Today. Retrieved December 7, 2015.
  49. ^ Nakamura, S.; Mukai, T.; Senoh, M. (1994). "Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting-Diodes". Applied Physics Letters. 64 (13): 1687. Bibcode:1994ApPhL..64.1687N. doi:10.1063/1.111832.
  50. ^ Nakamura, Shuji. "Development of the Blue Light-Emitting Diode". SPIE Newsroom. Retrieved September 28, 2015.
  51. ^ Iwasa, Naruhito; Mukai, Takashi and Nakamura, Shuji U.S. patent 5,578,839 "Light-emitting gallium nitride-based compound semiconductor device" Issue date: November 26, 1996
  52. ^ Fred Schubert, E. (January 2006). Light-Emitting Diodes (2nd Edition, 2006). E. Fred Schubert. ISBN 978-0-9863826-1-1.
  53. ^ "Professor Shuji Nakamura was key to the Invention of Blu-Ray Technology". University of California, Santa Barbara. January 12, 2023. Archived from the original on March 24, 2023. Retrieved June 4, 2023.
  54. ^ "Dr. Shuji Nakamura". National Academy of Engineering. Archived from the original on April 11, 2019. Retrieved June 4, 2023.
  55. ^ 2006 Millennium technology prize awarded to UCSB's Shuji Nakamura. Ia.ucsb.edu (June 15, 2006). Retrieved on August 3, 2019.
  56. ^ Overbye, Dennis (October 7, 2014). "Nobel Prize in Physics". The New York Times.
  57. ^ Dadgar, A.; Alam, A.; Riemann, T.; Bläsing, J.; Diez, A.; Poschenrieder, M.; Strassburg, M.; Heuken, M.; Christen, J.; Krost, A. (2001). "Crack-Free InGaN/GaN Light Emitters on Si(111)". Physica Status Solidi A. 188: 155–158. doi:10.1002/1521-396X(200111)188:1<155::AID-PSSA155>3.0.CO;2-P.
  58. ^ Dadgar, A.; Poschenrieder, M.; BläSing, J.; Fehse, K.; Diez, A.; Krost, A. (2002). "Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ Si\sub x]N\sub y] masking". Applied Physics Letters. 80 (20): 3670. Bibcode:2002ApPhL..80.3670D. doi:10.1063/1.1479455.
  59. ^ "Success in research: First gallium-nitride LED chips on silicon in pilot stage" (PDF). Archived from the original (PDF) on September 15, 2012. Retrieved 2012-09-15.. www.osram.de, January 12, 2012.
  60. ^ Lester, Steve (2014) Role of Substrate Choice on LED Packaging Archived July 12, 2014, at the Wayback Machine. Toshiba America Electronic Components.
  61. ^ "GaN on Silicon". Cambridge Centre for Gallium Nitride. Gan.msm.cam.ac.uk. Retrieved July 31, 2018.
  62. ^ Bush, Steve (June 30, 2016). "Toshiba gets out of GaN-on-Si LEDs". Electronics Weekly. Retrieved July 31, 2018.
  63. ^ Nunoue, Shin-ya; Hikosaka, Toshiki; Yoshida, Hisashi; Tajima, Jumpei; Kimura, Shigeya; Sugiyama, Naoharu; Tachibana, Koichi; Shioda, Tomonari; Sato, Taisuke; Muramoto, Eiji; Onomura, Masaaki (2013). "LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges". 2013 IEEE International Electron Devices Meeting. pp. 13.2.1–13.2.4. doi:10.1109/IEDM.2013.6724622. ISBN 978-1-4799-2306-9. S2CID 23448056.
  64. ^ Wright, Maury (May 2, 2016). "Samsung's Tarn reports progress in CSP and GaN-on-Si LEDs". LEDs Magazine.
  65. ^ "Increasing the Competitiveness of the GaN-on-silicon LED". Compound Semiconductor (30 March 2016).
  66. ^ "Samsung To Focus on Silicon-based LED Chip Technology in 2015". LED Inside (17 March 2015).
  67. ^ Keeping, Steven. (2013-01-15) "Material and Manufacturing Improvements". DigiKey. Retrieved on 2018-07-31.
  68. ^ Keeping, Steven (December 12, 2014) "Manufacturers Shift Attention to Light Quality to Further LED Market Share Gains". DigiKey. Retrieved July 31, 2018.
  69. ^ Keeping, Steven. (September 24, 2013). "Will Silicon Substrates Push LED Lighting Into the Mainstream?". DigiKey. Retrieved July 31, 2018.
  70. ^ Keeping, Steven (March 24, 2015). "Improved Silicon-Substrate LEDs Address High Solid-State Lighting Costs". DigiKey. Retrieved July 31, 2018.
  71. ^ "Development of the Nano-Imprint Equipment ST50S-LED for High-Brightness LED". Toshiba Machine (May 18, 2011). Retrieved July 31, 2018.
  72. ^ "The use of sapphire in mobile device and LED industries: Part 2" Archived July 29, 2018, at the Wayback Machine. Solid State Technology (September 26, 2017). Retrieved July 31, 2018.
  73. ^ "Epitaxy". Applied Materials. Retrieved July 31, 2018.
  74. ^ a b Lester, Steve, Role of Substrate Choice on LED Pacakaging (PDF), Toshiba America Electronic Components, archived from the original (PDF) on July 12, 2014
  75. ^ Semiengineering: MOCVD vendors eye new apps
  76. ^ Izotov, Sergey; Sitdikov, Anton; Soldatkin, Vasily; Tuev, Vasily; Olisovets, Artem (2014). "Study of Phosphors for White LEDs". Procedia Technology. 18: 14–18. doi:10.1016/j.protcy.2014.11.005.
  77. ^ "Haitz's law". Nature Photonics. 1 (1): 23. 2007. Bibcode:2007NaPho...1...23.. doi:10.1038/nphoton.2006.78.
  78. ^ "List of Top 10 LED light manufacturer in China". Archived from the original on October 9, 2014.
  79. ^ Morris, Nick (June 1, 2006). "LED there be light, Nick Morris predicts a bright future for LEDs". Electrooptics.com. Archived from the original on November 23, 2011. Retrieved March 4, 2009.
  80. ^ "The LED Illumination Revolution". Forbes. February 27, 2008.
  81. ^ "The Nobel Prize in Physics 2014" (press release). Nobel Prize Committee, 7 October 2014
  82. ^ "Cree First to Break 300 Lumens-Per-Watt Barrier". Archived July 28, 2018, at the Wayback Machine. Cree.com (Match 26, 2014). Retrieved July 31, 2018.
  83. ^ LM301B | SAMSUNG LED | Samsung LED Global Website. Samsung.com. Retrieved on 2018-07-31.
  84. ^ Samsung Achieves 220 Lumens per Watt with New Mid-Power LED Package. Samsung.com (2017-06-16). Retrieved on 2018-07-31.
  85. ^ LED breakthrough promises ultra-efficient luminaires | Lux-n-Lum.Retrieved on 2018-04-06.
  86. ^ "White LEDs with super-high luminous efficacy could satisfy all general lighting needs". phys.org.
  87. ^ LED bulb efficiency expected to continue improving as cost declines. U.S. Energy Information Administration (March 19, 2014)
  88. ^ LED Lighting: Technology and Perception. John Wiley & Sons. February 9, 2015. ISBN 978-3-527-41212-9.
  89. ^ "Hermetic Polymer-Free White LEDs for Harsh Environments".
  90. ^ From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications. John Wiley & Sons. September 28, 2021. ISBN 978-1-118-88147-7.
  91. ^ Introduction to the Light-Emitting Diode: Real Applications for Industrial Engineers. Springer. May 12, 2023. ISBN 978-3-031-30716-4.
  92. ^ a b Reliability of Organic Compounds in Microelectronics and Optoelectronics: From Physics-of-Failure to Physics-of-Degradation. Springer. January 31, 2022. ISBN 978-3-030-81576-9.
  93. ^ From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications. John Wiley & Sons. September 28, 2021. ISBN 978-1-118-88147-7.
  94. ^ Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays. CRC Press. June 3, 2014. ISBN 978-1-4665-6112-0.
  95. ^ a b LED Packaging for Lighting Applications: Design, Manufacturing, and Testing. John Wiley & Sons. July 5, 2011. ISBN 978-0-470-82840-3.
  96. ^ a b LED Lighting: Technology and Perception. John Wiley & Sons. February 9, 2015. ISBN 978-3-527-41212-9.
  97. ^ Chung, Woon Jin; Nam, Yoon Hee (2020). "Review—A Review on Phosphor in Glass as a High Power LED Color Converter". ECS Journal of Solid State Science and Technology. 9 (1): 016010. Bibcode:2020JSSST...9a6010C. doi:10.1149/2.0142001JSS.
  98. ^ "Philips LED 60W 806lm Retrofit with Remote Phosphor". lamptech.co.uk. Retrieved January 9, 2022.
  99. ^ Light-Emitting Diodes (4th Edition, 2023). E. Fred Schubert. March 11, 2023. ISBN 978-0-9863826-7-3.
  100. ^ Reliability Investigation of LED Devices for Public Light Applications. Elsevier. March 9, 2017. ISBN 978-0-08-101092-1.
  101. ^ Solid State Lighting Reliability: Components to Systems. Springer. September 6, 2012. ISBN 978-1-4614-3067-4.
  102. ^ Solid State Lighting Reliability Part 2: Components to Systems. Springer. July 11, 2017. ISBN 978-3-319-58175-0.
  103. ^ Light-Emitting Diodes (2nd Edition, 2006). E. Fred Schubert. January 2006. ISBN 978-0-9863826-1-1.
  104. ^ Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Woodhead. October 24, 2017. ISBN 978-0-08-101943-6.
  105. ^ LED Lighting: Technology and Perception. John Wiley & Sons. February 9, 2015. ISBN 978-3-527-41212-9.
  106. ^ Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays. CRC Press. June 3, 2014. ISBN 978-1-4665-6112-0.
  107. ^ III-Nitride Based Light Emitting Diodes and Applications. Springer. May 18, 2017. ISBN 978-981-10-3755-9.
  108. ^ "New Glass-Based Phosphors for White Light-Emitting Diodes".
  109. ^ From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications. John Wiley & Sons. September 28, 2021. ISBN 978-1-118-88147-7.
  110. ^ LED Lighting: Technology and Perception. John Wiley & Sons. February 9, 2015. ISBN 978-3-527-41212-9.
  111. ^ Coxworth, Ben (June 18, 2024). "All-in-one polychromatic LEDs replace RGB for radically sharper screens". New Atlas. Retrieved June 21, 2024.
  112. ^ Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. Archived from the original on August 17, 2021. Retrieved February 25, 2021.
  113. ^ "LED Basics | Department of Energy". www.energy.gov. Retrieved October 22, 2018.
  114. ^ "LED Spectral Distribution". optiwave.com. July 25, 2013. Retrieved June 20, 2017.
  115. ^ Cooke, Mike (April–May 2010). "Going Deep for UV Sterilization LEDs" (PDF). Semiconductor Today. 5 (3): 82. Archived from the original (PDF) on May 15, 2013.
  116. ^ a b Mori, M.; Hamamoto, A.; Takahashi, A.; Nakano, M.; Wakikawa, N.; Tachibana, S.; Ikehara, T.; Nakaya, Y.; Akutagawa, M.; Kinouchi, Y. (2007). "Development of a new water sterilization device with a 365 nm UV-LED". Medical & Biological Engineering & Computing. 45 (12): 1237–1241. doi:10.1007/s11517-007-0263-1. PMID 17978842. S2CID 2821545.
  117. ^ Taniyasu, Y.; Kasu, M.; Makimoto, T. (2006). "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres". Nature. 441 (7091): 325–328. Bibcode:2006Natur.441..325T. doi:10.1038/nature04760. PMID 16710416. S2CID 4373542.
  118. ^ Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. (2007). "Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure". Science. 317 (5840): 932–934. Bibcode:2007Sci...317..932K. doi:10.1126/science.1144216. PMID 17702939.
  119. ^ Watanabe, K.; Taniguchi, T.; Kanda, H. (2004). "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal". Nature Materials. 3 (6): 404–409. Bibcode:2004NatMa...3..404W. doi:10.1038/nmat1134. PMID 15156198. S2CID 23563849.
  120. ^ Koizumi, S.; Watanabe, K.; Hasegawa, M.; Kanda, H. (2001). "Ultraviolet Emission from a Diamond pn Junction". Science. 292 (5523): 1899–1901. Bibcode:2001Sci...292.1899K. doi:10.1126/science.1060258. PMID 11397942. S2CID 10675358.
  121. ^ "Seeing Red with PFS Phosphor".
  122. ^ "GE Lighting manufactures PFS red phosphor for LED display backlight applications". March 31, 2015.
  123. ^ Murphy, James E.; Garcia-Santamaria, Florencio; Setlur, Anant A.; Sista, Srinivas (2015). "62.4: PFS, K2SiF6:Mn4+: The Red-line Emitting LED Phosphor behind GE's TriGain Technology™ Platform". Sid Symposium Digest of Technical Papers. 46: 927–930. doi:10.1002/sdtp.10406.
  124. ^ Dutta, Partha S.; Liotta, Kathryn M. (2018). "Full Spectrum White LEDs of Any Color Temperature with Color Rendering Index Higher Than 90 Using a Single Broad-Band Phosphor". ECS Journal of Solid State Science and Technology. 7: R3194–R3198. doi:10.1149/2.0251801jss. S2CID 103600941.
  125. ^ Cho, Jaehee; Park, Jun Hyuk; Kim, Jong Kyu; Schubert, E. Fred (2017). "White light-emitting diodes: History, progress, and future". Laser & Photonics Reviews. 11 (2): 1600147. Bibcode:2017LPRv...1100147C. doi:10.1002/lpor.201600147. ISSN 1863-8880. S2CID 53645208.
  126. ^ Light-Emitting Diodes (3rd Edition, 2018). E. Fred Schubert. February 3, 2018. ISBN 978-0-9863826-6-6.
  127. ^ Additive Manufacturing and Strategic Technologies in Advanced Ceramics. John Wiley & Sons. August 16, 2016. ISBN 978-1-119-23600-9.
  128. ^ Moreno, I.; Contreras, U. (2007). "Color distribution from multicolor LED arrays". Optics Express. 15 (6): 3607–3618. Bibcode:2007OExpr..15.3607M. doi:10.1364/OE.15.003607. PMID 19532605. S2CID 35468615.
  129. ^ Yeh, Dong-Ming; Huang, Chi-Feng; Lu, Chih-Feng; Yang, Chih-Chung. "Making white-light-emitting diodes without phosphors | SPIE Homepage: SPIE". spie.org. Retrieved April 7, 2019.
  130. ^ Cabrera, Rowan (2019). Electronic Devices and Circuits. EDTECH. ISBN 978-1839473838.
  131. ^ Schubert, E. Fred; Kim, Jong Kyu (2005). "Solid-State Light Sources Getting Smart" (PDF). Science. 308 (5726): 1274–1278. Bibcode:2005Sci...308.1274S. doi:10.1126/science.1108712. PMID 15919985. S2CID 6354382. Archived from the original (PDF) on February 5, 2016.
  132. ^ Nimz, Thomas; Hailer, Fredrik; Jensen, Kevin (November 2012). "Sensors and Feedback Control of Multicolor LED Systems". Led Professional Review: Trends & Technologie for Future Lighting Solutions (34). LED Professional: 2–5. ISSN 1993-890X. Archived from the original (PDF) on April 29, 2014.
  133. ^ Tanabe, S.; Fujita, S.; Yoshihara, S.; Sakamoto, A.; Yamamoto, S. (2005). "YAG glass-ceramic phosphor for white LED (II): Luminescence characteristics" (PDF). In Ferguson, Ian T; Carrano, John C; Taguchi, Tsunemasa; Ashdown, Ian E (eds.). Fifth International Conference on Solid State Lighting. Vol. 5941. p. 594112. Bibcode:2005SPIE.5941..193T. doi:10.1117/12.614681. S2CID 38290951. Archived from the original (PDF) on May 11, 2011. {{cite book}}: |journal= ignored (help)
  134. ^ Ohno, Y. (2004). Ferguson, Ian T; Narendran, Nadarajah; Denbaars, Steven P; Carrano, John C (eds.). "Color rendering and luminous efficacy of white LED spectra" (PDF). Proc. SPIE. Fourth International Conference on Solid State Lighting. 5530: 89. Bibcode:2004SPIE.5530...88O. doi:10.1117/12.565757. S2CID 122777225. Archived from the original (PDF) on May 11, 2011.
  135. ^ Next-Generation GaN-on-Si White LEDs Suppress Costs, Electronic Design, 19 November 2013
  136. ^ GaN-on-Silicon LEDs Forecast to Increase Market Share to 40 Percent by 2020, iSuppli, 4 December 2013
  137. ^ "All You Want to Know about RGBW LED Light". AGC Lighting.
  138. ^ "Tunable White Application Note". enlightedinc.com.
  139. ^ "2021 How Green Light Can Maximize the Quality of Tunable White – LEDucation".
  140. ^ a b "Understanding LED Color-Tunable Products". Energy.gov.
  141. ^ Whitaker, Tim (December 6, 2002). "Joint venture to make ZnSe white LEDs". Retrieved January 3, 2009.
  142. ^ Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990). "Light-emitting diodes based on conjugated polymers". Nature. 347 (6293): 539–541. Bibcode:1990Natur.347..539B. doi:10.1038/347539a0. S2CID 43158308.
  143. ^ a b Kho, Mu-Jeong; Javed, T.; Mark, R.; Maier, E.; David, C (March 4, 2008). Final Report: OLED Solid State Lighting. Kodak European Research. Cambridge Science Park, Cambridge, UK.
  144. ^ a b Bardsley, J. N. (2004). "International OLED Technology Roadmap". IEEE Journal of Selected Topics in Quantum Electronics. 10 (1): 3–4. Bibcode:2004IJSTQ..10....3B. doi:10.1109/JSTQE.2004.824077. S2CID 30084021.
  145. ^ Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. (1998). "Ink-jet printing of doped polymers for organic light emitting devices". Applied Physics Letters. 72 (5): 519. Bibcode:1998ApPhL..72..519H. doi:10.1063/1.120807. S2CID 119648364.
  146. ^ Bharathan, J.; Yang, Y. (1998). "Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo". Applied Physics Letters. 72 (21): 2660. Bibcode:1998ApPhL..72.2660B. doi:10.1063/1.121090. S2CID 44128025.
  147. ^ Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. (1992). "Flexible light-emitting diodes made from soluble conducting polymers". Nature. 357 (6378): 477–479. Bibcode:1992Natur.357..477G. doi:10.1038/357477a0. S2CID 4366944.
  148. ^ LED-design. Elektor.com. Retrieved on March 16, 2012. Archived August 31, 2012, at the Wayback Machine
  149. ^ "OSRAM Radial T1 3/4, SFH 4546 IR LEDs - ams-osram - ams". ams-osram. Retrieved September 19, 2024.
  150. ^ "LED Through Hole 5mm (T-1 3/4) Red Built-in resistor 635 nm 4500 mcd 12V". VCC. Retrieved September 19, 2024.
  151. ^ "Luminus Products". Luminus Devices. Archived from the original on July 25, 2008. Retrieved October 21, 2009.
  152. ^ "Luminus Products CST-90 Series Datasheet" (PDF). Luminus Devices. Archived from the original (PDF) on March 31, 2010. Retrieved October 25, 2009.
  153. ^ a b "Xlamp Xp-G Led". Cree.com. Cree, Inc. Archived from the original on March 13, 2012. Retrieved March 16, 2012.
  154. ^ High Power Point Source White Led NVSx219A Archived July 29, 2021, at the Wayback Machine. Nichia.co.jp, November 2, 2010.
  155. ^ "Seoul Semiconductor launches AC LED lighting source Acrich". LEDS Magazine. November 17, 2006. Archived from the original on October 15, 2007. Retrieved February 17, 2008.
  156. ^ a b Visibility, Environmental, and Astronomical Issues Associated with Blue-Rich White Outdoor Lighting (PDF). International Dark-Sky Association. May 4, 2010. Archived from the original (PDF) on January 16, 2013.
  157. ^ Oskay, Windell (June 22, 2011). "Does this LED sound funny to you?". Evil Mad Scientist Laboratories. Archived from the original on September 24, 2023. Retrieved January 30, 2024.
  158. ^ Tim's Blog (January 14, 2024). "Revisiting Candle Flicker-LEDs: Now with integrated Timer". cpldcpu.wordpress.com. Archived from the original on January 29, 2024. Retrieved January 30, 2024.
  159. ^ Ting, Hua-Nong (June 17, 2011). 5th Kuala Lumpur International Conference on Biomedical Engineering 2011: BIOMED 2011, 20–23 June 2011, Kuala Lumpur, Malaysia. Springer Science & Business Media. ISBN 9783642217296.
  160. ^ "The Next Generation of LED Filament Bulbs". LEDInside.com. Trendforce. Retrieved October 26, 2015.
  161. ^ Archived at Ghostarchive and the Wayback Machine: "LED Filaments". YouTube. April 5, 2015. Retrieved October 26, 2015.
  162. ^ Handbook on the Physics and Chemistry of Rare Earths: Including Actinides. Elsevier Science. August 1, 2016. p. 89. ISBN 978-0-444-63705-5.
  163. ^ "Corn Lamps: What Are They & Where Can I Use Them?". Shine Retrofits. September 1, 2016. Retrieved December 30, 2018.
  164. ^ "Solid-State Lighting: Comparing LEDs to Traditional Light Sources". eere.energy.gov. Archived from the original on May 5, 2009.
  165. ^ "Dialight Micro LED SMD LED "598 SERIES" Datasheet" (PDF). Dialight.com. Archived from the original (PDF) on February 5, 2009.
  166. ^ The LED Museum. Retrieved on March 16, 2012.
  167. ^ a b Stevenson, Richard (August 2009), "The LED's Dark Secret: Solid-state lighting will not supplant the lightbulb until it can overcome the mysterious malady known as droop". IEEE Spectrum.
  168. ^ Worthey, James A. "How White Light Works". LRO Lighting Research Symposium, Light and Color. Retrieved October 6, 2007.
  169. ^ Narra, Prathyusha; Zinger, D.S. (2004). "An effective LED dimming approach". Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. Vol. 3. pp. 1671–1676. doi:10.1109/IAS.2004.1348695. ISBN 978-0-7803-8486-6. S2CID 16372401.
  170. ^ "Data Sheet — HLMP-1301, T-1 (3 mm) Diffused LED Lamps". Avago Technologies. Retrieved May 30, 2010.
  171. ^ Hecht, E. (2002). Optics (4 ed.). Addison Wesley. p. 591. ISBN 978-0-19-510818-7.
  172. ^ "LED Light Bars For Off Road Illumination". Larson Electronics.
  173. ^ "LED Design Forum: Avoiding thermal runaway when driving multiple LED strings". LEDs Magazine. April 20, 2009. Retrieved January 17, 2019.
  174. ^ "Lifetime of White LEDs". Archived from the original on April 10, 2009. Retrieved 2009-04-10., US Department of Energy
  175. ^ Lifetime of White LEDs Archived May 28, 2016, at the Wayback Machine. US Department of Energy. (PDF). Retrieved on March 16, 2012.
  176. ^ "In depth: Advantages of LED Lighting". energy.ltgovernors.com. Archived from the original on November 14, 2017. Retrieved July 27, 2012.
  177. ^ Stern, Maike Lorena; Schellenberger, Martin (March 31, 2020). "Fully convolutional networks for chip-wise defect detection employing photoluminescence images". Journal of Intelligent Manufacturing. 32 (1): 113–126. arXiv:1910.02451. doi:10.1007/s10845-020-01563-4. ISSN 0956-5515. S2CID 254655125.
  178. ^ Hoque, Md Ashraful; Bradley, Robert Kelley; Fan, Jiajie; Fan, Xuejun (2019). "Effects of humidity and phosphor on silicone/Phosphor composite in white light-emitting diode package". Journal of Materials Science: Materials in Electronics. 30 (23): 20471–20478. doi:10.1007/s10854-019-02393-8.
  179. ^ "3-Pad LED Flip Chip COB". LED professional - LED Lighting Technology, Application Magazine. Retrieved February 15, 2024.
  180. ^ OSRAM: green LED
  181. ^ Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H (2001). "Ultraviolet Emission from a Diamond pn Junction". Science. 292 (5523): 1899. doi:10.1126/science.1060258. PMID 11397942.
  182. ^ Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. (2007). "Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure". Science. 317 (5840): 932. doi:10.1126/science.1144216. PMID 17702939.
  183. ^ Watanabe, Kenji; Taniguchi, Takashi; Kanda, Hisao (2004). "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal". Nature Materials. 3 (6): 404. doi:10.1038/nmat1134. PMID 15156198.
  184. ^ Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki (2006). "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres". Nature. 441 (7091): 325. doi:10.1038/nature04760. PMID 16710416.
  185. ^ "LEDs move into the ultraviolet". physicsworld.com. May 17, 2006. Retrieved August 13, 2007.
  186. ^ European Photonics Industry Consortium (EPIC). This includes use in data communications over fiber optics as well as "broadcast" data or signaling.
  187. ^ Mims, Forrest M. III. "An Inexpensive and Accurate Student Sun Photometer with Light-Emitting Diodes as Spectrally Selective Detectors".
  188. ^ "Water Vapor Measurements with LED Detectors". cs.drexel.edu (2002).
  189. ^ Dziekan, Mike (February 6, 2009) "Using Light-Emitting Diodes as Sensors". soamsci.or. Archived May 31, 2013, at the Wayback Machine
  190. ^ Ben-Ezra, Moshe; Wang, Jiaping; Wilburn, Bennett; Xiaoyang Li; Le Ma (2008). "An LED-only BRDF measurement device". 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. CiteSeerX 10.1.1.165.484. doi:10.1109/CVPR.2008.4587766. ISBN 978-1-4244-2242-5. S2CID 206591080.
  191. ^ Bantis, Filippos, Sonia Smirnakou, Theoharis Ouzounis, Athanasios Koukounaras, Nikolaos Ntagkas, and Kalliopi Radoglou. "Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs)." Scientia horticulturae 235 (2018): 437-451.
  192. ^ Miler N., Kulus D., Woźny A., Rymarz D., Hajzer M., Wierzbowski K., Nelke R., Szeffs L., 2019. Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction. In Vitro Cellular and Developmental Biology – Plant 55: 99-108. https://doi.org/10.1007/s11627-018-9939-5
  193. ^ Tymoszuk A., Kulus D., Błażejewska A., Nadolan K., Kulpińska A., Pietrzykowski K., 2023. Application of wide-spectrum light-emitting diodes in the indoor production of cucumber and tomato seedlings. Acta Agrobotanica 76: 762. https://doi.org/10.5586/aa.762
  194. ^ Tymoszuk A., Kulus D., Kowalska J., Kulpińska A., Pańka D., Jeske M., Antkowiak M. 2024. Light spectrum affects growth, metabolite profile, and resistance against fungal phytopathogens of Solanum lycopersicum L. seedlings. Journal of Plant Protection Research 64(2). https://doi.org/10.24425/jppr.2024.150247
  195. ^ Kulus D., Woźny A., 2020. Influence of light conditions on the morphogenetic and biochemical response of selected ornamental plant species under in vitro conditions: A mini-review. BioTechnologia 101(1): 75-83. http://doi.org/10.5114/bta.2020.92930
  196. ^ "L-Prize U.S. Department of Energy", L-Prize Website, August 3, 2011
  197. ^ LED There Be Light, Scientific American, March 18, 2009
  198. ^ Eisenberg, Anne (June 24, 2007). "In Pursuit of Perfect TV Color, With L.E.D.'s and Lasers". New York Times. Retrieved April 4, 2010.
  199. ^ "CDC – NIOSH Publications and Products – Impact: NIOSH Light-Emitting Diode (LED) Cap Lamp Improves Illumination and Decreases Injury Risk for Underground Miners". cdc.gov. 2011. doi:10.26616/NIOSHPUB2011192. Retrieved May 3, 2013. {{cite journal}}: Cite journal requires |journal= (help)
  200. ^ Janeway, Kimberly (December 12, 2014). "LED lightbulbs that promise to help you sleep". Consumer Reports. Retrieved May 10, 2018.
  201. ^ "LED Device Illuminates New Path to Healing" (Press release). nasa.gov. Archived from the original on October 13, 2008. Retrieved January 30, 2012.
  202. ^ Fudin, M. S.; Mynbaev, K. D.; Aifantis, K. E.; Lipsanen H.; Bougrov, V. E.; Romanov, A. E. (2014). "Frequency characteristics of modern LED phosphor materials". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 14 (6).
  203. ^ Green, Hank (October 9, 2008). "Transmitting Data Through LED Light Bulbs". EcoGeek. Archived from the original on December 12, 2008. Retrieved February 15, 2009.
  204. ^ Dimitrov, Svilen; Haas, Harald (2015). Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge: Cambridge University Press. doi:10.1017/cbo9781107278929. ISBN 978-1-107-04942-0.
  205. ^ Sampath, A. V.; Reed, M. L.; Moe, C.; Garrett, G. A.; Readinger, E. D.; Sarney, W. L.; Shen, H.; Wraback, M.; Chua, C. (December 1, 2009), "The effects of increasing AlN mole fraction on the performance of AlGaN active regions containing nanometer scale compositionally imhomogeneities", Advanced High Speed Devices, Selected Topics in Electronics and Systems, vol. 51, World Scientific, pp. 69–76, doi:10.1142/9789814287876_0007, ISBN 9789814287869
  206. ^ a b Liao, Yitao; Thomidis, Christos; Kao, Chen-kai; Moustakas, Theodore D. (February 21, 2011). "AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy". Applied Physics Letters. 98 (8): 081110. Bibcode:2011ApPhL..98h1110L. doi:10.1063/1.3559842. ISSN 0003-6951.
  207. ^ a b c d e Cabalo, Jerry; DeLucia, Marla; Goad, Aime; Lacis, John; Narayanan, Fiona; Sickenberger, David (October 2, 2008). Carrano, John C.; Zukauskas, Arturas (eds.). "Overview of the TAC-BIO detector". Optically Based Biological and Chemical Detection for Defence IV. 7116. International Society for Optics and Photonics: 71160D. Bibcode:2008SPIE.7116E..0DC. doi:10.1117/12.799843. S2CID 108562187.
  208. ^ Poldmae, Aime; Cabalo, Jerry; De Lucia, Marla; Narayanan, Fiona; Strauch III, Lester; Sickenberger, David (September 28, 2006). Carrano, John C.; Zukauskas, Arturas (eds.). "Biological aerosol detection with the tactical biological (TAC-BIO) detector". Optically Based Biological and Chemical Detection for Defence III. 6398. SPIE: 63980E. doi:10.1117/12.687944. S2CID 136864366.
  209. ^ "Army advances bio-threat detector". www.army.mil. January 22, 2015. Retrieved October 10, 2019.
  210. ^ Kesavan, Jana; Kilper, Gary; Williamson, Mike; Alstadt, Valerie; Dimmock, Anne; Bascom, Rebecca (February 1, 2019). "Laboratory validation and initial field testing of an unobtrusive bioaerosol detector for health care settings". Aerosol and Air Quality Research. 19 (2): 331–344. doi:10.4209/aaqr.2017.10.0371. ISSN 1680-8584.
  211. ^ Dietz, P. H.; Yerazunis, W. S.; Leigh, D. L. (2004). "Very Low-Cost Sensing and Communication Using Bidirectional LEDs". {{cite journal}}: Cite journal requires |journal= (help)
  212. ^ Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S. (1997). "Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting". Journal of Experimental Botany. 48 (7): 1407–1413. doi:10.1093/jxb/48.7.1407. PMID 11541074.
  213. ^ Li, Jinmin; Wang, Junxi; Yi, Xiaoyan; Liu, Zhiqiang; Wei, Tongbo; Yan, Jianchang; Xue, Bin (August 31, 2020). III-Nitrides Light Emitting Diodes: Technology and Applications. Springer Nature. p. 248. ISBN 978-981-15-7949-3.
  214. ^ Gaska, R.; Shur, M. S.; Zhang, J. (October 2006). "Physics and Applications of Deep UV LEDs". 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. pp. 842–844. doi:10.1109/ICSICT.2006.306525. ISBN 1-4244-0160-7. S2CID 17258357.
  215. ^ a b "LED R&D Challenges". Energy.gov. Retrieved March 13, 2019.
  216. ^ "JULY 2015 POSTINGS". Energy.gov. Retrieved March 13, 2019.
  217. ^ Identifying the Causes of LED Efficiency Droop Archived 13 December 2013 at the Wayback Machine, By Steven Keeping, Digi-Key Corporation Tech Zone
  218. ^ Iveland, Justin; et al. (April 23, 2013). "Cause of LED Efficiency Droop Finally Revealed". Physical Review Letters, 2013.
  219. ^ Di, Dawei; Romanov, Alexander S.; Yang, Le; Richter, Johannes M.; Rivett, Jasmine P. H.; Jones, Saul; Thomas, Tudor H.; Abdi Jalebi, Mojtaba; Friend, Richard H.; Linnolahti, Mikko; Bochmann, Manfred (April 14, 2017). "High-performance light-emitting diodes based on carbene-metal-amides" (PDF). Science. 356 (6334): 159–163. arXiv:1606.08868. Bibcode:2017Sci...356..159D. doi:10.1126/science.aah4345. ISSN 0036-8075. PMID 28360136. S2CID 206651900.
  220. ^ a b Armin, Ardalan; Meredith, Paul (October 2018). "LED technology breaks performance barrier". Nature. 562 (7726): 197–198. Bibcode:2018Natur.562..197M. doi:10.1038/d41586-018-06923-y. PMID 30305755.
  221. ^ a b Cao, Yu; Wang, Nana; Tian, He; Guo, Jingshu; Wei, Yingqiang; Chen, Hong; Miao, Yanfeng; Zou, Wei; Pan, Kang; He, Yarong; Cao, Hui (October 2018). "Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures". Nature. 562 (7726): 249–253. Bibcode:2018Natur.562..249C. doi:10.1038/s41586-018-0576-2. ISSN 1476-4687. PMID 30305742.
  222. ^ Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik (August 18, 2008). "Weak-microcavity organic light-emitting diodes with improved light out-coupling". Optics Express. 16 (17): 12632–12639. Bibcode:2008OExpr..1612632C. doi:10.1364/OE.16.012632. ISSN 1094-4087. PMID 18711500.
  223. ^ Lin, Kebin; Xing, Jun; Quan, Li Na; de Arquer, F. Pelayo García; Gong, Xiwen; Lu, Jianxun; Xie, Liqiang; Zhao, Weijie; Zhang, Di; Yan, Chuanzhong; Li, Wenqiang (October 2018). "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent". Nature. 562 (7726): 245–248. Bibcode:2018Natur.562..245L. doi:10.1038/s41586-018-0575-3. hdl:10356/141016. ISSN 1476-4687. PMID 30305741. S2CID 52958604.
  224. ^ "Blue LEDs: A health hazard?". texyt.com. January 15, 2007. Retrieved September 3, 2007.
  225. ^ Some evidences that white LEDs are toxic for human at domestic radiance?. Radioprotection (2017-09-12). Retrieved on 2018-07-31.
  226. ^ Point, S. and Barlier-Salsi, A. (2018) LEDs lighting and retinal damage, technical information sheets, SFRP
  227. ^ "LED Based Products Must Meet Photobilogical Safety Standards: Part 2". ledsmagazine.com. November 29, 2011. Retrieved January 9, 2022.
  228. ^ Lim, S. R.; Kang, D.; Ogunseitan, O. A.; Schoenung, J. M. (2011). "Potential Environmental Impacts of Light-Emitting Diodes (LEDs): Metallic Resources, Toxicity, and Hazardous Waste Classification". Environmental Science & Technology. 45 (1): 320–327. Bibcode:2011EnST...45..320L. doi:10.1021/es101052q. PMID 21138290.
  229. ^ "Response to the AMA Statement on High Intensity Street Lighting". ledroadwaylighting.com. Archived from the original on January 19, 2019. Retrieved January 17, 2019.
  230. ^ Stokstad, Erik (October 7, 2014). "LEDs: Good for prizes, bad for insects". Science. Retrieved October 7, 2014.
  231. ^ Pawson, S. M.; Bader, M. K.-F. (2014). "LED Lighting Increases the Ecological Impact of Light Pollution Irrespective of Color Temperature". Ecological Applications. 24 (7): 1561–1568. Bibcode:2014EcoAp..24.1561P. doi:10.1890/14-0468.1. PMID 29210222.
  232. ^ Polakovic, Gary (June 12, 2018). "Scientist's new database can help protect wildlife from harmful hues of LED lights". USC News. Archived from the original on May 19, 2020. Retrieved December 16, 2019.
  233. ^ "Information About Sea Turtles: Threats from Artificial Lighting". Sea Turtle Conservancy. Retrieved December 16, 2019.
  234. ^ "Stoplights' Unusual, Potentially Deadly Winter Problem". ABC News. January 8, 2010. Archived from the original on December 12, 2023.
  235. ^ Markley, Stephen (December 17, 2009). "LED Traffic Lights Can't Melt Snow, Ice". Cars.com. Archived from the original on June 6, 2019.

Further reading

External links