stringtranslate.com

Revolución industrial

La Revolución Industrial , a veces dividida en la Primera Revolución Industrial y la Segunda Revolución Industrial , fue un período de transición global de la economía humana hacia procesos de fabricación más generalizados, eficientes y estables que sucedieron a la Revolución Agrícola . Comenzó en Gran Bretaña y se extendió a Europa continental y Estados Unidos , desde alrededor de 1760 hasta aproximadamente 1820-1840. [1] Esta transición incluyó pasar de métodos de producción manuales a máquinas ; nuevos procesos de fabricación química y producción de hierro ; el uso creciente de la energía hidráulica y de vapor ; el desarrollo de máquinas herramienta ; y el surgimiento del sistema de fábrica mecanizada . La producción aumentó enormemente y el resultado fue un aumento sin precedentes de la población y la tasa de crecimiento de la población . La industria textil fue la primera en utilizar métodos de producción modernos, [2] : 40  y los textiles se convirtieron en la industria dominante en términos de empleo, valor de la producción y capital invertido.

Muchas de las innovaciones tecnológicas y arquitectónicas fueron de origen británico. [3] [4] A mediados del siglo XVIII, Gran Bretaña era la principal nación comercial del mundo, [5] controlando un imperio comercial global con colonias en América del Norte y el Caribe. Gran Bretaña tenía una importante hegemonía militar y política en el subcontinente indio ; particularmente con la Bengala mogol protoindustrializada , a través de las actividades de la Compañía de las Indias Orientales . [6] [7] [8] [9] El desarrollo del comercio y el auge de los negocios estuvieron entre las principales causas de la Revolución Industrial. [2] : 15  Los avances en la ley también facilitaron la revolución, como los tribunales que fallaron a favor de los derechos de propiedad . Un espíritu emprendedor y una revolución del consumo ayudaron a impulsar la industrialización en Gran Bretaña, que después de 1800, fue emulada en Bélgica, Estados Unidos y Francia. [10]

La Revolución Industrial marcó un punto de inflexión importante en la historia, comparable sólo a la adopción de la agricultura por parte de la humanidad en lo que respecta al avance material. [11] La Revolución Industrial influyó de alguna manera en casi todos los aspectos de la vida diaria. En particular, el ingreso promedio y la población comenzaron a exhibir un crecimiento sostenido sin precedentes. Algunos economistas han dicho que el efecto más importante de la Revolución Industrial fue que el nivel de vida de la población general en el mundo occidental comenzó a aumentar de manera constante por primera vez en la historia, aunque otros han dicho que no comenzó a mejorar significativamente hasta finales del siglo XIX y el siglo XX. [12] [13] [14] El PIB per cápita era en general estable antes de la Revolución Industrial y el surgimiento de la economía capitalista moderna, [15] mientras que la Revolución Industrial inició una era de crecimiento económico per cápita en las economías capitalistas. [16] Los historiadores económicos coinciden en que el inicio de la Revolución Industrial es el evento más importante en la historia humana desde la domesticación de animales y plantas. [17]

El inicio y el final precisos de la Revolución Industrial aún son objeto de debate entre los historiadores, al igual que el ritmo de los cambios económicos y sociales . [18] [19] [20] [21] Según el historiador de Cambridge Leigh Shaw-Taylor, Gran Bretaña ya se estaba industrializando en el siglo XVII, y "Nuestra base de datos muestra que una oleada de iniciativa y productividad transformó la economía en el siglo XVII, sentando las bases para la primera economía industrial del mundo. Gran Bretaña ya era una nación de creadores en el año 1700" y "la historia de Gran Bretaña necesita ser reescrita". [22] [23] Eric Hobsbawm sostuvo que la Revolución Industrial comenzó en Gran Bretaña en la década de 1780 y no se sintió plenamente hasta la década de 1830 o 1840, [18] mientras que TS Ashton sostuvo que ocurrió aproximadamente entre 1760 y 1830. [19] La rápida adopción de la hilatura textil mecanizada ocurrió en Gran Bretaña en la década de 1780, [24] y altas tasas de crecimiento en la energía de vapor y la producción de hierro ocurrieron después de 1800. La producción textil mecanizada se extendió desde Gran Bretaña a Europa continental y Estados Unidos a principios del siglo XIX, con importantes centros de textiles, hierro y carbón surgiendo en Bélgica y Estados Unidos y más tarde textiles en Francia. [2]

Desde finales de la década de 1830 hasta principios de la de 1840 se produjo una recesión económica, cuando la adopción de las primeras innovaciones de la Revolución Industrial, como el hilado y el tejido mecanizados, se desaceleró a medida que maduraban sus mercados; y a pesar de la creciente adopción de locomotoras, barcos de vapor y buques de vapor, y fundición de hierro con chorro de aire caliente . Las nuevas tecnologías, como el telégrafo eléctrico , ampliamente introducido en las décadas de 1840 y 1850 en el Reino Unido y los Estados Unidos, no fueron lo suficientemente potentes como para impulsar altas tasas de crecimiento económico.

El rápido crecimiento económico comenzó a repetirse después de 1870, a partir de un nuevo grupo de innovaciones en lo que se ha llamado la Segunda Revolución Industrial . Estas incluyeron nuevos procesos de fabricación de acero , producción en masa , líneas de montaje , sistemas de redes eléctricas , la fabricación a gran escala de máquinas herramienta y el uso de maquinaria cada vez más avanzada en fábricas impulsadas por vapor. [2] [25] [26] [27]

Etimología

El primer uso registrado del término "Revolución industrial" fue en julio de 1799 por el enviado francés Louis-Guillaume Otto , anunciando que Francia había entrado en la carrera hacia la industrialización. [28] En su libro de 1976 Palabras clave: un vocabulario de cultura y sociedad , Raymond Williams afirma en la entrada de "Industria": "La idea de un nuevo orden social basado en un gran cambio industrial fue clara en Southey y Owen , entre 1811 y 1818, y estaba implícita ya en Blake a principios de la década de 1790 y Wordsworth a principios del siglo [XIX]". El término Revolución industrial aplicado al cambio tecnológico se estaba volviendo más común a fines de la década de 1830, como en la descripción de Jérôme-Adolphe Blanqui en 1837 de la révolution industrielle . [29]

En su libro La situación de la clase obrera en Inglaterra, Friedrich Engels habló de «una revolución industrial, una revolución que al mismo tiempo cambió toda la sociedad civil». Aunque Engels escribió su libro en la década de 1840, no fue traducido al inglés hasta finales del siglo XIX, y su expresión no entró en el lenguaje cotidiano hasta entonces. El mérito de popularizar el término puede atribuirse a Arnold Toynbee , cuyas conferencias de 1881 dieron una explicación detallada del término. [30]

Historiadores económicos y autores como Mendels, Pomeranz y Kridte sostienen que la protoindustrialización en partes de Europa, el mundo musulmán , la India mogol y China creó las condiciones sociales y económicas que llevaron a la Revolución Industrial, causando así la Gran Divergencia . [31] [32] [33] Algunos historiadores, como John Clapham y Nicholas Crafts , han argumentado que los cambios económicos y sociales ocurrieron gradualmente y que el término revolución es un nombre inapropiado. Esto todavía es un tema de debate entre algunos historiadores. [34]

Requisitos

Seis factores facilitaron la industrialización: altos niveles de productividad agrícola, como los reflejados en la Revolución Agrícola Británica , para proporcionar un exceso de mano de obra y alimentos; un conjunto de habilidades gerenciales y empresariales; puertos, ríos, canales y carreteras disponibles para transportar materias primas y productos de manera barata; recursos naturales como carbón, hierro y cascadas; estabilidad política y un sistema legal que apoyaba a las empresas; y capital financiero disponible para invertir. Una vez que comenzó la industrialización en Gran Bretaña, se pueden agregar nuevos factores: el afán de los empresarios británicos de exportar experiencia industrial y la voluntad de importar el proceso. Gran Bretaña cumplió con los criterios y se industrializó a partir del siglo XVIII, y luego exportó el proceso a Europa occidental (especialmente Bélgica, Francia y los estados alemanes) a principios del siglo XIX. Estados Unidos copió el modelo británico a principios del siglo XIX, y Japón copió los modelos de Europa occidental a fines del siglo XIX. [35] [36]

Desarrollos tecnológicos importantes

El comienzo de la Revolución Industrial está estrechamente vinculado a un pequeño número de innovaciones, [37] que comenzaron en la segunda mitad del siglo XVIII. En la década de 1830, se habían logrado los siguientes avances en tecnologías importantes:

Fabricación de textiles

Estadísticas de la industria textil británica

Tejido con telares manuales de Industria y ociosidad de William Hogarth en 1747

En 1750, Gran Bretaña importó 2,5 millones de libras de algodón crudo, la mayor parte del cual fue hilado y tejido por la industria casera en Lancashire . El trabajo se hacía a mano en las casas de los trabajadores o, ocasionalmente, en los talleres de los maestros tejedores. Los salarios en Lancashire eran aproximadamente seis veces mayores que los de la India en 1770, cuando la productividad general en Gran Bretaña era aproximadamente tres veces mayor que en la India. [44] En 1787, el consumo de algodón crudo era de 22 millones de libras, la mayor parte del cual se limpiaba, cardaba e hilaba en máquinas. [2] : 41–42  La industria textil británica utilizó 52 millones de libras de algodón en 1800, que aumentaron a 588 millones de libras en 1850. [45]

La participación del valor agregado por la industria textil del algodón en Gran Bretaña fue del 2,6% en 1760, del 17% en 1801 y del 22,4% en 1831. El valor agregado por la industria británica de la lana fue del 14,1% en 1801. Las fábricas de algodón en Gran Bretaña sumaban aproximadamente 900 en 1797. En 1760, aproximadamente un tercio de la tela de algodón fabricada en Gran Bretaña se exportaba, cifra que aumentó a dos tercios en 1800. En 1781, el algodón hilado ascendía a 5,1 millones de libras, cifra que aumentó a 56 millones de libras en 1800. En 1800, menos del 0,1% de la tela de algodón mundial se producía con maquinaria inventada en Gran Bretaña. En 1788, había 50.000 husos en Gran Bretaña, cifra que aumentó a 7 millones en los siguientes 30 años. [44]

Lana

Los primeros intentos europeos de mecanizar el hilado se hicieron con lana; sin embargo, el hilado de lana resultó más difícil de mecanizar que el de algodón. La mejora de la productividad en el hilado de lana durante la Revolución Industrial fue significativa, pero mucho menor que la del algodón. [2] [9]

Seda

El sitio de la fábrica de seda de John Lombe en Derby , hoy reconstruido como fábrica de seda de Derby

Se podría decir que la primera fábrica altamente mecanizada fue la fábrica de seda impulsada por agua de John Lombe en Derby , que entró en funcionamiento en 1721. Lombe aprendió a fabricar hilo de seda al aceptar un trabajo en Italia y actuar como espía industrial; sin embargo, debido a que la industria de la seda italiana guardaba sus secretos celosamente, se desconoce el estado de la industria en ese momento. Aunque la fábrica de Lombe tuvo éxito técnico, se cortó el suministro de seda cruda de Italia para eliminar la competencia. Para promover la fabricación, la Corona pagó modelos de la maquinaria de Lombe que se exhibieron en la Torre de Londres . [46] [47]

Algodón

Algunas partes de la India, China, América Central, América del Sur y Oriente Medio tienen una larga historia de fabricación artesanal de textiles de algodón, que se convirtió en una industria importante en algún momento después del año 1000 d. C. En las regiones tropicales y subtropicales donde se cultivaba, la mayor parte lo cultivaban pequeños agricultores junto con sus cultivos alimentarios y se hilaba y tejía en los hogares, principalmente para el consumo doméstico. En el siglo XV, China comenzó a exigir a los hogares que pagaran parte de sus impuestos en tela de algodón. En el siglo XVII, casi todos los chinos vestían ropa de algodón. Casi en todas partes, la tela de algodón podía usarse como medio de intercambio . En la India, se fabricaba una cantidad significativa de textiles de algodón para mercados lejanos, a menudo producidos por tejedores profesionales. Algunos comerciantes también poseían pequeños talleres de tejido. La India producía una variedad de telas de algodón, algunas de ellas de una calidad excepcional. [44]

El algodón era una materia prima difícil de obtener para Europa antes de que se cultivara en las plantaciones coloniales en las Américas. [44] Los primeros exploradores españoles encontraron a los nativos americanos cultivando especies desconocidas de algodón de excelente calidad: el algodón de las islas marinas ( Gossypium barbadense ) y el algodón de semillas verdes de las tierras altas Gossypium hirsutum . El algodón de las islas marinas crecía en áreas tropicales y en las islas barrera de Georgia y Carolina del Sur, pero le fue mal en el interior. El algodón de las islas marinas comenzó a exportarse desde Barbados en la década de 1650. El algodón de semillas verdes de las tierras altas crecía bien en las áreas del interior del sur de los EE. UU., pero no era económico debido a la dificultad de quitar las semillas, un problema resuelto por la desmotadora de algodón . [26] : 157  Una cepa de semilla de algodón traída de México a Natchez, Mississippi , en 1806 se convirtió en el material genético original de más del 90% de la producción mundial de algodón actual; produjo cápsulas que se recolectaban de tres a cuatro veces más rápido. [44]

Comercio y textiles

Los imperios coloniales europeos al comienzo de la Revolución Industrial, superpuestos a las fronteras políticas modernas

La Era de los Descubrimientos fue seguida por un período de colonialismo que comenzó alrededor del siglo XVI. Tras el descubrimiento de una ruta comercial hacia la India por parte de los portugueses alrededor del sur de África, los británicos fundaron la Compañía de las Indias Orientales , junto con compañías más pequeñas de diferentes nacionalidades que establecieron puestos comerciales y emplearon agentes para participar en el comercio en toda la región del Océano Índico. [44]

Uno de los segmentos más grandes de este comercio era el de los textiles de algodón, que se compraban en la India y se vendían en el sudeste asiático , incluido el archipiélago indonesio , donde se compraban especias para venderlas al sudeste asiático y a Europa. A mediados de la década de 1760, las telas representaban más de las tres cuartas partes de las exportaciones de la Compañía de las Indias Orientales. Los textiles indios tenían demanda en la región del Atlántico Norte de Europa, donde anteriormente solo había lana y lino disponibles; sin embargo, la cantidad de productos de algodón consumidos en Europa occidental fue menor hasta principios del siglo XIX. [44]

Producción textil europea premecanizada

Un tejedor en Núremberg , hacia  1524

En 1600, los refugiados flamencos comenzaron a tejer telas de algodón en las ciudades inglesas donde el hilado y el tejido de lana y lino en las casas estaban bien establecidos. Los gremios los dejaron tranquilos porque no consideraban que el algodón fuera una amenaza. Los primeros intentos europeos de hilar y tejer algodón se produjeron en la Italia del siglo XII y en el sur de Alemania del siglo XV, pero estas industrias finalmente terminaron cuando se cortó el suministro de algodón. Los moros en España comenzaron a cultivar, hilar y tejer algodón alrededor del siglo X. [44]

Las telas británicas no podían competir con las telas indias porque el costo de la mano de obra en la India era aproximadamente entre una quinta y una sexta parte del de Gran Bretaña. [24] En 1700 y 1721, el gobierno británico aprobó las Leyes Calico para proteger las industrias nacionales de lana y lino de las crecientes cantidades de tela de algodón importadas de la India. [2] [48]

La demanda de telas más pesadas fue satisfecha por una industria doméstica con base en Lancashire que producía fustán , una tela con urdimbre de lino y trama de algodón . Se utilizó lino para la urdimbre porque el algodón hilado a rueda no tenía suficiente resistencia, pero la mezcla resultante no era tan suave como el algodón 100% y era más difícil de coser. [48]

En vísperas de la Revolución Industrial, el hilado y el tejido se hacían en los hogares, para el consumo doméstico y como una industria casera bajo el sistema de trabajo a domicilio . Ocasionalmente, el trabajo se hacía en el taller de un maestro tejedor. Bajo el sistema de trabajo a domicilio, los trabajadores a domicilio producían bajo contrato con los vendedores mercantes, quienes a menudo suministraban las materias primas. Fuera de temporada, las mujeres, típicamente las esposas de los granjeros, hacían el hilado y los hombres el tejido. Usando la rueca , se necesitaban entre cuatro y ocho hilanderos para abastecer a un tejedor de telar manual. [2] [48] [49] : 823 

Invención de la maquinaria textil

Un modelo de la máquina de hilar Jenny en un museo de Wuppertal . Inventada por James Hargreaves en 1764, la máquina de hilar Jenny fue una de las innovaciones que iniciaron la revolución.
El único ejemplo sobreviviente de una mula de hilado construida por el inventor Samuel Crompton, la mula producía hilo de alta calidad con un mínimo de trabajo, ahora en exhibición en el Museo Bolton en el Gran Manchester.
El interior de la fábrica de Temple Works de Marshall en Leeds , West Yorkshire

La lanzadera volante , patentada en 1733 por John Kay (con una serie de mejoras posteriores, incluida una importante en 1747), duplicó la producción de un tejedor, empeorando el desequilibrio entre el hilado y el tejido. Se empezó a utilizar ampliamente en Lancashire después de 1760, cuando el hijo de John, Robert , inventó la caja de caída, que facilitaba el cambio de colores de los hilos. [49] : 821–822 

Lewis Paul patentó la máquina de hilar de rodillos y el sistema de bobinas y volantes para estirar la lana hasta obtener un grosor más uniforme. La tecnología se desarrolló con la ayuda de John Wyatt de Birmingham . Paul y Wyatt abrieron una fábrica en Birmingham que utilizaba su máquina de laminar impulsada por un burro. En 1743, se abrió una fábrica en Northampton con 50 husos en cada una de las cinco máquinas de Paul y Wyatt. Esta funcionó hasta aproximadamente 1764. Daniel Bourn construyó una fábrica similar en Leominster , pero se incendió. Tanto Lewis Paul como Daniel Bourn patentaron las máquinas de cardar en 1748. Basadas en dos juegos de rodillos que se desplazaban a diferentes velocidades, se utilizaron más tarde en la primera hilandería de algodón .

En 1764, en el pueblo de Stanhill, Lancashire, James Hargreaves inventó la hiladora Jenny , que patentó en 1770. Fue el primer marco de hilado práctico con múltiples husos. [50] La hiladora Jenny funcionaba de manera similar a la rueca, primero sujetando las fibras, luego sacándolas y luego retorciéndolas. [51] Era una máquina simple con marco de madera que solo costaba alrededor de £6 para un modelo de 40 husos en 1792 [52] y era utilizada principalmente por hilanderos caseros. La hiladora Jenny producía un hilo ligeramente retorcido solo adecuado para la trama, no para la urdimbre. [49] : 825–827 

El bastidor de hilado o hilandero de agua fue desarrollado por Richard Arkwright, quien, junto con dos socios, lo patentó en 1769. El diseño se basó en parte en una máquina de hilar construida por Kay, quien fue contratada por Arkwright. [49] : 827–830  Para cada huso, el bastidor de agua usaba una serie de cuatro pares de rodillos, cada uno operando a una velocidad de rotación sucesivamente mayor, para extraer la fibra que luego era torcida por el huso. El espaciado entre los rodillos era ligeramente mayor que la longitud de la fibra. Un espaciado demasiado cercano causaba que las fibras se rompieran, mientras que un espaciado demasiado distante causaba un hilo desigual. Los rodillos superiores estaban cubiertos de cuero y la carga sobre los rodillos se aplicaba mediante un peso. Los pesos evitaban que la torsión retrocediera antes que los rodillos. Los rodillos inferiores eran de madera y metal, con estrías a lo largo de la longitud. El bastidor de agua podía producir un hilo duro de recuento medio adecuado para la urdimbre, lo que finalmente permitió que se fabricaran telas 100% algodón en Gran Bretaña. Arkwright y sus socios utilizaron la energía hidráulica en una fábrica de Cromford , Derbyshire , en 1771, lo que dio nombre al invento.

Samuel Crompton inventó la mula de hilar en 1779, llamada así porque es un híbrido entre la máquina de hilar de Arkwright y la máquina de hilar Jenny de James Hargreaves , de la misma manera que una mula es el producto del cruce de una yegua con un burro . La mula de Crompton era capaz de producir hilo más fino que el hilado a mano y a un menor coste. El hilo hilado por mula tenía la resistencia adecuada para ser utilizado como urdimbre y finalmente permitió a Gran Bretaña producir hilo altamente competitivo en grandes cantidades. [49] : 832 

Al darse cuenta de que la expiración de la patente de Arkwright aumentaría en gran medida el suministro de algodón hilado y conduciría a una escasez de tejedores, Edmund Cartwright desarrolló un telar mecánico vertical que patentó en 1785. En 1776, patentó un telar operado por dos hombres. [49] : 834  El diseño del telar de Cartwright tenía varios defectos, el más grave era la rotura del hilo. Samuel Horrocks patentó un telar bastante exitoso en 1813. El telar de Horock fue mejorado por Richard Roberts en 1822, y estos fueron producidos en grandes cantidades por Roberts, Hill & Co. Roberts también fue un fabricante de máquinas herramienta de alta calidad y un pionero en el uso de plantillas y calibres para la medición de precisión en el taller. [53]

La demanda de algodón presentó una oportunidad a los plantadores del sur de los Estados Unidos, quienes pensaron que el algodón de las tierras altas sería un cultivo rentable si se pudiera encontrar una mejor manera de quitar las semillas. Eli Whitney respondió al desafío inventando la desmotadora de algodón económica . Un hombre que usara una desmotadora de algodón podría quitar las semillas de algodón de las tierras altas en un día, tanto como antes hubiera llevado dos meses procesar, trabajando a un ritmo de una libra de algodón por día. [26] [54]

Estos avances fueron capitalizados por empresarios , de los cuales el más conocido es Arkwright. Se le atribuye una lista de inventos, pero estos fueron desarrollados en realidad por personas como Kay y Thomas Highs ; Arkwright nutrió a los inventores, patentó las ideas, financió las iniciativas y protegió las máquinas. Creó la fábrica de algodón que unificó los procesos de producción en una fábrica, y desarrolló el uso de la energía (primero los caballos de fuerza y ​​luego la energía hidráulica), lo que convirtió la fabricación de algodón en una industria mecanizada. Otros inventores aumentaron la eficiencia de los pasos individuales del hilado (cardado, torsión e hilado y enrollado) de modo que el suministro de hilo aumentó enormemente. Luego se aplicó la energía del vapor para impulsar la maquinaria textil. Manchester adquirió el apodo de Cottonopolis a principios del siglo XIX debido a su expansión de fábricas textiles. [55]

Aunque la mecanización redujo drásticamente el costo de las telas de algodón, a mediados del siglo XIX las telas tejidas a máquina todavía no podían igualar la calidad de las telas indias tejidas a mano, en parte debido a la finura del hilo que era posible gracias al tipo de algodón utilizado en la India, que permitía una gran cantidad de hilos. Sin embargo, la alta productividad de la industria textil británica permitió que las calidades más gruesas de las telas británicas se vendieran a un precio inferior al de las telas hiladas y tejidas a mano en la India, donde los salarios eran bajos, lo que acabó destruyendo la industria india. [44]

Industria del hierro

El horno de reverbero podría producir hierro fundido a partir de carbón extraído; el carbón quemado se separa del hierro para evitar que los componentes del carbón, como el azufre y el sílice, se conviertan en impurezas del hierro. La producción de hierro aumentó debido a la capacidad de utilizar carbón extraído directamente.
El Puente de Hierro en Shropshire , Inglaterra, el primer puente del mundo construido con hierro, inaugurado en 1781. [56]

Estadísticas de producción de hierro en Gran Bretaña

El hierro en barra era la forma comercial del hierro que se utilizaba como materia prima para fabricar artículos de ferretería, como clavos, alambres, bisagras, herraduras, neumáticos para carros, cadenas, etc., así como formas estructurales. Una pequeña cantidad de hierro en barra se convertía en acero. El hierro fundido se utilizaba para ollas, estufas y otros artículos en los que su fragilidad era tolerable. La mayor parte del hierro fundido se refinaba y se convertía en hierro en barra, con pérdidas sustanciales. El hierro en barra se fabricaba mediante el proceso de fundición de hierro , que fue el proceso predominante hasta finales del siglo XVIII.

En el Reino Unido, en 1720, se produjeron 20.500 toneladas de hierro fundido con carbón vegetal y 400 toneladas con coque. En 1750 , la producción de hierro fundido con carbón vegetal fue de 24.500 toneladas y la de hierro fundido con coque de 2.500 toneladas. En 1788, la producción de hierro fundido con carbón vegetal fue de 14.000 toneladas, mientras que la de hierro fundido con coque fue de 54.000 toneladas. En 1806, la producción de hierro fundido con carbón vegetal fue de 7.800 toneladas y la de hierro fundido con coque de 250.000 toneladas. [41] : 125 

En 1750, el Reino Unido importó 31.200 toneladas de hierro en barras y, ya sea refinando a partir de hierro fundido o produciendo directamente 18.800 toneladas de hierro en barras utilizando carbón vegetal y 100 toneladas utilizando coque. En 1796, el Reino Unido estaba produciendo 125.000 toneladas de hierro en barras con coque y 6.400 toneladas con carbón vegetal; las importaciones fueron de 38.000 toneladas y las exportaciones de 24.600 toneladas. En 1806, el Reino Unido no importó hierro en barras, pero exportó 31.500 toneladas. [41] : 125 

Innovaciones en el proceso del hierro

Secciones transversales horizontales (inferior) y verticales (superior) de un solo horno de pudling

Un cambio importante en las industrias del hierro durante la Revolución Industrial fue la sustitución de la madera y otros biocombustibles por carbón ; para una cantidad dada de calor, la extracción de carbón requería mucho menos trabajo que cortar madera y convertirla en carbón vegetal , [57] y el carbón era mucho más abundante que la madera, cuyos suministros se estaban volviendo escasos antes del enorme aumento en la producción de hierro que tuvo lugar a fines del siglo XVIII. [2] [41] : 122 

En 1709, Abraham Darby hizo progresos usando coque para alimentar sus altos hornos en Coalbrookdale . [58] Sin embargo, el arrabio de coque que él producía no era adecuado para hacer hierro forjado y se usaba principalmente para la producción de artículos de hierro fundido, como ollas y teteras. Tenía la ventaja sobre sus rivales en que sus ollas, fundidas mediante su proceso patentado, eran más delgadas y más baratas que las de ellos.

En 1750, el coque había reemplazado en general al carbón vegetal en la fundición de cobre y plomo y se usaba ampliamente en la producción de vidrio. En la fundición y refinación de hierro, el carbón y el coque producían hierro de inferior calidad que el producido con carbón vegetal debido al contenido de azufre del carbón. Se conocían carbones con bajo contenido de azufre, pero aún contenían cantidades nocivas. La conversión de carbón en coque solo reduce ligeramente el contenido de azufre. [41] : 122–125  Una minoría de los carbones son coquizables. Otro factor que limitaba la industria del hierro antes de la Revolución Industrial era la escasez de energía hidráulica para accionar los fuelles de explosión. Esta limitación fue superada por la máquina de vapor. [41]

El uso del carbón en la fundición de hierro comenzó un poco antes de la Revolución Industrial, a partir de las innovaciones de Clement Clerke y otros a partir de 1678, que utilizaban hornos de reverbero de carbón conocidos como cubilotes. Estos se hacían funcionar con las llamas que se fundían en la mezcla de mineral y carbón vegetal o coque, reduciendo el óxido a metal. Esto tiene la ventaja de que las impurezas (como las cenizas de azufre) del carbón no migran al metal. Esta tecnología se aplicó al plomo a partir de 1678 y al cobre a partir de 1687. También se aplicó a la fundición de hierro en la década de 1690, pero en este caso el horno de reverbero se conocía como horno de aire. (El cubilote de fundición es una innovación diferente y posterior.) [59]

El arrabio de coque apenas se utilizó para producir hierro forjado hasta 1755-56, cuando el hijo de Darby, Abraham Darby II, construyó hornos en Horsehay y Ketley , donde había carbón con bajo contenido de azufre disponible (y no lejos de Coalbrookdale). Estos hornos estaban equipados con fuelles accionados por agua, que eran bombeados por máquinas de vapor Newcomen . Las máquinas Newcomen no estaban conectadas directamente a los cilindros de soplado porque las máquinas por sí solas no podían producir un chorro de aire constante. Abraham Darby III instaló cilindros de soplado similares accionados por agua y bombeados por vapor en la Dale Company cuando tomó el control en 1768. La Dale Company utilizó varias máquinas Newcomen para drenar sus minas y fabricó piezas para las máquinas que vendió en todo el país. [41] : 123–125 

Las máquinas de vapor hicieron que el uso de soplado a mayor presión y volumen fuera práctico; sin embargo, el cuero usado en los fuelles era costoso de reemplazar. En 1757, el maestro siderúrgico John Wilkinson patentó un motor de soplado accionado hidráulicamente para altos hornos. [60] El cilindro de soplado para altos hornos se introdujo en 1760 y se cree que el primer cilindro de soplado hecho de hierro fundido fue el utilizado en Carrington en 1768, que fue diseñado por John Smeaton . [41] : 124, 135 

Los cilindros de hierro fundido para su uso con un pistón eran difíciles de fabricar; los cilindros tenían que estar libres de agujeros y debían ser mecanizados para que quedaran lisos y rectos para eliminar cualquier deformación. James Watt tuvo grandes dificultades para intentar que le fabricaran un cilindro para su primera máquina de vapor. En 1774, Wilkinson inventó una máquina de mandrilar de precisión para mandrilar cilindros. Después de que Wilkinson perforara con éxito el primer cilindro para una máquina de vapor Boulton y Watt en 1776, recibió un contrato exclusivo para proporcionar cilindros. [26] [61] Después de que Watt desarrollara una máquina de vapor rotativa en 1782, se aplicaron ampliamente para soplar, martillar, laminar y cortar. [41] : 124 

Las soluciones al problema del azufre fueron la adición de suficiente piedra caliza al horno para forzar el azufre a entrar en la escoria , así como el uso de carbón con bajo contenido de azufre. El uso de cal o piedra caliza requería temperaturas más altas en el horno para formar una escoria de flujo libre. El aumento de la temperatura del horno, posible gracias a un mejor soplado, también aumentó la capacidad de los altos hornos y permitió aumentar la altura del horno. [41] : 123–125 

Además de su menor costo y mayor disponibilidad, el coque tenía otras ventajas importantes sobre el carbón, ya que era más duro y hacía que la columna de materiales (mineral de hierro, combustible, escoria) que fluía por el alto horno fuera más porosa y no se aplastara en los hornos mucho más altos de finales del siglo XIX. [62] [63]

A medida que el hierro fundido se volvió más barato y ampliamente disponible, comenzó a ser un material estructural para puentes y edificios. Un famoso ejemplo temprano es el Puente de Hierro construido en 1778 con hierro fundido producido por Abraham Darby III. [56] Sin embargo, la mayor parte del hierro fundido se convirtió en hierro forjado. La conversión del hierro fundido se había realizado durante mucho tiempo en una forja de refinación . Se desarrolló un proceso de refinación mejorado conocido como encapsulado y estampado , pero fue reemplazado por el proceso de pudling de Henry Cort . Cort desarrolló dos procesos importantes de fabricación de hierro: el laminado en 1783 y el pudling en 1784. [2] : 91  El pudling produjo un hierro de calidad estructural a un costo relativamente bajo.

El pudling era un método para descarburar el arrabio fundido mediante oxidación lenta en un horno de reverbero, revolviéndolo manualmente con una varilla larga. El pudlinger rastrillaba el hierro descarburado, que tiene un punto de fusión más alto que el hierro fundido, hasta formar bolas. Cuando la bola era lo suficientemente grande, la retiraba. El pudling era un trabajo agotador y extremadamente caliente. Pocos pudlingers vivían hasta los 40 años. [2] : 218  Debido a que el pudling se hacía en un horno de reverbero, se podía utilizar carbón o coque como combustible. El proceso de pudling se siguió utilizando hasta finales del siglo XIX, cuando el hierro estaba siendo reemplazado por el acero dulce. Debido a que el pudling requería habilidad humana para detectar las bolas de hierro, nunca se mecanizó con éxito. El laminado era una parte importante del proceso de pudling porque los rodillos ranurados expulsaban la mayor parte de la escoria fundida y consolidaban la masa de hierro forjado caliente. El laminado era 15 veces más rápido que un martillo de viaje . Un uso diferente del laminado, que se hacía a temperaturas más bajas que las utilizadas para expulsar la escoria, era la producción de láminas de hierro y, posteriormente, de formas estructurales como vigas, ángulos y rieles.

El proceso de pudling fue mejorado en 1818 por Baldwyn Rogers, quien reemplazó parte del revestimiento de arena en el fondo del horno de reverbero con óxido de hierro . [64] En 1838 , John Hall patentó el uso de ceniza de grifo tostada ( silicato de hierro ) para el fondo del horno, reduciendo en gran medida la pérdida de hierro a través del aumento de escoria causada por un fondo revestido de arena. La ceniza de grifo también aglutinaba algo de fósforo, pero esto no se entendía en ese momento. [41] : 166  El proceso de Hall también usaba cascarilla de hierro u óxido que reaccionaba con el carbono en el hierro fundido. El proceso de Hall, llamado pudling húmedo , redujo las pérdidas de hierro con la escoria de casi el 50% a alrededor del 8%. [2] : 93 

El pudling se generalizó después de 1800. Hasta ese momento, los fabricantes de hierro británicos habían utilizado cantidades considerables de hierro importado de Suecia y Rusia para complementar los suministros nacionales. Debido al aumento de la producción británica, las importaciones comenzaron a disminuir en 1785 y, en la década de 1790, Gran Bretaña eliminó las importaciones y se convirtió en un exportador neto de hierro en barras.

El soplado caliente , patentado por el inventor escocés James Beaumont Neilson en 1828, fue el desarrollo más importante del siglo XIX para ahorrar energía en la fabricación de arrabio. Al utilizar aire de combustión precalentado, la cantidad de combustible para fabricar una unidad de arrabio se redujo al principio entre un tercio utilizando coque o dos tercios utilizando carbón; [65] las ganancias de eficiencia continuaron a medida que la tecnología mejoraba. [66] El soplado caliente también aumentó la temperatura de funcionamiento de los hornos, aumentando su capacidad. Usar menos carbón o coque significaba introducir menos impurezas en el arrabio. Esto significaba que se podía utilizar carbón de menor calidad en áreas donde el carbón de coque no estaba disponible o era demasiado caro; [67] sin embargo, a fines del siglo XIX los costos de transporte cayeron considerablemente.

Poco antes de la Revolución Industrial, se produjo una mejora en la producción de acero , que era un producto caro y se utilizaba solo donde el hierro no servía, como en herramientas de corte y resortes. Benjamin Huntsman desarrolló su técnica de acero al crisol en la década de 1740. La materia prima para esto era el acero blíster, fabricado mediante el proceso de cementación . [68] El suministro de hierro y acero más baratos ayudó a varias industrias, como las que fabricaban clavos, bisagras, alambre y otros artículos de ferretería. El desarrollo de máquinas herramienta permitió un mejor trabajo del hierro, lo que provocó que se utilizara cada vez más en las industrias de maquinaria y motores en rápido crecimiento. [69]

Energía de vapor

Una máquina de vapor de Watt , inventada por James Watt , quien transformó la máquina de vapor de un movimiento alternativo que se utilizaba para bombear a un movimiento rotatorio adecuado para aplicaciones industriales; Watt y otros mejoraron significativamente la eficiencia de la máquina de vapor.
El motor atmosférico a vapor de Newcomen fue el primer motor de vapor de pistón práctico; los motores de vapor posteriores impulsarían la Revolución Industrial.

El desarrollo de la máquina de vapor estacionaria fue un elemento importante de la Revolución Industrial; sin embargo, durante el período inicial de la Revolución Industrial, la mayor parte de la energía industrial era suministrada por el agua y el viento. En Gran Bretaña, en 1800 se calculaba que el vapor suministraba unos 10.000 caballos de fuerza. En 1815, la energía del vapor había crecido hasta los 210.000 caballos de fuerza. [70]

El primer uso industrial comercialmente exitoso de la energía de vapor fue patentado por Thomas Savery en 1698. Construyó en Londres una bomba de agua combinada de vacío y presión de baja elevación que generaba aproximadamente un caballo de fuerza (hp) y se utilizó en numerosas plantas de abastecimiento de agua y en algunas minas (de ahí su "nombre comercial", The Miner's Friend ). La bomba de Savery era económica en rangos de potencia pequeños, pero era propensa a explosiones de calderas en tamaños más grandes. Las bombas de Savery continuaron produciéndose hasta fines del siglo XVIII. [71]

La primera máquina de vapor de pistón exitosa fue introducida por Thomas Newcomen antes de 1712. Las máquinas Newcomen se instalaron para drenar minas profundas que hasta entonces no se podían explotar, con el motor en la superficie; eran máquinas grandes, que requerían una cantidad significativa de capital para su construcción y producían más de 3,5 kW (5 hp). También se usaban para alimentar bombas de suministro de agua municipal. Eran extremadamente ineficientes para los estándares modernos, pero cuando se ubicaban donde el carbón era barato en las bocaminas, abrieron una gran expansión en la minería del carbón al permitir que las minas fueran más profundas. [72] A pesar de sus desventajas, las máquinas Newcomen eran confiables y fáciles de mantener y continuaron usándose en los yacimientos de carbón hasta las primeras décadas del siglo XIX.

En 1729, cuando murió Newcomen, sus máquinas se habían extendido a Hungría en 1722, y luego a Alemania, Austria y Suecia. Se sabe que se habían construido un total de 110 en 1733, cuando expiró la patente conjunta, de las cuales 14 estaban en el extranjero. En la década de 1770, el ingeniero John Smeaton construyó algunos ejemplos muy grandes e introdujo una serie de mejoras. En 1800 se habían construido un total de 1.454 máquinas. [72]

El escocés James Watt introdujo un cambio fundamental en los principios de funcionamiento . Con el apoyo financiero de su socio comercial, el inglés Matthew Boulton , en 1778 había logrado perfeccionar su máquina de vapor , que incorporaba una serie de mejoras radicales, en particular el cierre de la parte superior del cilindro, lo que hacía que el vapor a baja presión impulsara la parte superior del pistón en lugar de la atmósfera; el uso de una camisa de vapor; y la famosa cámara condensadora de vapor separada. El condensador separado eliminó el agua de refrigeración que se había inyectado directamente en el cilindro, lo que enfriaba el cilindro y desperdiciaba vapor. Asimismo, la camisa de vapor impedía que el vapor se condensara en el cilindro, lo que también mejoraba la eficiencia. Estas mejoras aumentaron la eficiencia del motor, de modo que los motores de Boulton y Watt usaban solo entre un 20 y un 25 % más de carbón por caballo de fuerza-hora que los de Newcomen. Boulton y Watt abrieron la Fundición Soho para la fabricación de tales motores en 1795.

En 1783, la máquina de vapor de Watt ya se había desarrollado por completo hasta convertirse en un tipo rotativo de doble efecto , lo que significaba que podía utilizarse para accionar directamente la maquinaria rotativa de una fábrica o un molino. Ambos tipos básicos de motores de Watt tuvieron un gran éxito comercial y, en 1800, la empresa Boulton & Watt había construido 496 motores, de los cuales 164 accionaban bombas reciprocantes, 24 servían a altos hornos y 308 alimentaban maquinaria de molino; la mayoría de los motores generaban de 3,5 a 7,5 kW (5 a 10 hp).

Hasta aproximadamente 1800, el modelo más común de máquina de vapor era la máquina de viga , construida como parte integral de una sala de máquinas de piedra o ladrillo, pero pronto se desarrollaron varios modelos de máquinas rotativas autónomas (fácilmente desmontables pero sin ruedas), como la máquina de mesa . A principios del siglo XIX, cuando expiró la patente de Boulton y Watt, el ingeniero de Cornualles Richard Trevithick y el estadounidense Oliver Evans comenzaron a construir máquinas de vapor sin condensación de alta presión, que expulsaban el vapor contra la atmósfera. La alta presión produjo un motor y una caldera lo suficientemente compactos para ser utilizados en locomotoras móviles de carretera y ferrocarril y en barcos de vapor . [73]

Hasta la electrificación generalizada a principios del siglo XX, las pequeñas necesidades energéticas industriales continuaron siendo satisfechas por la fuerza animal y humana . Entre ellas se encontraban talleres y maquinaria industrial ligera accionados por manivela , pedal y caballo. [74]

Máquinas herramientas

Los primeros tornos de corte de tornillos de Maudslay , desarrollados a finales de la década de 1790
La fresadora Middletown , desarrollada alrededor de 1818 por Robert Johnson y Simeon North

La maquinaria preindustrial fue construida por varios artesanos: los mecánicos construían molinos de agua y de viento ; los carpinteros hacían armazones de madera; y los herreros y torneros hacían piezas de metal. Los componentes de madera tenían la desventaja de cambiar de dimensiones con la temperatura y la humedad, y las diversas juntas tendían a aflojarse con el tiempo. A medida que avanzaba la Revolución Industrial, las máquinas con piezas y armazones de metal se volvieron más comunes. Otros usos importantes de las piezas de metal fueron en armas de fuego y sujetadores roscados , como tornillos para máquinas, pernos y tuercas. También existía la necesidad de precisión en la fabricación de piezas. La precisión permitiría un mejor funcionamiento de la maquinaria, la intercambiabilidad de piezas y la estandarización de los sujetadores roscados.

La demanda de piezas de metal condujo al desarrollo de varias máquinas herramienta . Tienen su origen en las herramientas desarrolladas en el siglo XVIII por los fabricantes de relojes y de instrumentos científicos para poder producir en serie pequeños mecanismos. Antes de la llegada de las máquinas herramienta, el metal se trabajaba manualmente utilizando las herramientas manuales básicas de martillos, limas, raspadores, sierras y cinceles. En consecuencia, el uso de piezas de maquinaria de metal se mantuvo al mínimo. Los métodos de producción manuales eran laboriosos y costosos, y era difícil lograr precisión. [43] [26]

La primera máquina herramienta de gran precisión fue la mandriladora de cilindros, inventada por John Wilkinson en 1774. Fue diseñada para mandrilar los grandes cilindros de las primeras máquinas de vapor. La máquina de Wilkinson fue la primera en utilizar el principio de mandrilado lineal, en el que la herramienta se apoya en ambos extremos, a diferencia de los diseños anteriores utilizados para mandrilar cañones que dependían de una barra mandriladora en voladizo menos estable . [26]

La cepilladora , la fresadora y la perfiladora se desarrollaron en las primeras décadas del siglo XIX. Aunque la fresadora se inventó en esta época, no se desarrolló como una herramienta de taller seria hasta algo más tarde en el siglo XIX. [43] [26] James Fox de Derby y Matthew Murray de Leeds fueron fabricantes de máquinas herramienta que tuvieron éxito en la exportación desde Inglaterra y también son notables por haber desarrollado la cepilladora casi al mismo tiempo que Richard Roberts de Manchester .

Henry Maudslay , que formó una escuela de fabricantes de máquinas herramienta a principios del siglo XIX, era un mecánico con una habilidad superior que había sido empleado en el Arsenal Real , Woolwich . Trabajó como aprendiz en el Arsenal Real con Jan Verbruggen . En 1774, Verbruggen había instalado una máquina perforadora horizontal que fue el primer torno de tamaño industrial en el Reino Unido. Maudslay fue contratado por Joseph Bramah para la producción de cerraduras de metal de alta seguridad que requerían una artesanía de precisión. Bramah patentó un torno que tenía similitudes con el torno de apoyo deslizante. [26] [49] : 392–395  Maudslay perfeccionó el torno de apoyo deslizante, que podía cortar tornillos de máquina de diferentes pasos de rosca mediante el uso de engranajes intercambiables entre el husillo y el tornillo guía. Antes de su invención, los tornillos no se podían cortar con precisión utilizando varios diseños de tornos anteriores, algunos de los cuales copiados de una plantilla. [26] [49] : 392–395  El torno con apoyo deslizante fue considerado uno de los inventos más importantes de la historia. Aunque no fue idea exclusiva de Maudslay, fue la primera persona en construir un torno funcional utilizando una combinación de innovaciones conocidas del husillo, el apoyo deslizante y los engranajes de cambio. [26] : 31, 36 

Maudslay dejó el empleo de Bramah y montó su propio taller. Fue contratado para construir la maquinaria para fabricar poleas de barcos para la Marina Real Británica en Portsmouth Block Mills . Estas máquinas eran totalmente de metal y fueron las primeras máquinas para producción en masa y fabricación de componentes con un grado de intercambiabilidad. Las lecciones que Maudslay aprendió sobre la necesidad de estabilidad y precisión las adaptó al desarrollo de máquinas herramienta y en sus talleres formó a una generación de hombres para que siguieran trabajando sobre su trabajo, como Richard Roberts , Joseph Clement y Joseph Whitworth . [26]

Las técnicas para fabricar piezas metálicas producidas en masa con la precisión suficiente para ser intercambiables se atribuyen en gran medida a un programa del Departamento de Guerra de los EE. UU. que perfeccionó las piezas intercambiables para armas de fuego a principios del siglo XIX. [43] En el medio siglo siguiente a la invención de las máquinas herramienta fundamentales, la industria de la maquinaria se convirtió en el sector industrial más grande de la economía estadounidense, por valor agregado. [75]

Productos químicos

La producción a gran escala de productos químicos fue un avance importante durante la Revolución Industrial. El primero de ellos fue la producción de ácido sulfúrico mediante el proceso de cámara de plomo inventado por el inglés John Roebuck (primer socio de James Watt) en 1746. Fue capaz de aumentar considerablemente la escala de fabricación al sustituir los recipientes de vidrio relativamente caros que se utilizaban anteriormente por cámaras más grandes y menos costosas hechas de láminas de plomo remachadas . En lugar de fabricar una pequeña cantidad cada vez, pudo fabricar alrededor de 50 kilogramos (100 libras) en cada una de las cámaras, al menos un aumento de diez veces.

La producción de un álcali a gran escala también se convirtió en un objetivo importante, y Nicolas Leblanc logró en 1791 introducir un método para la producción de carbonato de sodio (carbonato de sodio). El proceso Leblanc era una reacción de ácido sulfúrico con cloruro de sodio para dar sulfato de sodio y ácido clorhídrico . El sulfato de sodio se calentaba con carbonato de calcio y carbón para dar una mezcla de carbonato de sodio y sulfuro de calcio . Añadiendo agua se separaba el carbonato de sodio soluble del sulfuro de calcio. El proceso producía una gran cantidad de contaminación (el ácido clorhídrico se ventilaba inicialmente a la atmósfera y el sulfuro de calcio era un producto de desecho ). No obstante, este carbonato de sodio sintético resultó económico en comparación con el producido a partir de la quema de plantas específicas ( barilla o algas marinas ), que eran las fuentes dominantes anteriormente de carbonato de sodio, [76] y también con la potasa ( carbonato de potasio ) producida a partir de cenizas de madera dura. Estos dos productos químicos fueron muy importantes porque permitieron la introducción de una serie de otros inventos, reemplazando muchas operaciones a pequeña escala por procesos más rentables y controlables. El carbonato de sodio tuvo muchos usos en las industrias del vidrio, los textiles, el jabón y el papel. Los primeros usos del ácido sulfúrico incluyeron el decapado (eliminación del óxido) del hierro y el acero y el blanqueamiento de telas .

El desarrollo del polvo blanqueador ( hipoclorito de calcio ) por el químico escocés Charles Tennant en torno a 1800, basado en los descubrimientos del químico francés Claude Louis Berthollet , revolucionó los procesos de blanqueo en la industria textil al reducir drásticamente el tiempo requerido (de meses a días) para el proceso tradicional que se utilizaba entonces, que requería la exposición repetida al sol en campos de blanqueo después de remojar los tejidos con álcali o leche agria. La fábrica de Tennant en St Rollox , Glasgow , se convirtió en la planta química más grande del mundo.

Después de 1860, la innovación química se centró en los colorantes y Alemania asumió el liderazgo mundial, construyendo una fuerte industria química. [77] Los aspirantes a químicos acudieron en masa a las universidades alemanas en la era 1860-1914 para aprender las últimas técnicas. Los científicos británicos, por el contrario, carecían de universidades de investigación y no formaban a estudiantes avanzados; en cambio, la práctica era contratar químicos formados en Alemania. [78]

Concreto

El túnel del Támesis , inaugurado en 1843; en el primer túnel submarino del mundo se utilizó hormigón.

En 1824, Joseph Aspdin , un albañil británico convertido en constructor, patentó un proceso químico para fabricar cemento Portland , lo que supuso un avance importante en el sector de la construcción. Este proceso implica sinterizar una mezcla de arcilla y piedra caliza a unos 1400 °C (2552 °F), para luego molerla hasta obtener un polvo fino que luego se mezcla con agua, arena y grava para producir hormigón . El ingeniero inglés Marc Isambard Brunel utilizó hormigón de cemento Portland varios años después para construir el túnel del Támesis . [79] El hormigón se utilizó a gran escala en la construcción del sistema de alcantarillado de Londres una generación después.

Iluminación a gas

Aunque otros hicieron una innovación similar en otros lugares, la introducción a gran escala de la iluminación a gas fue obra de William Murdoch , un empleado de Boulton & Watt. El proceso consistió en la gasificación a gran escala del carbón en hornos, la purificación del gas (eliminación de azufre, amoníaco e hidrocarburos pesados) y su almacenamiento y distribución. Las primeras empresas de iluminación a gas se establecieron en Londres entre 1812 y 1820. Pronto se convirtieron en uno de los principales consumidores de carbón en el Reino Unido. La iluminación a gas afectó a la organización social e industrial porque permitió que las fábricas y las tiendas permanecieran abiertas más tiempo que con velas de sebo o lámparas de aceite . Su introducción permitió que la vida nocturna floreciera en ciudades y pueblos, ya que los interiores y las calles podían iluminarse a mayor escala que antes. [80]

Fabricación de vidrio

El Palacio de Cristal albergó la Gran Exposición de 1851

El vidrio se fabricaba en la antigua Grecia y Roma. [81] A principios del siglo XIX se desarrolló en Europa un nuevo método de producción de vidrio , conocido como proceso cilíndrico . En 1832, los hermanos Chance utilizaron este proceso para crear vidrio en láminas . Se convirtieron en los principales productores de vidrio para ventanas y placas. Este avance permitió crear paneles de vidrio más grandes sin interrupción, liberando así la planificación del espacio en los interiores, así como la fenestración de los edificios. El Palacio de Cristal es el ejemplo supremo del uso de vidrio en láminas en una estructura nueva e innovadora. [82]

Maquina de papel

En 1798, Louis-Nicolas Robert patentó en Francia una máquina para fabricar una hoja de papel continua sobre un bucle de tela metálica. La máquina de papel se conoce como Fourdrinier en honor a los hermanos Sealy y Henry Fourdrinier , financieros y papeleros de Londres. Aunque ha mejorado mucho y presenta muchas variaciones, la máquina Fourdrinier es el medio predominante de producción de papel en la actualidad. El método de producción continua demostrado por la máquina de papel influyó en el desarrollo del laminado continuo de hierro y, posteriormente, de acero, así como en otros procesos de producción continua. [83]

Agricultura

La Revolución Agrícola Británica se considera una de las causas de la Revolución Industrial porque la mejora de la productividad agrícola liberó a los trabajadores para trabajar en otros sectores de la economía. [84] En contraste, el suministro de alimentos per cápita en Europa estaba estancado o en declive y no mejoró en algunas partes de Europa hasta finales del siglo XVIII. [85]

El abogado inglés Jethro Tull inventó una sembradora mejorada en 1701. Se trataba de una sembradora mecánica que distribuía las semillas de manera uniforme en una parcela de tierra y las plantaba a la profundidad correcta. Esto era importante porque el rendimiento de las semillas cosechadas por las semillas plantadas en ese momento era de alrededor de cuatro o cinco. La sembradora de Tull era muy cara y no muy fiable, por lo que no tenía mucho efecto. Las sembradoras de buena calidad no se produjeron hasta mediados del siglo XVIII. [60] : 26 

El arado Rotherham de Joseph Foljambe de 1730 fue el primer arado de hierro comercialmente exitoso. [84] : 122  [86] [60] : 18, 21  [87] La ​​trilladora , inventada por el ingeniero escocés Andrew Meikle en 1784, reemplazó la trilla manual con un mayal , un trabajo laborioso que requería aproximadamente una cuarta parte del trabajo agrícola. [88] : 286  Los menores requisitos de mano de obra posteriormente resultaron en salarios más bajos y números de trabajadores agrícolas más bajos, que enfrentaron casi la inanición, lo que llevó a la rebelión agrícola de 1830 de los Swing Riots .

Las máquinas herramienta y las técnicas de metalurgia desarrolladas durante la Revolución Industrial finalmente dieron lugar a técnicas de fabricación de precisión a fines del siglo XIX para la producción en masa de equipos agrícolas, como segadoras, atadoras y cosechadoras. [43]

Minería

La minería de carbón en Gran Bretaña, particularmente en el sur de Gales , comenzó temprano. Antes de la máquina de vapor, los pozos eran a menudo pozos de campana poco profundos que seguían una veta de carbón a lo largo de la superficie, que se abandonaban a medida que se extraía el carbón. En otros casos, si la geología era favorable , el carbón se extraía por medio de un túnel excavado en la ladera de una colina. La minería de pozo se realizaba en algunas áreas, pero el factor limitante era el problema de la extracción de agua. Podía hacerse transportando baldes de agua por el pozo o hasta un sough (un túnel excavado en una colina para drenar una mina). En cualquier caso, el agua tenía que descargarse en un arroyo o zanja a un nivel donde pudiera fluir por gravedad. [89]

La introducción de la bomba de vapor por parte de Thomas Savery en 1698 y la máquina de vapor de Newcomen en 1712 facilitaron enormemente la extracción de agua y permitieron que los pozos se hicieran más profundos, lo que permitió extraer más carbón. Estos fueron desarrollos que habían comenzado antes de la Revolución Industrial, pero la adopción de las mejoras de John Smeaton a la máquina de Newcomen seguidas por las máquinas de vapor más eficientes de James Watt a partir de la década de 1770 redujeron los costos de combustible de las máquinas, lo que hizo que las minas fueran más rentables. La máquina de Cornish , desarrollada en la década de 1810, era mucho más eficiente que la máquina de vapor de Watt. [89]

La minería del carbón era muy peligrosa debido a la presencia de grisú en muchas vetas de carbón. La lámpara de seguridad , inventada en 1816 por Sir Humphry Davy y de forma independiente por George Stephenson , proporcionaba cierto grado de seguridad . Sin embargo, las lámparas resultaron ser un falso amanecer porque se volvían inseguras muy rápidamente y proporcionaban una luz débil. Las explosiones de grisú continuaron, a menudo provocando explosiones de polvo de carbón , por lo que las bajas aumentaron durante todo el siglo XIX. Las condiciones de trabajo eran muy malas, con una alta tasa de víctimas por desprendimientos de rocas.

Transporte

Al comienzo de la Revolución Industrial, el transporte interior se hacía por ríos y carreteras navegables, y se utilizaban embarcaciones costeras para transportar mercancías pesadas por mar. Se utilizaban vías para carretas para transportar carbón a los ríos para su posterior envío, pero los canales aún no se habían construido ampliamente. Los animales proporcionaban toda la fuerza motriz en tierra, mientras que las velas proporcionaban la fuerza motriz en el mar. Los primeros ferrocarriles tirados por caballos se introdujeron hacia finales del siglo XVIII, y las locomotoras de vapor en las primeras décadas del siglo XIX. La mejora de las tecnologías de navegación a vela aumentó la velocidad media de navegación en un 50% entre 1750 y 1830. [90]

La Revolución Industrial mejoró la infraestructura de transporte de Gran Bretaña con una red de carreteras de peaje, una red de canales y vías navegables y una red ferroviaria. Las materias primas y los productos terminados podían transportarse con mayor rapidez y a menor costo que antes. La mejora del transporte también permitió que las nuevas ideas se difundieran rápidamente.

Canales y vías navegables mejoradas

El Canal de Bridgewater , que tuvo mucho éxito comercial, atravesaba el Canal Marítimo de Manchester , uno de los últimos canales que se construyeron.

Antes y durante la Revolución Industrial, se mejoró la navegación en varios ríos británicos mediante la eliminación de obstrucciones, el enderezamiento de curvas, la ampliación y profundización, y la construcción de esclusas de navegación . En 1750, Gran Bretaña tenía más de 1600 kilómetros (1000 millas) de ríos y arroyos navegables. [2] : 46  Los canales y las vías fluviales permitieron transportar materiales a granel de manera económica a largas distancias tierra adentro. Esto se debió a que un caballo podía tirar de una barcaza con una carga docenas de veces mayor que la carga que podía arrastrarse en un carro. [49] [91]

Los canales comenzaron a construirse en el Reino Unido a fines del siglo XVIII para unir los principales centros manufactureros del país. Conocido por su enorme éxito comercial, el Canal de Bridgewater en el noroeste de Inglaterra , que se inauguró en 1761 y fue financiado principalmente por el tercer duque de Bridgewater . Desde Worsley hasta la ciudad de Manchester, en rápido crecimiento, su construcción costó £ 168,000 (£ 22,589,130 ​​en 2013 ), [92] [93] pero sus ventajas sobre el transporte terrestre y fluvial significaron que dentro de un año de su apertura en 1761, el precio del carbón en Manchester cayó aproximadamente a la mitad. [94] Este éxito ayudó a inspirar un período de intensa construcción de canales, conocido como Canal Mania . [95] Los canales se construyeron apresuradamente con el objetivo de replicar el éxito comercial del Canal de Bridgewater, siendo los más notables el Canal de Leeds y Liverpool y el Canal del Támesis y Severn , que se abrieron en 1774 y 1789 respectivamente.

En la década de 1820 ya existía una red nacional. La construcción de canales sirvió como modelo para la organización y los métodos que se utilizaron más tarde para construir los ferrocarriles. Con el tiempo, fueron reemplazados en gran medida como empresas comerciales rentables por la expansión de los ferrocarriles a partir de la década de 1840. El último canal importante que se construyó en el Reino Unido fue el Canal Marítimo de Manchester , que, cuando se inauguró en 1894, era el canal marítimo más grande del mundo [96] y abrió Manchester como puerto . Sin embargo, nunca alcanzó el éxito comercial que sus patrocinadores habían esperado y señaló que los canales eran un modo de transporte moribundo en una era dominada por los ferrocarriles, que eran más rápidos y, a menudo, más baratos.

La red de canales de Gran Bretaña, junto con los edificios industriales que aún se conservan, es una de las características más duraderas de la Revolución Industrial temprana que se pueden ver en Gran Bretaña. [97]

Carreteras

Construcción de la primera carretera de macadán en Estados Unidos en 1823. En primer plano, los trabajadores están picando piedras "de manera que no superen las 6 onzas de peso ni pasen un anillo de dos pulgadas". [98]

Francia era conocida por tener un excelente sistema de carreteras en la época de la Revolución Industrial; sin embargo, la mayoría de las carreteras del continente europeo y del Reino Unido estaban en malas condiciones y peligrosamente llenas de baches. [91] [27] Gran parte del sistema de carreteras británico original estaba mal mantenido por miles de parroquias locales, pero a partir de la década de 1720 (y ocasionalmente antes) se crearon fideicomisos de peaje para cobrar peajes y mantener algunas carreteras. A partir de la década de 1750, un número cada vez mayor de carreteras principales se convirtieron en autopistas hasta el punto de que casi todas las carreteras principales de Inglaterra y Gales eran responsabilidad de un fideicomiso de autopistas. John Metcalf , Thomas Telford y, sobre todo, John McAdam construyeron nuevas carreteras de ingeniería , siendo el primer tramo de carretera " macadán " Marsh Road en Ashton Gate , Bristol, en 1816. [99] La primera carretera de macadán en los EE. UU. fue la "Boonsborough Turnpike Road" entre Hagerstown y Boonsboro, Maryland, en 1823. [98]

Las principales autopistas partían de Londres y eran el medio por el cual el Correo Real podía llegar al resto del país. El transporte de mercancías pesadas en estas carreteras se hacía mediante carros lentos de ruedas anchas tirados por yuntas de caballos. Las mercancías más ligeras se transportaban en carros más pequeños o en yuntas de caballos de carga . Las diligencias transportaban a los ricos, y los menos ricos podían pagar para viajar en los carros de los transportistas . La productividad del transporte por carretera aumentó enormemente durante la Revolución Industrial, y el coste de los viajes cayó drásticamente. Entre 1690 y 1840, la productividad casi se triplicó para el transporte de larga distancia y se cuadruplicó en el de las diligencias. [100]

Ferrocarriles

Un retrato que representa la inauguración del ferrocarril de Liverpool y Manchester en 1830, el primer ferrocarril interurbano del mundo y que generó la "manía ferroviaria" debido a su éxito.

Los ferrocarriles se hicieron prácticos gracias a la introducción generalizada del hierro fundido barato después de 1800, el laminador para fabricar rieles y el desarrollo de la máquina de vapor de alta presión también alrededor de 1800. La reducción de la fricción fue una de las principales razones del éxito de los ferrocarriles en comparación con los vagones. Esto se demostró en un tranvía de madera cubierto con placas de hierro en 1805 en Croydon, Inglaterra.

Un buen caballo puede arrastrar dos mil libras, o una tonelada, en una carretera normal. Se invitó a un grupo de caballeros a presenciar el experimento, para que se pudiera demostrar la superioridad de la nueva carretera mediante una demostración visual. Se cargaron doce carros con piedras, hasta que cada uno de ellos llegó a pesar tres toneladas, y se ataron los carros entre sí. Luego se les ató un caballo, que tiró de los carros con facilidad, seis millas [10 km] en dos horas, habiéndose detenido cuatro veces para demostrar que tenía la capacidad de arrancar, así como de tirar de su gran carga. [101]

Las vías para el transporte de carbón en las zonas mineras se habían construido en el siglo XVII y solían estar asociadas a sistemas de canales o ríos para el posterior transporte del carbón. Todas ellas eran tiradas por caballos o dependían de la gravedad, con una máquina de vapor estacionaria para llevar las carretas de vuelta a la cima de la pendiente. Las primeras aplicaciones de la locomotora de vapor fueron en vías para carretas o placas (como se las llamaba entonces a menudo por las placas de hierro fundido que se utilizaban). Los ferrocarriles públicos tirados por caballos comenzaron a principios del siglo XIX, cuando las mejoras en la producción de hierro fundido y hierro forjado estaban reduciendo los costos.

Las locomotoras de vapor comenzaron a construirse después de la introducción de los motores de vapor de alta presión, una vez que expiró la patente de Boulton y Watt en 1800. Los motores de alta presión expulsaban el vapor usado a la atmósfera, eliminando el condensador y el agua de refrigeración. También eran mucho más ligeros y de menor tamaño para una potencia dada que los motores de condensación estacionarios. Algunas de estas primeras locomotoras se utilizaron en minas. Los ferrocarriles públicos impulsados ​​por vapor comenzaron con el ferrocarril Stockton y Darlington en 1825. [102]

La rápida introducción de los ferrocarriles siguió a las pruebas de Rainhill de 1829 , que demostraron el exitoso diseño de locomotoras de Robert Stephenson y al desarrollo en 1828 del aire caliente , que redujo drásticamente el consumo de combustible para fabricar hierro y aumentó la capacidad del alto horno. El 15 de septiembre de 1830, se inauguró el Ferrocarril de Liverpool y Manchester , el primer ferrocarril interurbano del mundo, al que asistió el primer ministro Arthur Wellesley . [103] El ferrocarril fue diseñado por Joseph Locke y George Stephenson , y unió la ciudad industrial de Manchester, en rápida expansión, con la ciudad portuaria de Liverpool. La inauguración se vio empañada por problemas causados ​​por la naturaleza primitiva de la tecnología empleada; sin embargo, los problemas se resolvieron gradualmente y el ferrocarril tuvo un gran éxito, transportando pasajeros y mercancías.

El éxito del ferrocarril interurbano, en particular en el transporte de mercancías y productos básicos, dio lugar a la manía ferroviaria . La construcción de grandes ferrocarriles que conectaban las ciudades y pueblos más grandes comenzó en la década de 1830, pero solo cobró impulso al final de la primera Revolución Industrial. Después de que muchos de los trabajadores terminaron de construir los ferrocarriles, no regresaron a sus estilos de vida rurales, sino que permanecieron en las ciudades, proporcionando trabajadores adicionales para las fábricas.

Efectos sociales

A nivel estructural, la Revolución Industrial planteó a la sociedad la llamada cuestión social , exigiendo nuevas ideas para gestionar grandes grupos de individuos. La pobreza visible por un lado y el crecimiento de la población y la riqueza materialista por el otro provocaron tensiones entre los muy ricos y los más pobres de la sociedad. [104] Estas tensiones se liberaron a veces violentamente [105] y dieron lugar a ideas filosóficas como el socialismo , el comunismo y el anarquismo .

Sistema de fábrica

Antes de la Revolución Industrial, la mayor parte de la fuerza laboral trabajaba en la agricultura, ya fuera como agricultores autónomos, propietarios o arrendatarios de tierras, o como trabajadores agrícolas sin tierra . Era común que las familias de diversas partes del mundo hilaran, tejieran y confeccionaran su propia ropa. Las familias también hilaban y tejían para la producción comercial. Al comienzo de la Revolución Industrial, India, China y algunas regiones de Irak y otras partes de Asia y Oriente Medio producían la mayor parte de las telas de algodón del mundo, mientras que los europeos producían artículos de lana y lino.

En Gran Bretaña , en el siglo XVI, se practicaba el sistema de producción a domicilio , mediante el cual los agricultores y los habitantes de las ciudades producían bienes para un mercado en sus hogares, a menudo descrito como industria casera . Los bienes típicos del sistema de producción a domicilio incluían el hilado y el tejido. Los capitalistas mercantiles normalmente proporcionaban las materias primas, pagaban a los trabajadores por pieza y eran responsables de la venta de los bienes. La malversación de suministros por parte de los trabajadores y la mala calidad eran problemas comunes. El esfuerzo logístico para obtener y distribuir materias primas y recoger los productos terminados también eran limitaciones del sistema de producción a domicilio. [2] : 57–59 

Algunas de las primeras máquinas de hilar y tejer, como una máquina Jenny de 40 husos por unas seis libras en 1792, eran asequibles para los habitantes de las cabañas. [2] : 59  La maquinaria posterior, como las máquinas de hilar, las mulas de hilar y los telares mecánicos, eran caras (especialmente si funcionaban con agua), lo que dio lugar a la propiedad capitalista de las fábricas.

La mayoría de los trabajadores de las fábricas textiles durante la Revolución Industrial eran mujeres solteras y niños, incluidos muchos huérfanos. Por lo general, trabajaban de 12 a 14 horas por día y solo descansaban los domingos. Era común que las mujeres aceptaran trabajos en las fábricas de forma estacional durante los períodos de poca actividad agrícola. La falta de transporte adecuado, las largas horas de trabajo y los bajos salarios dificultaban la contratación y el mantenimiento de los trabajadores. [44]

Karl Marx consideró desfavorablemente el cambio en la relación social del trabajador de fábrica en comparación con los agricultores y los campesinos ; sin embargo, reconoció el aumento de la productividad que fue posible gracias a la tecnología. [106]

Nivel de vida

Algunos economistas, como Robert Lucas Jr. , dicen que el efecto real de la Revolución Industrial fue que "por primera vez en la historia, los niveles de vida de las masas de la gente común han comenzado a experimentar un crecimiento sostenido... Los economistas clásicos no mencionan nada remotamente parecido a este comportamiento económico, ni siquiera como una posibilidad teórica". [12] Otros argumentan que, si bien el crecimiento de los poderes productivos generales de la economía no tuvo precedentes durante la Revolución Industrial, los niveles de vida de la mayoría de la población no crecieron significativamente hasta finales del siglo XIX y XX y que, en muchos sentidos, los niveles de vida de los trabajadores disminuyeron bajo el capitalismo temprano: algunos estudios han estimado que los salarios reales en Gran Bretaña solo aumentaron un 15% entre los años 1780 y 1850 y que la esperanza de vida en Gran Bretaña no comenzó a aumentar drásticamente hasta la década de 1870. [13] [14]

La altura media de la población disminuyó durante la Revolución Industrial, lo que implica que su estado nutricional también estaba disminuyendo. [107] [108]

Durante la Revolución Industrial, la esperanza de vida de los niños aumentó drásticamente. El porcentaje de niños nacidos en Londres que murieron antes de los cinco años disminuyó del 74,5% en 1730-1749 al 31,8% en 1810-1829. [109] Los efectos sobre las condiciones de vida han sido controvertidos y fueron objeto de acalorados debates entre los historiadores económicos y sociales desde los años 1950 hasta los años 1980. [110] Durante el período de 1813 a 1913, hubo un aumento significativo de los salarios de los trabajadores. [111] [112]

Alimentación y nutrición

El hambre crónica y la desnutrición eran la norma para la mayoría de la población del mundo, incluida Gran Bretaña y Francia, hasta finales del siglo XIX. Hasta aproximadamente 1750, la desnutrición limitaba la esperanza de vida en Francia a unos 35 años y a unos 40 años en Gran Bretaña. La población de los Estados Unidos de la época estaba adecuadamente alimentada, era mucho más alta en promedio y tenía una esperanza de vida de 45 a 50 años, aunque la esperanza de vida estadounidense disminuyó unos pocos años a mediados del siglo XIX. El consumo de alimentos per cápita también disminuyó durante un episodio conocido como el rompecabezas antebellum . [113]

El suministro de alimentos en Gran Bretaña se vio afectado negativamente por las Leyes del Maíz (1815-1846), que imponían aranceles a los granos importados. Las leyes se promulgaron para mantener los precios altos y beneficiar a los productores nacionales. Las Leyes del Maíz fueron derogadas en los primeros años de la Gran Hambruna Irlandesa .

Las tecnologías iniciales de la Revolución Industrial, como los textiles mecanizados, el hierro y el carbón, hicieron poco, o nada, para reducir los precios de los alimentos . [85] En Gran Bretaña y los Países Bajos, el suministro de alimentos aumentó antes de la Revolución Industrial con mejores prácticas agrícolas; sin embargo, la población también creció. [2] [88] [114] [115]

Alojamiento

Viviendas en Londres , hacia  1870, de Gustave Doré

El rápido crecimiento demográfico en el siglo XIX incluyó las nuevas ciudades industriales y manufactureras, así como centros de servicios como Edimburgo y Londres. [116] El factor crítico fue la financiación, que fue manejada por sociedades de construcción que trataban directamente con grandes empresas contratistas. [117] [118] El alquiler privado de las viviendas a los propietarios era la tenencia dominante. P. Kemp dice que esto solía ser una ventaja para los inquilinos. [119] La gente se mudó tan rápidamente que no había suficiente capital para construir viviendas adecuadas para todos, por lo que los recién llegados de bajos ingresos se apiñaron en barrios marginales cada vez más superpoblados . El agua potable , el saneamiento y las instalaciones de salud pública eran inadecuados; la tasa de mortalidad era alta, especialmente la mortalidad infantil y la tuberculosis entre los adultos jóvenes. El cólera por agua contaminada y la fiebre tifoidea eran endémicas. A diferencia de las áreas rurales, no hubo hambrunas como la que devastó Irlanda en la década de 1840. [120] [121] [122]

Se generó una gran cantidad de literatura de denuncia de las condiciones insalubres. La publicación más famosa, con diferencia, fue la de uno de los fundadores del movimiento socialista: La situación de la clase obrera en Inglaterra, de 1844. Friedrich Engels describe los barrios marginales de Manchester y otras ciudades industriales, donde la gente vivía en chabolas y chozas rudimentarias, algunas no completamente cerradas, otras con suelos de tierra. Estas chabolas tenían pasillos estrechos entre parcelas y viviendas de forma irregular. No había instalaciones sanitarias. La densidad de población era extremadamente alta. [123] Sin embargo, no todo el mundo vivía en condiciones tan pobres. La Revolución Industrial también creó una clase media de empresarios, oficinistas, capataces e ingenieros que vivían en condiciones mucho mejores.

Las condiciones mejoraron a lo largo del siglo XIX con nuevas leyes de salud pública que regulaban aspectos como el alcantarillado, la higiene y la construcción de viviendas. En la introducción de su edición de 1892, Engels señala que la mayoría de las condiciones sobre las que escribió en 1844 habían mejorado enormemente. Por ejemplo, la Ley de Salud Pública de 1875 ( 38 y 39 Vict. c. 55) dio lugar a la ordenanza más sanitaria de las casas adosadas .

Agua y saneamiento

En la época preindustrial, el suministro de agua se basaba en sistemas de gravedad y el agua se bombeaba mediante ruedas hidráulicas. Las tuberías solían estar hechas de madera. Las bombas de vapor y las tuberías de hierro permitieron el suministro generalizado de agua a los abrevaderos de los caballos y a los hogares. [27]

El libro de Engels describe cómo las aguas residuales sin tratar creaban olores horribles y volvían verdes los ríos en las ciudades industriales. En 1854, John Snow atribuyó un brote de cólera en el Soho de Londres a la contaminación fecal de un pozo público de agua por un pozo negro doméstico . Los hallazgos de Snow de que el cólera podía propagarse a través del agua contaminada tardaron algunos años en ser aceptados, pero su trabajo condujo a cambios fundamentales en el diseño de los sistemas públicos de agua y desechos.

Alfabetismo

In the 18th century, there were relatively high levels of literacy among farmers in England and Scotland. This permitted the recruitment of literate craftsmen, skilled workers, foremen, and managers who supervised the emerging textile factories and coal mines. Much of the labour was unskilled, and especially in textile mills children as young as eight proved useful in handling chores and adding to the family income. Indeed, children were taken out of school to work alongside their parents in the factories. However, by the mid-19th century, unskilled labor forces were common in Western Europe, and British industry moved upscale, needing many more engineers and skilled workers who could handle technical instructions and handle complex situations. Literacy was essential to be hired.[124][125] A senior government official told Parliament in 1870:

Upon the speedy provision of elementary education depends are industrial prosperity. It is of no use trying to give technical teaching to our citizens without elementary education; uneducated labourers—and many of our labourers are utterly uneducated—are, for the most part, unskilled labourers, and if we leave our work–folk any longer unskilled, notwithstanding their strong sinews and determined energy, they will become overmatched in the competition of the world.[126]

The invention of the paper machine and the application of steam power to the industrial processes of printing supported a massive expansion of newspaper and pamphlet publishing, which contributed to rising literacy and demands for mass political participation.[127]

Clothing and consumer goods

Wedgwood tea and coffee service

Consumers benefited from falling prices for clothing and household articles such as cast iron cooking utensils, and in the following decades, stoves for cooking and space heating. Coffee, tea, sugar, tobacco, and chocolate became affordable to many in Europe. The consumer revolution in England from the early 17th century to the mid-18th century had seen a marked increase in the consumption and variety of luxury goods and products by individuals from different economic and social backgrounds.[128] With improvements in transport and manufacturing technology, opportunities for buying and selling became faster and more efficient than previous. The expanding textile trade in the north of England meant the three-piece suit became affordable to the masses.[129] Founded by potter and retail entrepreneur Josiah Wedgwood in 1759, Wedgwood fine china and porcelain tableware was starting to become a common feature on dining tables.[130] Rising prosperity and social mobility in the 18th century increased the number of people with disposable income for consumption, and the marketing of goods (of which Wedgwood was a pioneer) for individuals, as opposed to items for the household, started to appear, and the new status of goods as status symbols related to changes in fashion and desired for aesthetic appeal.[130]

With the rapid growth of towns and cities, shopping became an important part of everyday life. Window shopping and the purchase of goods became a cultural activity in its own right, and many exclusive shops were opened in elegant urban districts: in the Strand and Piccadilly in London, for example, and in spa towns such as Bath and Harrogate. Prosperity and expansion in manufacturing industries such as pottery and metalware increased consumer choice dramatically. Where once labourers ate from metal platters with wooden implements, ordinary workers now dined on Wedgwood porcelain. Consumers came to demand an array of new household goods and furnishings: metal knives and forks, for example, as well as rugs, carpets, mirrors, cooking ranges, pots, pans, watches, clocks, and a dizzying array of furniture. The age of mass consumption had arrived.

— "Georgian Britain, The rise of consumerism", Matthew White, British Library.[129]
Winchester's High Street in 1853; the number of High Streets, the primary street for retail in Britain in towns and cities rapidly grew in the 18th century.

New businesses in various industries appeared in towns and cities throughout Britain. Confectionery was one such industry that saw rapid expansion. According to food historian Polly Russell: "chocolate and biscuits became products for the masses, thanks to the Industrial Revolution and the consumers it created. By the mid-19th century, sweet biscuits were an affordable indulgence and business was booming. Manufacturers such as Huntley & Palmers in Reading, Carr's of Carlisle and McVitie's in Edinburgh transformed from small family-run businesses into state-of-the-art operations".[131] In 1847 Fry's of Bristol produced the first chocolate bar.[132] Their competitor Cadbury of Birmingham was the first to commercialize the association between confectionery and romance when they produced a heart-shaped box of chocolates for Valentine's Day in 1868.[133] The department store became a common feature in major High Streets across Britain; one of the first was opened in 1796 by Harding, Howell & Co. on Pall Mall in London.[134] In the 1860s, fish and chip shops emerged across the country in order to satisfy the needs of the growing industrial population.[135]

In addition to goods being sold in the growing number of stores, street sellers were common in an increasingly urbanized country. Matthew White: "Crowds swarmed in every thoroughfare. Scores of street sellers 'cried' merchandise from place to place, advertising the wealth of goods and services on offer. Milkmaids, orange sellers, fishwives and piemen, for example, all walked the streets offering their various wares for sale, while knife grinders and the menders of broken chairs and furniture could be found on street corners".[136] An early soft drinks company, R. White's Lemonade, began in 1845 by selling drinks in London in a wheelbarrow.[137]

Increased literacy rates, industrialisation, and the invention of the railway created a new market for cheap popular literature for the masses and the ability for it to be circulated on a large scale. Penny dreadfuls were created in the 1830s to meet this demand.[138] The Guardian described penny dreadfuls as "Britain's first taste of mass-produced popular culture for the young", and "the Victorian equivalent of video games".[139] By the 1860s and 1870s more than one million boys' periodicals were sold per week.[139] Labelled an "authorpreneur" by The Paris Review, Charles Dickens used innovations from the revolution to sell his books, such as the new printing presses, enhanced advertising revenues, and the expansion of railroads.[140] His first novel, The Pickwick Papers (1836), became a publishing phenomenon with its unprecedented success sparking numerous spin-offs and merchandise ranging from Pickwick cigars, playing cards, china figurines, Sam Weller puzzles, Weller boot polish and joke books.[140] Nicholas Dames in The Atlantic writes, "Literature" is not a big enough category for Pickwick. It defined its own, a new one that we have learned to call "entertainment".[141]

In 1861, Welsh entrepreneur Pryce Pryce-Jones formed the first mail order business, an idea which would change the nature of retail.[142] Selling Welsh flannel, he created mail order catalogues, with customers able to order by mail for the first time—this following the Uniform Penny Post in 1840 and the invention of the postage stamp (Penny Black) where there was a charge of one penny for carriage and delivery between any two places in the United Kingdom irrespective of distance—and the goods were delivered throughout the UK via the newly created railway system.[143] As the railway network expanded overseas, so did his business.[143]

Population increase

The Industrial Revolution was the first period in history during which there was a simultaneous increase in both population and per capita income.[144] According to Robert Hughes in The Fatal Shore, the population of England and Wales, which had remained steady at six million from 1700 to 1740, rose dramatically after 1740. The population of England had more than doubled from 8.3 million in 1801 to 16.8 million in 1850 and, by 1901, had nearly doubled again to 30.5 million.[145] Improved conditions led to the population of Britain increasing from 10 million to 30 million in the 19th century.[146][147] Europe's population increased from about 100 million in 1700 to 400 million by 1900.[148]

Urbanization

The Black Country west of Birmingham, England

The growth of the modern industry since the late 18th century led to massive urbanisation and the rise of new great cities, first in Europe and then in other regions, as new opportunities brought huge numbers of migrants from rural communities into urban areas. In 1800, only 3% of the world's population lived in cities,[149] compared to nearly 50% by the beginning of the 21st century.[150] Manchester had a population of 10,000 in 1717, but by 1911 it had burgeoned to 2.3 million.[151]

Effect on women and family life

Women's historians have debated the effect of the Industrial Revolution and capitalism generally on the status of women.[152][153] Taking a pessimistic side, Alice Clark argues that when capitalism arrived in 17th-century England, it lowered the status of women as they lost much of their economic importance. Clark argues that in 16th-century England, women were engaged in many aspects of industry and agriculture. The home was a central unit of production, and women played a vital role in running farms and in some trades and landed estates. Their useful economic roles gave them a sort of equality with their husbands. However, Clark argues, as capitalism expanded in the 17th century, there was more division of labour with the husband taking paid labour jobs outside the home, and the wife was reduced to unpaid household work. Middle- and upper-class women were confined to an idle domestic existence, supervising servants; lower-class women were forced to take poorly paid jobs. Capitalism, therefore, had a negative effect on powerful women.[154]

In a more positive interpretation, Ivy Pinchbeck argues that capitalism created the conditions for women's emancipation.[155] Tilly and Scott have emphasised the continuity in the status of women, finding three stages in English history. In the pre-industrial era, production was mostly for home use, and women produced much of the needs of the households. The second stage was the "family wage economy" of early industrialisation; the entire family depended on the collective wages of its members, including husband, wife, and older children. The third or modern stage is the "family consumer economy", in which the family is the site of consumption, and women are employed in large numbers in retail and clerical jobs to support rising standards of consumption.[156]

Ideas of thrift and hard work characterised middle-class families as the Industrial Revolution swept Europe. These values were displayed in Samuel Smiles' book Self-Help, in which he states that the misery of the poorer classes was "voluntary and self-imposed—the results of idleness, thriftlessness, intemperance, and misconduct."[157]

Labour conditions

Social structure and working conditions

In terms of social structure, the Industrial Revolution witnessed the triumph of a middle class of industrialists and businessmen over a landed class of nobility and gentry. Ordinary working people found increased opportunities for employment in mills and factories, but these were often under strict working conditions with long hours of labour dominated by a pace set by machines. As late as 1900, most industrial workers in the United States worked a 10-hour day (12 hours in the steel industry), yet earned 20–40% less than the minimum deemed necessary for a decent life;[158] however, most workers in textiles, which was by far the leading industry in terms of employment, were women and children.[44] For workers of the labouring classes, industrial life "was a stony desert, which they had to make habitable by their own efforts."[159]

Harsh working conditions were prevalent long before the Industrial Revolution took place. Pre-industrial society was very static and often cruel—child labour, dirty living conditions, and long working hours were just as prevalent before the Industrial Revolution.[160]

Factories and urbanisation

Cottonopolis, an 1840 portrait of Manchester's factory chimneys

Industrialisation led to the creation of the factory. The factory system contributed to the growth of urban areas as large numbers of workers migrated into the cities in search of work in the factories. Nowhere was this better illustrated than the mills and associated industries of Manchester, nicknamed "Cottonopolis", and the world's first industrial city.[161] Manchester experienced a six-times increase in its population between 1771 and 1831. Bradford grew by 50% every ten years between 1811 and 1851, and by 1851 only 50% of the population of Bradford were actually born there.[162]

In addition, between 1815 and 1939, 20% of Europe's population left home, pushed by poverty, a rapidly growing population, and the displacement of peasant farming and artisan manufacturing. They were pulled abroad by the enormous demand for labour overseas, the ready availability of land, and cheap transportation. Still, many did not find a satisfactory life in their new homes, leading 7 million of them to return to Europe.[163] This mass migration had large demographic effects: in 1800, less than 1% of the world population consisted of overseas Europeans and their descendants; by 1930, they represented 11%.[164] The Americas felt the brunt of this huge emigration, largely concentrated in the United States.

For much of the 19th century, production was done in small mills which were typically water-powered and built to serve local needs. Later, each factory would have its own steam engine and a chimney to give an efficient draft through its boiler.

In other industries, the transition to factory production was not so divisive. Some industrialists tried to improve factory and living conditions for their workers. One of the earliest such reformers was Robert Owen, known for his pioneering efforts in improving conditions for workers at the New Lanark mills and often regarded as one of the key thinkers of the early socialist movement.

By 1746 an integrated brass mill was working at Warmley near Bristol. Raw material went in at one end, was smelted into brass and was turned into pans, pins, wire, and other goods. Housing was provided for workers on site. Josiah Wedgwood and Matthew Boulton (whose Soho Manufactory was completed in 1766) were other prominent early industrialists who employed the factory system.

Child labour

A young "drawer" pulling a coal tub along a mine gallery.[165] In Britain, laws passed in 1842 and 1844 improved mine working conditions.

The Industrial Revolution led to a population increase, but the chances of surviving childhood did not improve throughout the Industrial Revolution, although infant mortality rates were reduced markedly.[109][166] There was still limited opportunity for education, and children were expected to work. Employers could pay a child less than an adult even though their productivity was comparable; there was no need for strength to operate an industrial machine, and since the industrial system was new, there were no experienced adult labourers. This made child labour the labour of choice for manufacturing in the early phases of the Industrial Revolution between the 18th and 19th centuries. In England and Scotland in 1788, two-thirds of the workers in 143 water-powered cotton mills were described as children.[167]

Child labour existed before the Industrial Revolution, but with the increase in population and education it became more visible. Many children were forced to work in relatively bad conditions for much lower pay than their elders,[168] 10–20% of an adult male's wage.[169]

Reports were written detailing some of the abuses, particularly in the coal mines[170] and textile factories,[171] and these helped to popularise the children's plight. The public outcry, especially among the upper and middle classes, helped stir change in the young workers' welfare.

Politicians and the government tried to limit child labour by law, but factory owners resisted; some felt that they were aiding the poor by giving their children money to buy food to avoid starvation, and others simply welcomed the cheap labour. In 1833 and 1844, the first general laws against child labour, the Factory Acts, were passed in Britain: children younger than nine were not allowed to work, children were not permitted to work at night, and the workday of youth under age 18 was limited to twelve hours. Factory inspectors supervised the execution of the law; however, their scarcity made enforcement difficult.[172] About ten years later, the employment of children and women in mining was forbidden. Although laws such as these decreased the number of child labourers, child labour remained significantly present in Europe and the United States until the 20th century.[173]

Organisation of labour

The Industrial Revolution concentrated labour into mills, factories, and mines, thus facilitating the organisation of combinations or trade unions to help advance the interests of working people. The power of a union could demand better terms by withdrawing all labour and causing a consequent cessation of production. Employers had to decide between giving in to the union demands at a cost to themselves or suffering the cost of the lost production. Skilled workers were difficult to replace, and these were the first groups to successfully advance their conditions through this kind of bargaining.

The main method the unions used to effect change was strike action. Many strikes were painful events for both sides, the unions and the management. In Britain, the Combination Act 1799 forbade workers to form any kind of trade union until its repeal in 1824. Even after this, unions were still severely restricted. One British newspaper in 1834 described unions as "the most dangerous institutions that were ever permitted to take root, under shelter of law, in any country..."[174]

In 1832, the Reform Act extended the vote in Britain but did not grant universal suffrage. That year six men from Tolpuddle in Dorset founded the Friendly Society of Agricultural Labourers to protest against the gradual lowering of wages in the 1830s. They refused to work for less than ten shillings per week, although by this time wages had been reduced to seven shillings per week and were due to be further reduced to six. In 1834 James Frampton, a local landowner, wrote to Prime Minister Lord Melbourne to complain about the union, invoking an obscure law from 1797 prohibiting people from swearing oaths to each other, which the members of the Friendly Society had done. Six men were arrested, found guilty, and transported to Australia. They became known as the Tolpuddle Martyrs. In the 1830s and 1840s, the chartist movement was the first large-scale organised working-class political movement that campaigned for political equality and social justice. Its Charter of reforms received over three million signatures but was rejected by Parliament without consideration.

Working people also formed friendly societies and cooperative societies as mutual support groups against times of economic hardship. Enlightened industrialists, such as Robert Owen supported these organisations to improve the conditions of the working class. Unions slowly overcame the legal restrictions on the right to strike. In 1842, a general strike involving cotton workers and colliers was organised through the chartist movement which stopped production across Great Britain.[175] Eventually, effective political organisation for working people was achieved through the trades unions who, after the extensions of the franchise in 1867 and 1885, began to support socialist political parties that later merged to become the British Labour Party.

Luddites

The rapid industrialisation of the English economy cost many craft workers their jobs. The movement started first with lace and hosiery workers near Nottingham and spread to other areas of the textile industry. Many weavers also found themselves suddenly unemployed since they could no longer compete with machines which only required relatively limited (and unskilled) labour to produce more cloth than a single weaver. Many such unemployed workers, weavers, and others turned their animosity towards the machines that had taken their jobs and began destroying factories and machinery. These attackers became known as Luddites, supposedly followers of Ned Ludd, a folklore figure.[176] The first attacks of the Luddite movement began in 1811. The Luddites rapidly gained popularity, and the British government took drastic measures using the militia or army to protect industry. Those rioters who were caught were tried and hanged, or transported for life.[177]

Unrest continued in other sectors as they industrialised, such as with agricultural labourers in the 1830s when large parts of southern Britain were affected by the Captain Swing disturbances. Threshing machines were a particular target, and hayrick burning was a popular activity. However, the riots led to the first formation of trade unions and further pressure for reform.

Shift in production's centre of gravity

The traditional centres of hand textile production such as India, parts of the Middle East, and later China could not withstand the competition from machine-made textiles, which over a period of decades destroyed the hand-made textile industries and left millions of people without work, many of whom starved.[44]

The Industrial Revolution generated an enormous and unprecedented economic division in the world, as measured by the share of manufacturing output.

Cotton and the expansion of slavery

Cheap cotton textiles increased the demand for raw cotton; previously, it had primarily been consumed in subtropical regions where it was grown, with little raw cotton available for export. Consequently, prices of raw cotton rose. British production grew from 2 million pounds in 1700 to 5 million pounds in 1781 to 56 million in 1800.[179] The invention of the cotton gin by American Eli Whitney in 1792 was the decisive event. It allowed green-seeded cotton to become profitable, leading to the widespread growth of the large slave plantation in the United States, Brazil, and the West Indies. In 1791 American cotton production was about 2 million pounds, soaring to 35 million by 1800, half of which was exported. America's cotton plantations were highly efficient and profitable and were able to keep up with demand.[180] The U.S. Civil War created a "cotton famine" that led to increased production in other areas of the world, including European colonies in Africa.[181]

Effect on environment

Levels of air pollution rose during the Industrial Revolution, sparking the first modern environmental laws to be passed in the mid-19th century.

The origins of the environmental movement lay in the response to increasing levels of smoke pollution in the atmosphere during the Industrial Revolution. The emergence of great factories and the concomitant immense growth in coal consumption gave rise to an unprecedented level of air pollution in industrial centres; after 1900 the large volume of industrial chemical discharges added to the growing load of untreated human waste.[182] The first large-scale, modern environmental laws came in the form of Britain's Alkali Acts, passed in 1863, to regulate the deleterious air pollution (gaseous hydrochloric acid) given off by the Leblanc process used to produce soda ash. An alkali inspector and four sub-inspectors were appointed to curb this pollution. The responsibilities of the inspectorate were gradually expanded, culminating in the Alkali Order 1958 which placed all major heavy industries that emitted smoke, grit, dust, and fumes under supervision.

The manufactured gas industry began in British cities in 1812–1820. The technique used produced highly toxic effluent that was dumped into sewers and rivers. The gas companies were repeatedly sued in nuisance lawsuits. They usually lost and modified the worst practices. The City of London repeatedly indicted gas companies in the 1820s for polluting the Thames and poisoning its fish. Finally, Parliament wrote company charters to regulate toxicity.[183] The industry reached the U.S. around 1850 causing pollution and lawsuits.[184]

In industrial cities local experts and reformers, especially after 1890, took the lead in identifying environmental degradation and pollution, and initiating grass-roots movements to demand and achieve reforms.[185] Typically the highest priority went to water and air pollution. The Coal Smoke Abatement Society was formed in Britain in 1898 making it one of the oldest environmental non-governmental organisations. It was founded by artist William Blake Richmond, frustrated with the pall cast by coal smoke. Although there were earlier pieces of legislation, the Public Health Act 1875 required all furnaces and fireplaces to consume their own smoke. It also provided for sanctions against factories that emitted large amounts of black smoke. The provisions of this law were extended in 1926 with the Smoke Abatement Act to include other emissions, such as soot, ash, and gritty particles, and to empower local authorities to impose their own regulations.[186]

Industrialisation beyond Great Britain

Europe

The Industrial Revolution in continental Europe came later than in Great Britain. It started in Belgium and France, then spread to the German states by the middle of the 19th century. In many industries, this involved the application of technology developed in Britain in new places. Typically, the technology was purchased from Britain or British engineers and entrepreneurs moved abroad in search of new opportunities. By 1809, part of the Ruhr Valley in Westphalia was called 'Miniature England' because of its similarities to the industrial areas of Britain. Most European governments provided state funding to the new industries. In some cases (such as iron), the different availability of resources locally meant that only some aspects of the British technology were adopted.[187][188]

Austria-Hungary

The Habsburg realms which became Austria-Hungary in 1867 included 23 million inhabitants in 1800, growing to 36 million by 1870. Nationally, the per capita rate of industrial growth averaged about 3% between 1818 and 1870. However, there were strong regional differences. The railway system was built in the 1850–1873 period. Before they arrived transportation was very slow and expensive. In the Alpine and Bohemian (modern-day Czech Republic) regions, proto-industrialisation began by 1750 and became the center of the first phases of the Industrial Revolution after 1800. The textile industry was the main factor, utilising mechanisation, steam engines, and the factory system. In the Czech lands, the "first mechanical loom followed in Varnsdorf in 1801",[189] with the first steam engines appearing in Bohemia and Moravia just a few years later. The textile production flourished particularly in Prague[190] and Brno (German: Brünn), which was considered the 'Moravian Manchester'.[191] The Czech lands, especially Bohemia, became the centre of industrialisation due to its natural and human resources. The iron industry had developed in the Alpine regions after 1750, with smaller centers in Bohemia and Moravia. Hungary—the eastern half of the Dual Monarchy, was heavily rural with little industry before 1870.[192]

In 1791, Prague organised the first World's Fair/List of world's fairs, Bohemia (modern-day Czech Republic). The first industrial exhibition was on the occasion of the coronation of Leopold II as a king of Bohemia, which took place in Clementinum, and therefore celebrated the considerable sophistication of manufacturing methods in the Czech lands during that time period.[193]

Technological change accelerated industrialisation and urbanisation. The GNP per capita grew roughly 1.76% per year from 1870 to 1913. That level of growth compared very favourably to that of other European nations such as Britain (1%), France (1.06%), and Germany (1.51%).[194] However, in a comparison with Germany and Britain: the Austro-Hungarian economy as a whole still lagged considerably, as sustained modernisation had begun much later.[195]

Belgium

Belgium was the second country in which the Industrial Revolution took place and the first in continental Europe: Wallonia (French-speaking southern Belgium) took the lead. Starting in the middle of the 1820s, and especially after Belgium became an independent nation in 1830, numerous works comprising coke blast furnaces as well as puddling and rolling mills were built in the coal mining areas around Liège and Charleroi. The leader was John Cockerill, a transplanted Englishman . His factories at Seraing integrated all stages of production, from engineering to the supply of raw materials, as early as 1825.[196][197]

Wallonia exemplified the radical evolution of industrial expansion. Thanks to coal (the French word "houille" was coined in Wallonia),[198] the region geared up to become the 2nd industrial power in the world after Britain. But it is also pointed out by many researchers, with its Sillon industriel, "Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège...there was a huge industrial development based on coal-mining and iron-making...".[199] Philippe Raxhon wrote about the period after 1830: "It was not propaganda but a reality the Walloon regions were becoming the second industrial power all over the world after Britain."[200] "The sole industrial centre outside the collieries and blast furnaces of Walloon was the old cloth-making town of Ghent."[201] Professor Michel De Coster stated: "The historians and the economists say that Belgium was the second industrial power of the world, in proportion to its population and its territory [...] But this rank is the one of Wallonia where the coal-mines, the blast furnaces, the iron and zinc factories, the wool industry, the glass industry, the weapons industry... were concentrated."[202] Many of the 19th-century coal mines in Wallonia are now protected as World Heritage Sites.[203]

Wallonia was also the birthplace of a strong socialist party and strong trade unions in a particular sociological landscape. At the left, the Sillon industriel, which runs from Mons in the west, to Verviers in the east (except part of North Flanders, in another period of the industrial revolution, after 1920). Even if Belgium is the second industrial country after Britain, the effect of the industrial revolution there was very different. In 'Breaking stereotypes', Muriel Neven and Isabelle Devious say:

The Industrial Revolution changed a mainly rural society into an urban one, but with a strong contrast between northern and southern Belgium. During the Middle Ages and the early modern period, Flanders was characterised by the presence of large urban centres [...] at the beginning of the nineteenth century this region (Flanders), with an urbanisation degree of more than 30 percent, remained one of the most urbanised in the world. By comparison, this proportion reached only 17 percent in Wallonia, barely 10 percent in most West European countries, 16 percent in France, and 25 percent in Britain. Nineteenth-century industrialisation did not affect the traditional urban infrastructure, except in Ghent... Also, in Wallonia, the traditional urban network was largely unaffected by the industrialisation process, even though the proportion of city-dwellers rose from 17 to 45 percent between 1831 and 1910. Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, where there was a huge industrial development based on coal-mining and iron-making, urbanisation was fast. During these eighty years, the number of municipalities with more than 5,000 inhabitants increased from only 21 to more than one hundred, concentrating nearly half of the Walloon population in this region. Nevertheless, industrialisation remained quite traditional in the sense that it did not lead to the growth of modern and large urban centres, but to a conurbation of industrial villages and towns developed around a coal mine or a factory. Communication routes between these small centres only became populated later and created a much less dense urban morphology than, for instance, the area around Liège where the old town was there to direct migratory flows.[204]

France

The Industrial Revolution in France followed a particular course as it did not correspond to the main model followed by other countries. Notably, most French historians argue France did not go through a clear take-off.[205] Instead, France's economic growth and industrialisation process was slow and steady through the 18th and 19th centuries. However, some stages were identified by Maurice Lévy-Leboyer:

Germany

Based on its leadership in chemical research in the universities and industrial laboratories, Germany, which was unified in 1871, became dominant in the world's chemical industry in the late 19th century. At first the production of dyes based on aniline was critical.[206]

Germany's political disunity—with three dozen states—and a pervasive conservatism made it difficult to build railways in the 1830s. However, by the 1840s, trunk lines linked the major cities; each German state was responsible for the lines within its own borders. Lacking a technological base at first, the Germans imported their engineering and hardware from Britain, but quickly learned the skills needed to operate and expand the railways. In many cities, the new railway shops were the centres of technological awareness and training, so that by 1850, Germany was self-sufficient in meeting the demands of railroad construction, and the railways were a major impetus for the growth of the new steel industry. Observers found that even as late as 1890, their engineering was inferior to Britain's. However, German unification in 1871 stimulated consolidation, nationalisation into state-owned companies, and further rapid growth. Unlike the situation in France, the goal was the support of industrialisation, and so heavy lines crisscrossed the Ruhr and other industrial districts and provided good connections to the major ports of Hamburg and Bremen. By 1880, Germany had 9,400 locomotives pulling 43,000 passengers and 30,000 tons of freight, and pulled ahead of France.[207]

Sweden

During the period 1790–1815, Sweden experienced two parallel economic movements: an agricultural revolution with larger agricultural estates, new crops, and farming tools and commercialisation of farming, and a proto industrialisation, with small industries being established in the countryside and with workers switching between agricultural work in summer and industrial production in winter. This led to economic growth benefiting large sections of the population and leading up to a consumption revolution starting in the 1820s. Between 1815 and 1850, the protoindustries developed into more specialised and larger industries. This period witnessed increasing regional specialisation with mining in Bergslagen, textile mills in Sjuhäradsbygden, and forestry in Norrland. Several important institutional changes took place in this period, such as free and mandatory schooling introduced in 1842 (as the first country in the world), the abolition of the national monopoly on trade in handicrafts in 1846, and a stock company law in 1848.[208]

From 1850 to 1890, Sweden experienced its "first" Industrial Revolution with a veritable explosion in export, dominated by crops, wood, and steel. Sweden abolished most tariffs and other barriers to free trade in the 1850s and joined the gold standard in 1873. Large infrastructural investments were made during this period, mainly in the expanding railroad network, which was financed in part by the government and in part by private enterprises.[209] From 1890 to 1930, new industries developed with their focus on the domestic market: mechanical engineering, power utilities, papermaking and textile.

Japan

The Industrial Revolution began about 1870 as Meiji period leaders decided to catch up with the West. The government built railroads, improved roads, and inaugurated a land reform program to prepare the country for further development. It inaugurated a new Western-based education system for all young people, sent thousands of students to the United States and Europe, and hired more than 3,000 Westerners to teach modern science, mathematics, technology, and foreign languages in Japan (Foreign government advisors in Meiji Japan).

In 1871, a group of Japanese politicians known as the Iwakura Mission toured Europe and the United States to learn Western ways. The result was a deliberate state-led industrialisation policy to enable Japan to quickly catch up. The Bank of Japan, founded in 1882,[210] used taxes to fund model steel and textile factories. Education was expanded and Japanese students were sent to study in the West.

Modern industry first appeared in textiles, including cotton and especially silk, which was based in home workshops in rural areas.[211]

United States

Slater's Mill in Pawtucket, Rhode Island

During the late 18th and early 19th centuries when the UK and parts of Western Europe began to industrialise, the US was primarily an agricultural and natural resource producing and processing economy.[212] The building of roads and canals, the introduction of steamboats and the building of railroads were important for handling agricultural and natural resource products in the large and sparsely populated country of the period.[213][214]

Important American technological contributions during the period of the Industrial Revolution were the cotton gin and the development of a system for making interchangeable parts, which was aided by the development of the milling machine in the United States. The development of machine tools and the system of interchangeable parts was the basis for the rise of the US as the world's leading industrial nation in the late 19th century.

Oliver Evans invented an automated flour mill in the mid-1780s that used control mechanisms and conveyors so that no labour was needed from the time grain was loaded into the elevator buckets until the flour was discharged into a wagon. This is considered to be the first modern materials handling system, an important advance in the progress toward mass production.[43]

The United States originally used horse-powered machinery for small-scale applications such as grain milling, but eventually switched to water power after textile factories began being built in the 1790s. As a result, industrialisation was concentrated in New England and the Northeastern United States, which has fast-moving rivers. The newer water-powered production lines proved more economical than horse-drawn production. In the late 19th century steam-powered manufacturing overtook water-powered manufacturing, allowing the industry to spread to the Midwest.

Thomas Somers and the Cabot Brothers founded the Beverly Cotton Manufactory in 1787, the first cotton mill in America, the largest cotton mill of its era,[215] and a significant milestone in the research and development of cotton mills in the future. This mill was designed to use horsepower, but the operators quickly learned that the horse-drawn platform was economically unstable, and had economic losses for years. Despite the losses, the Manufactory served as a playground of innovation, both in turning a large amount of cotton, but also developing the water-powered milling structure used in Slater's Mill.[216]

In 1793, Samuel Slater (1768–1835) founded the Slater Mill at Pawtucket, Rhode Island. He had learned of the new textile technologies as a boy apprentice in Derbyshire, England, and defied laws against the emigration of skilled workers by leaving for New York in 1789, hoping to make money with his knowledge. After founding Slater's Mill, he went on to own 13 textile mills.[217] Daniel Day established a wool carding mill in the Blackstone Valley at Uxbridge, Massachusetts in 1809, the third woollen mill established in the US (The first was in Hartford, Connecticut, and the second at Watertown, Massachusetts.). The John H. Chafee Blackstone River Valley National Heritage Corridor retraces the history of "America's Hardest-Working River', the Blackstone. The Blackstone River and its tributaries, which cover more than 70 kilometres (45 mi) from Worcester, Massachusetts to Providence, Rhode Island, was the birthplace of America's Industrial Revolution. At its peak over 1,100 mills operated in this valley, including Slater's Mill, and with it the earliest beginnings of America's industrial and technological development.

Merchant Francis Cabot Lowell from Newburyport, Massachusetts, memorised the design of textile machines on his tour of British factories in 1810. Realising that the War of 1812 had ruined his import business but that demand for domestic finished cloth was emerging in America, on his return to the United States, he set up the Boston Manufacturing Company. Lowell and his partners built America's second cotton-to-cloth textile mill at Waltham, Massachusetts, second to the Beverly Cotton Manufactory. After his death in 1817, his associates built America's first planned factory town, which they named after him. This enterprise was capitalised in a public stock offering, one of the first uses of it in the United States. Lowell, Massachusetts, using nine kilometres (5+12 miles) of canals and 7,500 kilowatts (10,000 horsepower) delivered by the Merrimack River, is considered by some as a major contributor to the success of the American Industrial Revolution. The short-lived utopia-like Waltham-Lowell system was formed, as a direct response to the poor working conditions in Britain. However, by 1850, especially following the Great Famine of Ireland, the system had been replaced by poor immigrant labour.

A major U.S. contribution to industrialisation was the development of techniques to make interchangeable parts from metal. Precision metal machining techniques were developed by the U.S. Department of War to make interchangeable parts for small firearms. The development work took place at the Federal Arsenals at Springfield Armory and Harpers Ferry Armory. Techniques for precision machining using machine tools included using fixtures to hold the parts in the proper position, jigs to guide the cutting tools and precision blocks and gauges to measure the accuracy. The milling machine, a fundamental machine tool, is believed to have been invented by Eli Whitney, who was a government contractor who built firearms as part of this program. Another important invention was the Blanchard lathe, invented by Thomas Blanchard. The Blanchard lathe, or pattern tracing lathe, was actually a shaper that could produce copies of wooden gun stocks. The use of machinery and the techniques for producing standardised and interchangeable parts became known as the American system of manufacturing.[43]

Precision manufacturing techniques made it possible to build machines that mechanised the shoe industry[218] and the watch industry. The industrialisation of the watch industry started in 1854 also in Waltham, Massachusetts, at the Waltham Watch Company, with the development of machine tools, gauges and assembling methods adapted to the micro precision required for watches.

Second Industrial Revolution

Sächsische Maschinenfabrik in Chemnitz, Germany in 1868

Steel is often cited as the first of several new areas for industrial mass-production, which are said to characterise a "Second Industrial Revolution", beginning around 1850, although a method for mass manufacture of steel was not invented until the 1860s, when Sir Henry Bessemer invented a new furnace which could convert molten pig iron into steel in large quantities. However, it only became widely available in the 1870s after the process was modified to produce more uniform quality.[49][219] Bessemer steel was being displaced by the open hearth furnace near the end of the 19th century.

Sir Henry Bessemer's Bessemer converter, the most important technique for making steel from the 1850s to the 1950s, located in Sheffield

This Second Industrial Revolution gradually grew to include chemicals, mainly the chemical industries, petroleum (refining and distribution), and, in the 20th century, the automotive industry, and was marked by a transition of technological leadership from Britain to the United States and Germany.

The increasing availability of economical petroleum products also reduced the importance of coal and further widened the potential for industrialisation.

A new revolution began with electricity and electrification in the electrical industries. The introduction of hydroelectric power generation in the Alps enabled the rapid industrialisation of coal-deprived northern Italy, beginning in the 1890s.

By the 1890s, industrialisation in these areas had created the first giant industrial corporations with burgeoning global interests, as companies like U.S. Steel, General Electric, Standard Oil and Bayer AG joined the railroad and ship companies on the world's stock markets.

New Industrialism

The New Industrialist movement advocates for increasing domestic manufacturing while reducing emphasis on a financial-based economy that relies on real estate and trading speculative assets. New Industrialism has been described as "supply-side progressivism" or embracing the idea of "Building More Stuff".[220] New Industrialism developed after the China Shock that resulted in lost manufacturing jobs in the U.S. after China joined the World Trade Organization in 2001. The movement strengthened after the reduction of manufacturing jobs during the Great Recession and when the U.S. was not able to manufacture enough tests or facemasks during the COVID-19 pandemic.[221] New Industrialism calls for building enough housing to satisfy demand in order to reduce the profit in land speculation, to invest in infrastructure, and to develop advanced technology to manufacture green energy for the world.[221] New Industrialists believe that the United States is not building enough productive capital and should invest more into economic growth.[222]

Causes

Regional GDP per capita changed very little for most of human history before the Industrial Revolution.

The causes of the Industrial Revolution were complicated and remain a topic for debate. Geographic factors include Britain's vast mineral resources. In addition to metal ores, Britain had the highest quality coal reserves known at the time, as well as abundant water power, highly productive agriculture, and numerous seaports and navigable waterways.[63]

Some historians believe the Industrial Revolution was an outgrowth of social and institutional changes brought by the end of feudalism in Britain after the English Civil War in the 17th century, although feudalism began to break down after the Black Death of the mid 14th century, followed by other epidemics, until the population reached a low in the 14th century. This created labour shortages and led to falling food prices and a peak in real wages around 1500, after which population growth began reducing wages. After 1540, increasing precious metals supply from the Americas caused coinage debasement (inflation), which caused land rents (often long-term leases that transferred to heirs on death) to fall in real terms.[223]

The Enclosure movement and the British Agricultural Revolution made food production more efficient and less labour-intensive, forcing the farmers who could no longer be self-sufficient in agriculture into cottage industry, for example weaving, and in the longer term into the cities and the newly developed factories.[224] The colonial expansion of the 17th century with the accompanying development of international trade, creation of financial markets and accumulation of capital are also cited as factors, as is the scientific revolution of the 17th century.[225] A change in marrying patterns to getting married later made people able to accumulate more human capital during their youth, thereby encouraging economic development.[226]

Until the 1980s, it was universally believed by academic historians that technological innovation was the heart of the Industrial Revolution and the key enabling technology was the invention and improvement of the steam engine.[227] Marketing professor Ronald Fullerton suggested that innovative marketing techniques, business practices, and competition also influenced changes in the manufacturing industry.[228]

Lewis Mumford has proposed that the Industrial Revolution had its origins in the Early Middle Ages, much earlier than most estimates.[229] He explains that the model for standardised mass production was the printing press and that "the archetypal model for the industrial era was the clock". He also cites the monastic emphasis on order and time-keeping, as well as the fact that medieval cities had at their centre a church with bell ringing at regular intervals as being necessary precursors to a greater synchronisation necessary for later, more physical, manifestations such as the steam engine.

The presence of a large domestic market should also be considered an important driver of the Industrial Revolution, particularly explaining why it occurred in Britain. In other nations, such as France, markets were split up by local regions, which often imposed tolls and tariffs on goods traded among them.[230] Internal tariffs were abolished by Henry VIII of England, they survived in Russia until 1753, 1789 in France and 1839 in Spain.

Governments' grant of limited monopolies to inventors under a developing patent system (the Statute of Monopolies in 1623) is considered an influential factor. The effects of patents, both good and ill, on the development of industrialisation are clearly illustrated in the history of the steam engine, the key enabling technology. In return for publicly revealing the workings of an invention the patent system rewarded inventors such as James Watt by allowing them to monopolise the production of the first steam engines, thereby rewarding inventors and increasing the pace of technological development. However, monopolies bring with them their own inefficiencies which may counterbalance, or even overbalance, the beneficial effects of publicising ingenuity and rewarding inventors.[231] Watt's monopoly prevented other inventors, such as Richard Trevithick, William Murdoch, or Jonathan Hornblower, whom Boulton and Watt sued, from introducing improved steam engines, thereby retarding the spread of steam power.[232][233]

Causes in Europe

Interior of the London Coal Exchange, c. 1808. European 17th-century colonial expansion, international trade, and creation of financial markets produced a new legal and financial environment, one which supported and enabled 18th-century industrial growth.

One question of active interest to historians is why the Industrial Revolution occurred in Europe and not in other parts of the world in the 18th century, particularly China, India, and the Middle East (which pioneered in shipbuilding, textile production, water mills, and much more in the period between 750 and 1100[234]), or at other times like in Classical Antiquity[235] or the Middle Ages.[236] A recent account argued that Europeans have been characterized for thousands of years by a freedom-loving culture originating from the aristocratic societies of early Indo-European invaders.[237] Many historians, however, have challenged this explanation as being not only Eurocentric, but also ignoring historical context. In fact, before the Industrial Revolution, "there existed something of a global economic parity between the most advanced regions in the world economy."[238] These historians have suggested a number of other factors, including education, technological changes[239] (see Scientific Revolution in Europe), "modern" government, "modern" work attitudes, ecology, and culture.[240]

China was the world's most technologically advanced country for many centuries; however, China stagnated economically and technologically and was surpassed by Western Europe before the Age of Discovery, by which time China banned imports and denied entry to foreigners. China was also a totalitarian society. It also taxed transported goods heavily.[241][242] Modern estimates of per capita income in Western Europe in the late 18th century are of roughly 1,500 dollars in purchasing power parity (and Britain had a per capita income of nearly 2,000 dollars[243]) whereas China, by comparison, had only 450 dollars. India was essentially feudal, politically fragmented and not as economically advanced as Western Europe.[244]

Historians such as David Landes and sociologists Max Weber and Rodney Stark credit the different belief systems in Asia and Europe with dictating where the revolution occurred.[245][246] The religion and beliefs of Europe were largely products of Judaeo-Christianity and Greek thought. Conversely, Chinese society was founded on men like Confucius, Mencius, Han Feizi (Legalism), Lao Tzu (Taoism), and Buddha (Buddhism), resulting in very different worldviews.[247] Other factors include the considerable distance of China's coal deposits, though large, from its cities as well as the then unnavigable Yellow River that connects these deposits to the sea.[248]

In contrast to China, India was split up into many competing kingdoms after the decline of the Mughal Empire, with the major ones in its aftermath including the Marathas, Sikhs, Bengal Subah, and Kingdom of Mysore. In addition, the economy was highly dependent on two sectors—agriculture of subsistence and cotton, and there appears to have been little technical innovation. It is believed that the vast amounts of wealth were largely stored away in palace treasuries by monarchs prior to the British take over.[citation needed]

Economic historian Joel Mokyr argued that political fragmentation, the presence of a large number of European states, made it possible for heterodox ideas to thrive, as entrepreneurs, innovators, ideologues and heretics could easily flee to a neighboring state in the event that the one state would try to suppress their ideas and activities. This is what set Europe apart from the technologically advanced, large unitary empires such as China and India[contradictory] by providing "an insurance against economic and technological stagnation".[249] China had both a printing press and movable type, and India had similar levels of scientific and technological achievement as Europe in 1700, yet the Industrial Revolution would occur in Europe, not China or India. In Europe, political fragmentation was coupled with an "integrated market for ideas" where Europe's intellectuals used the lingua franca of Latin, had a shared intellectual basis in Europe's classical heritage and the pan-European institution of the Republic of Letters.[250] Political institutions[251] could contribute to the relation between democratization and economic growth during Great Divergence.[252]

In addition, Europe's monarchs desperately needed revenue, pushing them into alliances with their merchant classes. Small groups of merchants were granted monopolies and tax-collecting responsibilities in exchange for payments to the state. Located in a region "at the hub of the largest and most varied network of exchange in history",[253] Europe advanced as the leader of the Industrial Revolution. In the Americas, Europeans found a windfall of silver, timber, fish, and maize, leading historian Peter Stearns to conclude that "Europe's Industrial Revolution stemmed in great part from Europe's ability to draw disproportionately on world resources."[254]

Modern capitalism originated in the Italian city-states around the end of the first millennium. The city-states were prosperous cities that were independent from feudal lords. They were largely republics whose governments were typically composed of merchants, manufacturers, members of guilds, bankers and financiers. The Italian city-states built a network of branch banks in leading western European cities and introduced double entry bookkeeping. Italian commerce was supported by schools that taught numeracy in financial calculations through abacus schools.[246]

Causes in Britain

As the Industrial Revolution developed, British manufacturing output surged ahead of other economies
Iron and Coal, a mid-19th century portrait by William Bell Scott

Great Britain provided the legal and cultural foundations that enabled entrepreneurs to pioneer the Industrial Revolution.[255] Key factors fostering this environment were:

"An unprecedented explosion of new ideas, and new technological inventions, transformed our use of energy, creating an increasingly industrial and urbanised country. Roads, railways and canals were built. Great cities appeared. Scores of factories and mills sprang up. Our landscape would never be the same again. It was a revolution that transformed not only the country, but the world itself."

– British historian Jeremy Black on the BBC's Why the Industrial Revolution Happened Here.[130]

There were two main values that drove the Industrial Revolution in Britain. These values were self-interest and an entrepreneurial spirit. Because of these interests, many industrial advances were made that resulted in a huge increase in personal wealth and a consumer revolution.[130] These advancements also greatly benefitted British society as a whole. Countries around the world started to recognise the changes and advancements in Britain and use them as an example to begin their own Industrial Revolutions.[10]

A debate sparked by Trinidadian politician and historian Eric Williams in his work Capitalism and Slavery (1944) concerned the role of slavery in financing the Industrial Revolution. Williams argued that European capital amassed from slavery was vital in the early years of the revolution, contending that the rise of industrial capitalism was the driving force behind abolitionism instead of humanitarian motivations. These arguments led to significant historiographical debates among historians, with American historian Seymour Drescher critiquing Williams' arguments in Econocide (1977).[256]

Instead, the greater liberalisation of trade from a large merchant base may have allowed Britain to produce and use emerging scientific and technological developments more effectively than countries with stronger monarchies, particularly China and Russia. Britain emerged from the Napoleonic Wars as the only European nation not ravaged by financial plunder and economic collapse, and having the only merchant fleet of any useful size (European merchant fleets were destroyed during the war by the Royal Navy[a]). Britain's extensive exporting cottage industries also ensured markets were already available for many early forms of manufactured goods. The conflict resulted in most British warfare being conducted overseas, reducing the devastating effects of territorial conquest that affected much of Europe. This was further aided by Britain's geographical position—an island separated from the rest of mainland Europe.

William and Mary Presenting the Cap of Liberty to Europe a 1716 illustration by James Thornhill, depicting William III and Mary II, who had taken the throne after the Glorious Revolution and signed the English Bill of Rights of 1689. William tramples on arbitrary power and hands the red cap of liberty to Europe where, unlike Britain, absolute monarchy stayed the normal form of power execution. Below William is the French king Louis XIV.[257]

Another theory is that Britain was able to succeed in the Industrial Revolution due to the availability of key resources it possessed. It had a dense population for its small geographical size. Enclosure of common land and the related agricultural revolution made a supply of this labour readily available. There was also a local coincidence of natural resources in the North of England, the English Midlands, South Wales and the Scottish Lowlands. Local supplies of coal, iron, lead, copper, tin, limestone and water power resulted in excellent conditions for the development and expansion of industry. Also, the damp, mild weather conditions of the North West of England provided ideal conditions for the spinning of cotton, providing a natural starting point for the birth of the textiles industry.

The stable political situation in Britain from around 1689 following the Glorious Revolution, and British society's greater receptiveness to change (compared with other European countries) can also be said to be factors favouring the Industrial Revolution. Peasant resistance to industrialisation was largely eliminated by the Enclosure movement, and the landed upper classes developed commercial interests that made them pioneers in removing obstacles to the growth of capitalism.[258] (This point is also made in Hilaire Belloc's The Servile State.)

The French philosopher Voltaire wrote about capitalism and religious tolerance in his book on English society, Letters on the English (1733), noting why England at that time was more prosperous in comparison to the country's less religiously tolerant European neighbours. "Take a view of the Royal Exchange in London, a place more venerable than many courts of justice, where the representatives of all nations meet for the benefit of mankind. There the Jew, the Mahometan [Muslim], and the Christian transact together, as though they all professed the same religion, and give the name of infidel to none but bankrupts. There the Presbyterian confides in the Anabaptist, and the Churchman depends on the Quaker's word. If one religion only were allowed in England, the Government would very possibly become arbitrary; if there were but two, the people would cut one another's throats; but as there are such a multitude, they all live happy and in peace."[259]

Britain's population grew 280% from 1550 to 1820, while the rest of Western Europe grew 50–80%. Seventy percent of European urbanisation happened in Britain from 1750 to 1800. By 1800, only the Netherlands was more urbanised than Britain. This was only possible because coal, coke, imported cotton, brick and slate had replaced wood, charcoal, flax, peat and thatch. The latter compete with land grown to feed people while mined materials do not. Yet more land would be freed when chemical fertilisers replaced manure and horse's work was mechanised. A workhorse needs 1.2 to 2.0 ha (3 to 5 acres) for fodder while even early steam engines produced four times more mechanical energy.

In 1700, five-sixths of the coal mined worldwide was in Britain, while the Netherlands had none; so despite having Europe's best transport, lowest taxes, and most urbanised, well-paid, and literate population, it failed to industrialise. In the 18th century, it was the only European country whose cities and population shrank. Without coal, Britain would have run out of suitable river sites for mills by the 1830s.[260] Based on science and experimentation from the continent, the steam engine was developed specifically for pumping water out of mines, many of which in Britain had been mined to below the water table. Although extremely inefficient they were economical because they used unsaleable coal.[261] Iron rails were developed to transport coal, which was a major economic sector in Britain.

Economic historian Robert Allen has argued that high wages, cheap capital and very cheap energy in Britain made it the ideal place for the industrial revolution to occur.[262] These factors made it vastly more profitable to invest in research and development, and to put technology to use in Britain than other societies.[262] However, two 2018 studies in The Economic History Review showed that wages were not particularly high in the British spinning sector or the construction sector, casting doubt on Allen's explanation.[263][264] A 2022 study in the Journal of Political Economy by Morgan Kelly, Joel Mokyr, and Cormac O Grada found that industrialization happened in areas with low wages and high mechanical skills, whereas literacy, banks and proximity to coal had little explanatory power.[265]

Transfer of knowledge

A Philosopher Lecturing on the Orrery a c. 1766 illustration by Joseph Wright of Derby depicting informal philosophical societies spreading scientific advances

Knowledge of innovation was spread by several means. Workers who were trained in the technique might move to another employer or might be poached. A common method was for someone to make a study tour, gathering information where he could. During the whole of the Industrial Revolution and for the century before, all European countries and America engaged in study-touring; some nations, like Sweden and France, even trained civil servants or technicians to undertake it as a matter of state policy. In other countries, notably Britain and America, this practice was carried out by individual manufacturers eager to improve their own methods. Study tours were common then, as now, as was the keeping of travel diaries. Records made by industrialists and technicians of the period are an incomparable source of information about their methods.

Another means for the spread of innovation was by the network of informal philosophical societies, like the Lunar Society of Birmingham, in which members met to discuss natural philosophy and often its application to manufacturing. The Lunar Society flourished from 1765 to 1809, and it has been said of them, "They were, if you like, the revolutionary committee of that most far reaching of all the eighteenth-century revolutions, the Industrial Revolution".[266] Other such societies published volumes of proceedings and transactions. For example, the London-based Royal Society of Arts published an illustrated volume of new inventions, as well as papers about them in its annual Transactions.

There were publications describing technology. Encyclopaedias such as Harris's Lexicon Technicum (1704) and Abraham Rees's Cyclopaedia (1802–1819) contain much of value. Cyclopaedia contains an enormous amount of information about the science and technology of the first half of the Industrial Revolution, very well illustrated by fine engravings. Foreign printed sources such as the Descriptions des Arts et Métiers and Diderot's Encyclopédie explained foreign methods with fine engraved plates.

Periodical publications about manufacturing and technology began to appear in the last decade of the 18th century, and many regularly included notice of the latest patents. Foreign periodicals, such as the Annales des Mines, published accounts of travels made by French engineers who observed British methods on study tours.

Protestant work ethic

Another theory is that the British advance was due to the presence of an entrepreneurial class which believed in progress, technology and hard work.[267] The existence of this class is often linked to the Protestant work ethic (see Max Weber) and the particular status of the Baptists and the dissenting Protestant sects, such as the Quakers and Presbyterians that had flourished with the English Civil War. Reinforcement of confidence in the rule of law, which followed establishment of the prototype of constitutional monarchy in Britain in the Glorious Revolution of 1688, and the emergence of a stable financial market there based on the management of the national debt by the Bank of England, contributed to the capacity for, and interest in, private financial investment in industrial ventures.[268]

Dissenters found themselves barred or discouraged from almost all public offices, as well as education at England's only two universities at the time (although dissenters were still free to study at Scotland's four universities). When the restoration of the monarchy took place and membership in the official Anglican Church became mandatory due to the Test Act, they thereupon became active in banking, manufacturing and education. The Unitarians, in particular, were very involved in education, by running Dissenting Academies, where, in contrast to the universities of Oxford and Cambridge and schools such as Eton and Harrow, much attention was given to mathematics and the sciences – areas of scholarship vital to the development of manufacturing technologies.

Historians sometimes consider this social factor to be extremely important, along with the nature of the national economies involved. While members of these sects were excluded from certain circles of the government, they were considered fellow Protestants, to a limited extent, by many in the middle class, such as traditional financiers or other businessmen. Given this relative tolerance and the supply of capital, the natural outlet for the more enterprising members of these sects would be to seek new opportunities in the technologies created in the wake of the scientific revolution of the 17th century.

Criticisms

The industrial revolution has been criticised for causing ecological collapse, mental illness, pollution and detrimental social systems.[269][270] It has also been criticised for valuing profits and corporate growth over life and wellbeing. Multiple movements have arisen which reject aspects of the industrial revolution, such as the Amish or primitivists.[271]

Individualism humanism and harsh conditions

Humanists and individualists criticise the Industrial revolution for mistreating women and children and turning men into work machines that lacked autonomy.[272] Critics of the Industrial revolution promoted a more interventionist state and formed new organisations to promote human rights.[273]

Primitivism

A primitive lifestyle living outside the Industrial Revolution

Primitivism argues that the Industrial Revolution have created an un-natural frame of society and the world in which humans need to adapt to an un-natural urban landscape in which humans are perpetual cogs without personal autonomy.[274]

Certain primitivists argue for a return to pre-industrial society,[275] while others argue that technology such as modern medicine, and agriculture[276] are all positive for humanity assuming they are controlled by and serve humanity and have no effect on the natural environment.

Pollution and ecological collapse

The Industrial Revolution has been criticised for leading to immense ecological and habitat destruction. It has led to immense decrease in the biodiversity of life on Earth. The Industrial revolution has been said to be inherently unsustainable and will lead to eventual collapse of society, mass hunger, starvation, and resource scarcity.[277]

The Anthropocene

The Anthropocene is a proposed epoch or mass extinction coming from humanity (anthropo- is the Greek root for humanity). Since the start of the Industrial revolution humanity has permanently changed the Earth, such as immense decrease in biodiversity, and mass extinction caused by the Industrial revolution. The effects include permanent changes to the Earth's atmosphere and soil, forests, the mass destruction of the Industrial revolution has led to catastrophic impacts on the Earth. Most organisms are unable to adapt leading to mass extinction with the remaining undergoing evolutionary rescue, as a result of the Industrial revolution.

Permanent changes in the distribution of organisms from human influence will become identifiable in the geologic record. Researchers have documented the movement of many species into regions formerly too cold for them, often at rates faster than initially expected.[278] This has occurred in part as a result of changing climate, but also in response to farming and fishing, and to the accidental introduction of non-native species to new areas through global travel.[279] The ecosystem of the entire Black Sea may have changed during the last 2000 years as a result of nutrient and silica input from eroding deforested lands along the Danube River.[280]

Opposition from Romanticism

During the Industrial Revolution, an intellectual and artistic hostility towards the new industrialisation developed, associated with the Romantic movement. Romanticism revered the traditionalism of rural life and recoiled against the upheavals caused by industrialisation, urbanisation and the wretchedness of the working classes.[281] Its major exponents in English included the artist and poet William Blake and poets William Wordsworth, Samuel Taylor Coleridge, John Keats, Lord Byron and Percy Bysshe Shelley.

The movement stressed the importance of "nature" in art and language, in contrast to "monstrous" machines and factories; the "Dark satanic mills" of Blake's poem "And did those feet in ancient time".[282] Mary Shelley's Frankenstein reflected concerns that scientific progress might be two-edged. French Romanticism likewise was highly critical of industry.[283]

See also

Footnotes

  1. ^ The Royal Navy itself may have contributed to Britain's industrial growth. Among the first complex industrial manufacturing processes to arise in Britain were those that produced material for British warships. For instance, the average warship of the period used roughly 1000 pulley fittings. With a fleet as large as the Royal Navy, and with these fittings needing to be replaced every four to five years, this created a great demand which encouraged industrial expansion. The industrial manufacture of rope can also be seen as a similar factor.

References

  1. ^ "Industrial History of European Countries". European Route of Industrial Heritage. Council of Europe. Archived from the original on 23 June 2021. Retrieved 2 June 2021.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. ISBN 978-0-521-09418-4.
  3. ^ Horn, Jeff; Rosenband, Leonard; Smith, Merritt (2010). Reconceptualizing the Industrial Revolution. Cambridge MA, London: MIT Press. ISBN 978-0-262-51562-7.
  4. ^ E. Anthony Wrigley, "Reconsidering the Industrial Revolution: England and Wales". Journal of Interdisciplinary History 49.01 (2018): 9–42.
  5. ^ Reisman, George (1998). Capitalism: A complete understanding of the nature and value of human economic life. Jameson Books. p. 127. ISBN 978-0-915463-73-2.
  6. ^ Tong, Junie T. (2016). Finance and Society in 21st Century China: Chinese Culture Versus Western Markets. CRC Press. p. 151. ISBN 978-1-317-13522-7.
  7. ^ Esposito, John L., ed. (2004). The Islamic World: Past and Present. Vol. 1: Abba – Hist. Oxford University Press. p. 174. ISBN 978-0-19-516520-3. Archived from the original on 16 January 2023. Retrieved 30 May 2019.
  8. ^ Ray, Indrajit (2011). Bengal Industries and the British Industrial Revolution (1757–1857). Routledge. pp. 7–10. ISBN 978-1-136-82552-1. Archived from the original on 16 January 2023. Retrieved 30 May 2019.
  9. ^ a b Landes, David (1999). The Wealth and Poverty of Nations. W.W. Norton & Company. ISBN 978-0-393-31888-3.
  10. ^ a b Kiely, Ray (November 2011). "Industrialization and Development: A Comparative Analysis". UGL Press Limited: 25–26.
  11. ^ North, Douglass C.; Thomas, Robert Paul (May 1977). "The First Economic Revolution". The Economic History Review. 30 (2): 229–230. doi:10.2307/2595144. ISSN 0013-0117. JSTOR 2595144.
  12. ^ a b Lucas, Robert E. Jr. (2002). Lectures on Economic Growth. Cambridge: Harvard University Press. pp. 109–110. ISBN 978-0-674-01601-9.
  13. ^ a b Feinstein, Charles (September 1998). "Pessimism Perpetuated: Real Wages and the Standard of Living in Britain during and after the Industrial Revolution". Journal of Economic History. 58 (3): 625–658. doi:10.1017/s0022050700021100. S2CID 54816980.
  14. ^ a b Szreter & Mooney; Mooney (February 1998). "Urbanization, Mortality, and the Standard of Living Debate: New Estimates of the Expectation of Life at Birth in Nineteenth-Century British Cities". The Economic History Review. 51 (1): 104. doi:10.1111/1468-0289.00084. hdl:10.1111/1468-0289.00084.
  15. ^ Robert Lucas Jr. (2003). "The Industrial Revolution". Federal Reserve Bank of Minneapolis. Archived from the original on 27 November 2007. Retrieved 14 November 2007. it is fairly clear that up to 1800 or maybe 1750, no society had experienced sustained growth in per capita income. (Eighteenth century population growth also averaged one-third of 1 percent, the same as production growth.) That is, up to about two centuries ago, per capita incomes in all societies were stagnated at around $400 to $800 per year.
  16. ^ Lucas, Robert (2003). "The Industrial Revolution Past and Future". Archived from the original on 27 November 2007. [consider] annual growth rates of 2.4 percent for the first 60 years of the 20th century, of 1 percent for the entire 19th century, of one-third of 1 percent for the 18th century
  17. ^ McCloskey, Deidre (2004). "Review of The Cambridge Economic History of Modern Britain (edited by Roderick Floud and Paul Johnson), Times Higher Education Supplement, 15 January 2004". Archived from the original on 21 September 2019. Retrieved 15 August 2010.
  18. ^ a b Eric Hobsbawm, The Age of Revolution: Europe 1789–1848, Weidenfeld & Nicolson Ltd., p. 27 ISBN 0-349-10484-0
  19. ^ a b Joseph E Inikori. Africans and the Industrial Revolution in England, Cambridge University Press. ISBN 0-521-01079-9 Google Books[permanent dead link]
  20. ^ Berg, Maxine; Hudson, Pat (1992). "Rehabilitating the Industrial Revolution" (PDF). The Economic History Review. 45 (1): 24–50. doi:10.2307/2598327. JSTOR 2598327. Archived (PDF) from the original on 14 April 2021. Retrieved 9 December 2019.
  21. ^ Rehabilitating the Industrial Revolution Archived 9 November 2006 at the Wayback Machine by Julie Lorenzen, Central Michigan University. Retrieved November 2006.
  22. ^ Hall, Rachel (5 April 2024). "Industrial Revolution began in 17th not 18th century, say academics". The Guardian. Retrieved 15 April 2024.
  23. ^ Simpson, Craig (5 April 2024). "Industrial Revolution started in 17th century, historians suggest". The Telegraph. ISSN 0307-1235. Archived from the original on 5 April 2024. Retrieved 5 April 2024.
  24. ^ a b Gupta, Bishnupriya. "Cotton Textiles and the Great Divergence: Lancashire, India and Shifting Competitive Advantage, 1600–1850" (PDF). International Institute of Social History. Department of Economics, University of Warwick. Archived (PDF) from the original on 11 October 2021. Retrieved 5 December 2016.
  25. ^ Taylor, George Rogers (1951). The Transportation Revolution, 1815–1860. M.E. Sharpe. ISBN 978-0-87332-101-3.
  26. ^ a b c d e f g h i j k l Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN 16011753, archived from the original on 3 July 2023, retrieved 16 October 2015. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).
  27. ^ a b c d Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia. p. 18."There exist everywhere roads suitable for hauling".Robert Fulton on roads in France
  28. ^ Crouzet, François (1996). "France". In Teich, Mikuláš; Porter, Roy (eds.). The industrial revolution in national context: Europe and the USA. Cambridge University Press. p. 45. ISBN 978-0-521-40940-7. LCCN 95025377.
  29. ^ Blanqui, Jérôme-Adolphe, Histoire de l'économie politique en Europe depuis les anciens jusqu'à nos jours, 1837, ISBN 978-0-543-94762-8
  30. ^ Hudson, Pat (1992). The Industrial Revolution. London: Edward Arnold. p. 11. ISBN 978-0-7131-6531-9.
  31. ^ Ogilvie, Sheilagh (2008). "Protoindustrialization". In Durlauf, Steven; Blume, Lawrence (eds.). The New Palgrave Dictionary of Economics. Vol. 6. Palgrave Macmillan. pp. 711–714. ISBN 978-0-230-22642-5.
  32. ^ Elvin, Mark (1973), The Pattern of the Chinese Past, Stanford University Press, pp. 7, 113–199, ISBN 978-0-8047-0876-0
  33. ^ Broadberry, Stephen N.; Guan, Hanhui; Li, David D. (1 April 2017). "China, Europe and the Great Divergence: A Study in Historical National Accounting, 980–1850". CEPR Discussion Paper. SSRN 2957511.
  34. ^ Nicholas Crafts, "The first industrial revolution: Resolving the slow growth/rapid industrialization paradox." Journal of the European Economic Association 3.2–3 (2005): 525–534.
  35. ^ Christine Rider, ed. Encyclopedia of the Age of the Industrial Revolution 1700–1920, (2007) pp. xiii–xxxv.
  36. ^ Phyllis Deane "The Industrial Revolution in Great Britain" in Carlo M. Cipolla ed., The Fontana Economic History of Europe: The Emergence of industrial societies Vol 4 part 2 (1973) pp 161–174.
  37. ^ Bond, Eric; Gingerich, Sheena; Archer-Antonsen, Oliver; Purcell, Liam; Macklem, Elizabeth (17 February 2003). "The Industrial Revolution – Innovations". Industrialrevolution.sea.ca. Archived from the original on 6 September 2011. Retrieved 30 January 2011.
  38. ^ Ayres 1989, p. 17
  39. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. p. 218. ISBN 978-0-521-09418-4.
  40. ^ Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam, Industry and Invention. University of Chicago Press. p. 149. ISBN 978-0-226-72634-2.
  41. ^ a b c d e f g h i j k Tylecote, R. F. (1992). A History of Metallurgy, Second Edition. London: Maney Publishing, for the Institute of Materials. ISBN 978-0-901462-88-6.
  42. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. p. 91. ISBN 978-0-521-09418-4.
  43. ^ a b c d e f g Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN 978-0-8018-2975-8, LCCN 83016269, OCLC 1104810110
  44. ^ a b c d e f g h i j k l Beckert, Sven (2014). Empire of Cotton: A Global History. US: Vintage Books Division Penguin Random House. ISBN 978-0-375-71396-5.
  45. ^ Hopkins, Eric (2000). Industrialization and Society. London: Routledge. p. 2.
  46. ^ Hills, Richard L. "Cotchett, Thomas". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/75296. (Subscription or UK public library membership required.)
  47. ^ Fairclough, K. R. "Sorocold, George". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/47971. (Subscription or UK public library membership required.)
  48. ^ a b c Ayres, Robert (1989). Technological Transformations and Long Waves (PDF). pp. 16–17. Archived from the original (PDF) on 1 March 2012. Retrieved 20 December 2012.
  49. ^ a b c d e f g h i j McNeil 1990
  50. ^ R. Ray Gehani (1998). "Management of Technology and Operations". p. 63. John Wiley and Sons, 1998
  51. ^ Ayres 1989, p. 1
  52. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. p. 63. ISBN 978-0-521-09418-4.
  53. ^ Ayres 1989, p. 18
  54. ^ Lakwete, Angela (2005). Inventing the Cotton Gin: Machine and Myth in Antebellum America. Johns Hopkins University Press. ISBN 978-0-8018-8272-2.
  55. ^ G.E. Mingay (1986). "The Transformation of Britain, 1830–1939". p. 25. Routledge, 1986
  56. ^ a b "Ironbridge Gorge". UNESCO World Heritage Centre. UNESCO. Retrieved 20 December 2017.
  57. ^ Gordon, Robert B (1996). American Iron 1607–1900. Baltimore and London: Johns Hopkins University Press. p. 156. ISBN 978-0-8018-6816-0.
  58. ^ Adams, Ryan (27 July 2012). "Danny Boyle's intro on Olympics programme". Awards Daily. Archived from the original on 6 February 2013. Retrieved 20 December 2017.
  59. ^ Tylecote, R. F. (1976). A History of Metallurgy. Metals Society. ISBN 978-0-904357-06-6. Archived from the original on 4 April 2023. Retrieved 28 November 2022.
  60. ^ a b c Temple, Robert; Needham, Joseph (1986). The Genius of China: 3000 years of science, discovery and invention. New York: Simon and Schuster. pp. 65. ISBN 978-0-671-62028-8. Based on the works of Joseph Needham
  61. ^ Author Simon Winchester dates the start of the Industrial Revolution to 4 May 1776, the day that John Wilkinson presented James Watt with his precision-made cylinder. (19 August 2018) Fareed Zakaria Archived 14 April 2021 at the Wayback Machine. CNN.com
  62. ^ Rosenberg, Nathan (1982). Inside the Black Box: Technology and Economics. Cambridge; New York: Cambridge University Press. p. 85. ISBN 978-0-521-27367-1.
  63. ^ a b Landes, David. S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge; New York: Press Syndicate of the University of Cambridge. ISBN 978-0-521-09418-4.
  64. ^ Journal of the Iron and Steel Institute. 1879. p. 20.
  65. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. p. 92. ISBN 978-0-521-09418-4.
  66. ^ Ayres 1989, p. 21
  67. ^ Rosenberg, Nathan (1982). Inside the Black Box: Technology and Economics. Cambridge; New York: Cambridge University Press. p. 90. ISBN 978-0-521-27367-1.
  68. ^ "Steel Production | History of Western Civilization II". courses.lumenlearning.com. Archived from the original on 11 May 2022. Retrieved 1 May 2022.
  69. ^ "Iron Making | Boundless World History". courses.lumenlearning.com. Archived from the original on 13 April 2021. Retrieved 9 January 2020.
  70. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. p. 104. ISBN 978-0-521-09418-4.
  71. ^ Allen, G. C. (10 January 2018), "Economic Development before 1860", The Industrial Development of Birmingham and the Black Country 1860–1927, Routledge, pp. 13–45, doi:10.1201/9781351251341-4, ISBN 978-1-351-25134-1
  72. ^ a b L. T. C. Rolt and J. S. Allen, The Steam Engine of Thomas Newcomen (Landmark Publishing, Ashbourne 1997). p. 145.
  73. ^ Selgin, George; Turner, John L. (2011). "Strong Steam, Weak Patents, or the Myth of Watt's Innovation-Blocking Monopoly, Exploded". The Journal of Law & Economics. 54 (4): 841–861. doi:10.1086/658495. ISSN 0022-2186. JSTOR 10.1086/658495. S2CID 154401778.
  74. ^ Hunter & Bryant 1991
  75. ^ Economics 323–2: Economic History of the United States Since 1865 http://faculty.wcas.northwestern.edu/~jmokyr/Graphs-and-Tables.PDF Archived 19 April 2021 at the Wayback Machine
  76. ^ Clow, Archibald; Clow, Nan L. (June 1952). Chemical Revolution. Ayer Co. pp. 65–90. ISBN 978-0-8369-1909-7.
  77. ^ Lion Hirth, State, Cartels and Growth: The German Chemical Industry (2007) p. 20
  78. ^ Johann P. Murmann, Knowledge and competitive advantage: the co-evolution of firms, technology, and national institutions (2003) pp. 53–54
  79. ^ Properties of Concrete Archived 25 February 2021 at the Wayback Machine Published lecture notes from University of Memphis Department of Civil Engineering. Retrieved 17 October 2007.
  80. ^ Charles Hunt, A history of the introduction of gas lighting (W. King, 1907) online Archived 4 April 2023 at the Wayback Machine.
  81. ^ Patrick Degryse, Glass making in the Greco-Roman world: results of the ARCHGLASS project (Leuven University Press, 2014).
  82. ^ Hentie Louw, "Window-glass making in Britain c. 1660–c. 1860 and its architectural impact." Construction History (1991): 47–68 online Archived 18 April 2021 at the Wayback Machine.
  83. ^ Misa, Thomas J. (1995). A Nation of Steel: The Making of Modern America 1965–1925. Baltimore and London: Johns Hopkins University Press. p. 243. ISBN 978-0-8018-6502-2.
  84. ^ a b Overton, Mark (1996). Agricultural Revolution in England: The transformation if the agrarian economy 1500–1850. Cambridge University Press. ISBN 978-0-521-56859-3.
  85. ^ a b Pomeranz, Kenneth (2000), The Great Divergence: China, Europe, and the Making of the Modern World Economy, Princeton University Press, ISBN 978-0-691-09010-8
  86. ^ "The Rotherham Plow". Rotherham: The Unofficial Website. Archived from the original on 14 August 2014.
  87. ^ "The Rotherham Plow". Rotherham.co.uk. Archived from the original on 24 September 2015.
  88. ^ a b Clark 2007
  89. ^ a b John U. Nef, Rise of the British coal industry (2v 1932).
  90. ^ Coren, Michael J. (31 January 2018). "The speed of Europe's 18th-century sailing ships is revamping history's view of the Industrial Revolution". Quartz. Archived from the original on 1 May 2021. Retrieved 31 January 2018.
  91. ^ a b Grübler, Arnulf (1990). The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport (PDF). Heidelberg and New York: Physica-Verlag. Archived from the original (PDF) on 1 March 2012. Retrieved 30 January 2013.
  92. ^ UK Retail Price Index inflation figures are based on data from Clark, Gregory (2017). "The Annual RPI and Average Earnings for Britain, 1209 to Present (New Series)". MeasuringWorth. Retrieved 7 May 2024.
  93. ^ Timbs 1860, p. 363
  94. ^ "Bridgewater Collieries". The Times. London. 1 December 1913. Retrieved 19 July 2008.[dead link]
  95. ^ Kindleberger 1993, pp. 192–193
  96. ^ "1 January 1894: Opening of the Manchester ship canal". The Guardian. 1 January 1894. Archived from the original on 17 May 2021. Retrieved 28 July 2012. Six years in the making, the world's largest navigation canal gives the city direct access to the sea
  97. ^ "A History of the Canals of Britain". Historic UK. Archived from the original on 13 October 2022. Retrieved 13 October 2022.
  98. ^ a b "1823 – First American Macadam Road" (Painting – Carl Rakeman) US Department of Transportation – Federal Highway Administration (Accessed 10 October 2008)
  99. ^ Richard Brown (1991). "Society and Economy in Modern Britain 1700–1850" p. 136. Routledge, 1991
  100. ^ Gerhold, Dorian (August 1996). "Productivity Change in Road Transport before and after Turnpiking, 1690–1840". The Economic History Review. 49 (3): 511. JSTOR 2597761.
  101. ^ Fling, Harry M. (1868). Railroads of the United States, Their History and Statistics. Philadelphia: John. E. Potter and Co. pp. 12, 13.
  102. ^ Jack Simmons, and Gordon Biddle, eds. The Oxford Companion to British Railway History: From 1603 to the 1990s (2nd ed. 1999).
  103. ^ Herbert L. Sussman (2009). "Victorian Technology: Invention, Innovation, and the Rise of the Machine". p. 2. ABC-CLIO, 2009
  104. ^ Case, Holly (November 2016). "THE "SOCIAL QUESTION," 1820–1920*". Modern Intellectual History. 13 (3): 747–775. doi:10.1017/S1479244315000037. ISSN 1479-2443. S2CID 143077444. Archived from the original on 23 April 2023. Retrieved 23 April 2023.
  105. ^ "Devon's Classic Food Riots", Riots and Community Politics in England and Wales, 1790–1810, Harvard University Press, 1 October 2013, pp. 27–68, doi:10.4159/harvard.9780674733251.c3, ISBN 978-0-674-73325-1, archived from the original on 23 April 2023, retrieved 23 April 2023
  106. ^ Hunt, E.K.; Lautzenheiser, Mark (2014). History of Economic Thought: A Critical Perspective. PHI Learning. ISBN 978-0-7656-2599-1.
  107. ^ Küchenhoff, Helmut (2012). "The Diminution of Physical Stature of the British Male Population in the 18th-Century". Cliometrica. 6 (1): 45–62. doi:10.1007/s11698-011-0070-7. S2CID 154692462. Archived from the original on 25 April 2021. Retrieved 20 November 2018.
  108. ^ Snowdon, Brian (April–June 2005). "Measures of Progress and Other Tall Stories: From Income to Anthropometrics". World Economics. 6 (2): 87–136. Archived from the original on 26 October 2018. Retrieved 20 November 2018.
  109. ^ a b Mabel C. Buer, Health, Wealth and Population in the Early Days of the Industrial Revolution, London: George Routledge & Sons, 1926, p. 30 ISBN 0-415-38218-1
  110. ^ Woodward, D. (1981) Wage rates and living standards in pre-industrial England Past & Present 1981 91(1):28–46
  111. ^ R.M. Hartwell, The Rising Standard of Living in England, 1800–1850, Economic History Review, 1963, p. 398 ISBN 0-631-18071-0
  112. ^ Fogel, Robert W. (2004). The Escape from Hunger and Premature Death, 1700–2100. London: Cambridge University Press. ISBN 978-0-521-80878-1.
  113. ^ Malthus, Thomas (1798). An Essay on the Principle of Population (PDF). London: Electronic Scholarly Publishing Project. Archived (PDF) from the original on 21 April 2016. Retrieved 12 February 2016.
  114. ^ Temple, Robert; Needham, Joseph (1986). The Genius of China: 3000 years of science, discovery and invention. New York: Simon and Schuster, based on the works of Joseph Needham.
  115. ^ Gregory Clark, "Shelter from the storm: housing and the industrial revolution, 1550–1909". Journal of Economic History 62#2 (2002): 489–511.
  116. ^ Dyos, H. J. (1968). "The Speculative Builders and Developers of Victorian London". Victorian Studies. 11: 641–690. JSTOR 3825462.
  117. ^ Christopher Powell, The British building industry since 1800: An economic history (Taylor & Francis, 1996).
  118. ^ P. Kemp, "Housing landlordism in late nineteenth-century Britain". Environment and Planning A 14.11 (1982): 1437–1447.
  119. ^ Dyos, H. J. (1967). "The Slums of Victorian London". Victorian Studies. 11 (1): 5–40. JSTOR 3825891.
  120. ^ Anthony S. Wohl, The eternal slum: housing and social policy in Victorian London (1977).
  121. ^ Martin J. Daunton, House and home in the Victorian city: working-class housing, 1850–1914 (1983).
  122. ^ Enid Gauldie, Cruel habitations: a history of working-class housing 1780–1918 (Allen & Unwin, 1974)
  123. ^ Theodore S. Hamerow, The birth of a new Europe: State and society in the nineteenth century (University of North Carolina Press, 1989) pp. 148–174.
  124. ^ Robert Allan Houston, "The Development of Literacy: Northern England, 1640–1750." Economic History Review (1982) 35#2: 199–216 online Archived 16 April 2021 at the Wayback Machine.
  125. ^ Hamerow, p. 159.
  126. ^ Henry Milner, Civic literacy: How informed citizens make democracy work (University Press of New England, 2002).
  127. ^ Fairchilds, Cissie. "Review: Consumption in Early Modern Europe. A Review Article". Comparative Studies in Society and History, Vol. 35, No. 4. (October 1993), pp. 851.
  128. ^ a b "The rise of consumerism". British Library. Archived from the original on 19 April 2021. Retrieved 29 June 2021.
  129. ^ a b c d "Why the Industrial Revolution Happened Here". BBC. 11 January 2017. Archived from the original on 14 April 2021. Retrieved 21 December 2019.
  130. ^ "History Cook: the rise of the chocolate biscuit". Financial Times. Archived from the original on 10 December 2022. Retrieved 23 August 2021.
  131. ^ Mintz, Sidney (2015). The Oxford Companion to Sugar and Sweets. Oxford University Press. p. 157.
  132. ^ Guinness World Records 2017. Guinness World Records. 8 September 2016. p. 90. ISBN 978-1-910561-34-8. Archived from the original on 24 March 2023. Retrieved 3 September 2021.
  133. ^ "A history of the department store". BBC Culture. Archived from the original on 11 August 2023. Retrieved 15 September 2019.
  134. ^ "The History of Fish and Chips". Historic England. Archived from the original on 8 June 2023. Retrieved 17 June 2024.
  135. ^ White, Matthew. "The rise of cities in the 18th century". British Library. Archived from the original on 22 May 2022. Retrieved 3 April 2022.
  136. ^ Kotler, Philip; Armstrong, Gary (2010). Principles of Marketing. Pearson Education. p. 278.
  137. ^ Turner, E. S. (1975). Boys Will be Boys. Harmondsworth: Penguin. p. 20. ISBN 978-0-14-004116-3.
  138. ^ a b "Penny dreadfuls: the Victorian equivalent of video games". The Guardian. Archived from the original on 22 November 2018. Retrieved 12 March 2019.
  139. ^ a b "The Sam Weller Bump". The Paris Review. Archived from the original on 2 August 2021. Retrieved 27 June 2021.
  140. ^ Dames, Nicholas (June 2015). "Was Dickens a Thief?". The Atlantic. Archived from the original on 17 August 2021. Retrieved 27 June 2021.
  141. ^ Shuttleworth, Peter (25 December 2020). "The mail-order pioneer who started a billion-pound industry". BBC News. Archived from the original on 27 January 2021. Retrieved 5 August 2021.
  142. ^ a b "Pryce-Jones: Pioneer of the Mail Order Industry". BBC. Archived from the original on 14 April 2021. Retrieved 12 March 2019.
  143. ^ Hudson, Pat (1992). The Industrial Revolution. New York: Routledge, Chapman, and Hall, Inc. p. 3. ISBN 978-0-7131-6531-9.
  144. ^ "The UK population: past, present and future – Chapter 1 Archived 24 September 2015 at the Wayback Machine" (PDF). Statistics.gov.uk
  145. ^ "A portrait of Britain in 2031 Archived 9 December 2017 at the Wayback Machine". The Independent. 24 October 2007.
  146. ^ BBC – History – Victorian Medicine – From Fluke to Theory Archived 17 August 2021 at the Wayback Machine. Published: 1 February 2002.
  147. ^ "Modernization – Population Change Archived 6 April 2009 at the Wayback Machine". Encyclopædia Britannica.
  148. ^ "Human Population: Urbanization". Population Reference Bureau. Archived 26 October 2009 at the Wayback Machine
  149. ^ "Human Population: Population Growth: Question and Answer". Population Reference Bureau. Archived 8 October 2009 at the Wayback Machine
  150. ^ Manchester (England, United Kingdom) Archived 5 May 2015 at the Wayback Machine. Encyclopædia Britannica.
  151. ^ Eleanor Amico, ed. Reader's guide to women's studies (1998) pp. 102–104, 306–308.
  152. ^ Thomas, Janet (1988). "Women and Capitalism: Oppression or Emancipation? A Review Article". Comparative Studies in Society and History. 30 (3): 534–549. doi:10.1017/S001041750001536X. JSTOR 178999. S2CID 145599586.
  153. ^ Alice Clark, Working life of women in the seventeenth century (1919).
  154. ^ Ivy Pinchbeck, Women Workers in the Industrial Revolution (1930).
  155. ^ Louise Tilly and Joan Wallach Scott, Women, work, and family (1987).
  156. ^ Smiles, Samuel (1875). Thrift. London: John Murray. pp. 30–40.
  157. ^ "United States History – The Struggles of Labor Archived 4 January 2012 at the Wayback Machine". Library of Congress Country Studies.
  158. ^ Hobsbawm, Eric J. (1969). Industry and Empire: From 1750 to the Present Day. Vol. 3. Harmondsworth, England: Penguin. p. 65. ISBN 978-1-56584-561-9.
  159. ^ R.M. Hartwell, The Industrial Revolution and Economic Growth, Methuen and Co., 1971, pp. 339–341 ISBN 0-416-19500-8
  160. ^ "Manchester – the first industrial city". Entry on Sciencemuseum website. Archived from the original on 9 March 2012. Retrieved 17 March 2012.
  161. ^ "Life in Industrial Towns". History Learning Site. Archived from the original on 3 May 2021. Retrieved 29 April 2021.
  162. ^ Hoeder, Dirk (2002). Cultures in Contact. Durham, NC: Duke University Press. pp. 331–332.
  163. ^ Guarneri, Carl (2007). America in the World. Boston: McGraw-Hill. p. 180.
  164. ^ Dunn, James (1905). From Coal Mine Upwards: or Seventy Years of an Eventful Life. Wildside Press, LLC. ISBN 978-1-4344-6870-3.
  165. ^ Bar, Michael; Leukhina, Oksana (2007). "Demographic Transition and Industrial Revolution: A Macroeconomic Investigation" (PDF). Archived from the original (PDF) on 27 November 2007. Retrieved 5 November 2007. The decrease [in mortality] beginning in the second half of the 18th century was due mainly to declining adult mortality. Sustained decline of the mortality rates for the age groups 5–10, 10–15, and 15–25 began in the mid-19th century, while that for the age group 0–5 began three decades later. Although the survival rates for infants and children were static over this period, the birth rate & overall life expectancy increased. Thus the population grew, but the average Briton was about as old in 1850 as in 1750 (see figures 5 & 6, p. 28). Population size statistics from mortality.org Archived 28 February 2011 at the Wayback Machine put the mean age at about 26.
  166. ^ "Child Labour and the Division of Labour in the Early English Cotton Mills Archived 9 January 2006 at the Wayback Machine". Douglas A. Galbi. Centre for History and Economics, King's College, Cambridge CB2 1ST.
  167. ^ The Life of the Industrial Worker in Nineteenth-Century England Archived 13 March 2008 at the Wayback Machine, Laura Del Col, West Virginia University.
  168. ^ "Child Labor | History of Western Civilization II". courses.lumenlearning.com. Archived from the original on 3 November 2023. Retrieved 18 October 2023.
  169. ^ "Testimony Gathered by Ashley's Mines Commission". 2008. Archived from the original on 19 December 2008. Retrieved 22 March 2008.
  170. ^ "The Life of the Industrial Worker in Nineteenth-Century England". 2008. Archived from the original on 13 March 2008. Retrieved 22 March 2008.
  171. ^ "Two steps forward, one step back - History of Occupational Safety and Health". www.historyofosh.org.uk. Archived from the original on 3 November 2023. Retrieved 18 October 2023.
  172. ^ "Photographs of Lewis Hine: Documentation of Child Labor Archived 11 May 2021 at the Wayback Machine". The U.S. National Archives and Records Administration.
  173. ^ Evatt, Herbert (2009). The Tolpuddle Martyrs. Sydney: Sydney University Press. p. 49. ISBN 978-0-586-03832-1.
  174. ^ "General Strike 1842". Archived from the original on 9 June 2007. Retrieved 9 June 2007. From chartists.net. Retrieved 13 November 2006.
  175. ^ Byrne, Richard (August 2013). "A Nod to Ned Ludd". The Baffler. 23 (23): 120–128. doi:10.1162/BFLR_a_00183. Archived from the original on 9 August 2021. Retrieved 2 August 2020.
  176. ^ "Luddites in Marsden: Trials at York". Archived from the original on 26 March 2012. Retrieved 2 August 2020.
  177. ^ Kennedy, Paul (1987). The Rise and Fall of the Great Powers. New York: Random House. p. 149.
  178. ^ Beckert, p. 86.
  179. ^ Beckert, Sven (2014). Empire of Cotton: A Global History. Vintage Books Division Penguin Random House. p. 103.
  180. ^ Ronald Bailey, "The other side of slavery: Black labor, cotton, and textile industrialization in Great Britain and the United States." Agricultural History 68.2 (1994): 35–50.
  181. ^ Fleming, James R.; Knorr, Bethany R. "History of the Clean Air Act". American Meteorological Society. Archived from the original on 10 June 2011. Retrieved 14 February 2006.
  182. ^ Leslie Tomory, "The Environmental History of the Early British Gas Industry, 1812–1830." Environmental history 17#1 (2012): 29–54.
  183. ^ Joel A. Tarr, "Toxic Legacy: The Environmental Impact of the Manufactured Gas Industry in the United States." Technology and culture 55#1 (2014): 107–147. online Archived 19 October 2017 at the Wayback Machine
  184. ^ Harold L. Platt, Shock cities: the environmental transformation and reform of Manchester and Chicago (2005) excerpt Archived 15 March 2021 at the Wayback Machine.
  185. ^ Brian William Clapp, An environmental history of Britain since the industrial revolution (Routledge, 2014).
  186. ^ Alan S. Milward and S. B. Saul, The Economic Development of Continental Europe 1780–1870 (Harvard UP, 1973).
  187. ^ Alan Milward and Samuel Berrick Saul, The Development of the Economies of Continental Europe 1850–1914 (Harvard UP, 1977).
  188. ^ "On the Industrial History of the Czech Republic". European Route of Industrial Heritage. Council of Europe. Archived from the original on 28 April 2021. Retrieved 2 June 2021.
  189. ^ Carter, F. W. (1973). "The Industrial Development of Prague 1800–1850". The Slavonic and East European Review. 51 (123): 243–275. JSTOR 4206709.
  190. ^ "On the Industrial History of the Czech Republic". European Route of Industrial Heritage. Archived from the original on 28 April 2021. Retrieved 2 June 2021.
  191. ^ Martin Moll, "Austria-Hungary" in Christine Rider, ed., Encyclopedia of the Age of the Industrial Revolution 1700–1920 (2007) pp. 24–27.
  192. ^ "The era of enlightenment". Archived from the original on 16 March 2012. Retrieved 11 March 2011.
  193. ^ David Good, The Economic Rise of the Habsburg Empire
  194. ^ Millward and Saul, The Development of the Economies of Continental Europe 1850–1914 pp. 271–331.
  195. ^ Chris Evans, Göran Rydén, The Industrial Revolution in Iron; The impact of British Coal Technology in Nineteenth-Century Europe Published by Ashgate Publishing, Ltd., Farnham 2005, pp. 37–38 ISBN 0-7546-3390-X.
  196. ^ Milward and Saul, Economic Development of Continental Europe 1780–1870 pp 292–296, 437–453.
  197. ^ a word from Walloon origin
  198. ^ Muriel Neven and Isabelle Devos, 'Breaking stereotypes', in M. Neven and I. Devos (editors), 'Recent work in Belgian Historical Demography', in Revue belge d'histoire contemporaine, XXXI, 2001, 3–4, pp. 347–359 FLWI.ugent.be Archived 29 October 2008 at the Wayback Machine
  199. ^ Philippe Raxhon, Le siècle des forges ou la Wallonie dans le creuset belge (1794–1914), in B. Demoulin and JL Kupper (editors), Histoire de la Wallonie, Privat, Toulouse, 2004, pp. 233–276 [246] ISBN 2-7089-4779-6
  200. ^ "European Route of Industrial Heritage". En.erih.net. Archived from the original on 31 July 2013. Retrieved 19 August 2013.
  201. ^ Michel De Coster, Les enjeux des conflits linguistiques, L'Harmattan, Paris, 2007, ISBN 978-2-296-03394-8, pp. 122–123
  202. ^ "Major Mining Sites of Wallonia". UNESCO WOrld Heritage List. UNESCO. Archived from the original on 3 July 2012. Retrieved 18 March 2021.
  203. ^ Muriel Neven and Isabelle Devos, Breaking stereotypes, art. cit., pp. 315–316
  204. ^ Jean Marczewski, " Y a-t-il eu un "take-off" en France ? ", 1961, dans les Cahiers de l'ISEA
  205. ^ Haber 1958
  206. ^ Allan Mitchell, Great Train Race: Railways and the Franco-German Rivalry, 1815–1914 (2000)
  207. ^ Schön, Lennart (1982). "Proto-industrialisation and factories: Textiles in Sweden in the mid-nineteenth century". Scandinavian Economic History Review. 30: 57–71. doi:10.1080/03585522.1982.10407973. Archived from the original on 14 April 2021. Retrieved 23 August 2020.
  208. ^ Bengtsson, Erik; Missiaia, Anna; Olsson, Mats; Svensson, Patrick (2018). "Wealth inequality in Sweden, 1750–1900†". The Economic History Review. 71 (3): 772–794. doi:10.1111/ehr.12576. ISSN 1468-0289. S2CID 154088734.
  209. ^ "History". Bank of Japan. Archived from the original on 4 August 2021. Retrieved 5 May 2015.
  210. ^ G.C. Allen, Short Economic History of Modern Japan (1972)
  211. ^ Atack, Jeremy; Passell, Peter (1994). A New Economic View of American History. New York: W.W. Norton and Co. p. 469. ISBN 978-0-393-96315-1.
  212. ^ Chandler, Alfred D. Jr. (1993). The Visible Hand: The Management Revolution in American Business. Belknap Press of Harvard University Press. ISBN 978-0-674-94052-9.
  213. ^ Taylor, George Rogers (1969). The Transportation Revolution, 1815–1860. M.E. Sharpe. ISBN 978-0-87332-101-3.
  214. ^ Bagnall, William R. The Textile Industries of the United States: Including Sketches and Notices of Cotton, Woolen, Silk, and Linen Manufacturers in the Colonial Period. Vol. I. The Riverside Press, 1893.
  215. ^ "Made in Beverly – A History of Beverly Industry", by Daniel J. Hoisington. A publication of the Beverly Historic District Commission. 1989.
  216. ^ Encyclopædia Britannica (1998): Samuel Slater
  217. ^ Thomson, Ross (1989). The Path to Mechanized Shoe Production in the United States. Chapel Hill and London: The University of North Carolina Press. ISBN 978-0-8078-1867-1.
  218. ^ Morison, Elting E. (1966). Men, Machines and Modern Times. Cambridge, MA and London: The M.I.T Press.
  219. ^ Klein, Ezra (19 September 2021). "Opinion | The Economic Mistake the Left Is Finally Confronting". The New York Times. ISSN 0362-4331. Archived from the original on 25 May 2022. Retrieved 8 February 2022.
  220. ^ a b Smith, Noah (3 February 2022). "A New Industrialist roundup". Noahpinion. Archived from the original on 5 February 2022. Retrieved 5 February 2022.
  221. ^ "The Next Big Idea in Economic Growth". Bloomberg.com. 16 February 2016. Archived from the original on 9 February 2022. Retrieved 5 February 2022.
  222. ^ Overton, Mar (1996). Agricultural Revolution in England: The transformation if the agrarian economy 1500–1850. Cambridge University Press. ISBN 978-0-521-56859-3.
  223. ^ Kreis, Steven (11 October 2006). "The Origins of the Industrial Revolution in England". Historyguide.org. Archived from the original on 2 November 2015. Retrieved 30 January 2011.
  224. ^ "Scientific Revolution". Microsoft Encarta Online Encyclopedia 2009. Archived 28 October 2009 at the Wayback Machine 31 October 2009.
  225. ^ Baten, Jörg (2016). A History of the Global Economy. From 1500 to the Present. Cambridge University Press. pp. 13–16. ISBN 978-1-107-50718-0.
  226. ^ Hudson, Pat. The Industrial Revolution, Oxford University Press US. ISBN 0-7131-6531-6
  227. ^ Fullerton, Ronald A. (January 1988). "How Modern Is Modern Marketing? Marketing's Evolution and the Myth of the "Production Era"". The Journal of Marketing. 52 (1): 108–125. doi:10.2307/1251689. JSTOR 1251689.
  228. ^ Technics & Civilization. Lewis Mumford. January 1963. ISBN 978-0-15-688254-5. Archived from the original on 7 March 2021. Retrieved 8 January 2009.
  229. ^ Deane, Phyllis. The First Industrial Revolution, Cambridge University Press. ISBN 0-521-29609-9 Google Books Archived 4 April 2023 at the Wayback Machine
  230. ^ Eric Schiff, Industrialisation without national patents: the Netherlands, 1869–1912; Switzerland, 1850–1907, Princeton University Press, 1971.
  231. ^ Michele Boldrin and David K. Levine, Against Intellectual Monopoly Archived 22 February 2011 at the Wayback Machine, "Chapter 1, final online version January 2, 2008" (PDF). Archived (PDF) from the original on 12 September 2022. Retrieved 15 December 2009. (55 KB), p. 15. Cambridge University Press, 2008. ISBN 978-0-521-87928-6
  232. ^ Mott-Smith, Morton (1964) [Unabridged and revised version of the book first published by D. Appleton-Century Company in 1934 under the former title: The Story of Energy]. The Concept of Energy Simply Explained. New York: Dover Publications, Inc. pp. 13–14. ISBN 978-0-486-21071-1.
  233. ^ Mokyr, Joel (1990). The Lever of Riches: Technological Creativity and Economic Progress. New York: Oxford University Press. pp. 40–44. ISBN 978-0-19-507477-2.
  234. ^ Why No Industrial Revolution in Ancient Greece? Archived 27 September 2011 at the Wayback Machine J. Bradford DeLong, Professor of Economics, University of California at Berkeley, 20 September 2002. Retrieved January 2007.
  235. ^ The Origins of the Industrial Revolution in England Archived 2 November 2015 at the Wayback Machine |The History Guide, Steven Kreis, 11 October 2006 – Accessed January 2007
  236. ^ Duchesne, Ricardo (2011). The Uniqueness of Western Civilization. Leiden: Brill. ISBN 978-90-04-23276-1.
  237. ^ Vries, Pier (2001). "Are Coal and Colonies Really Crucial?". Journal of World History. 2: 411.
  238. ^ Jackson J. Spielvogel (2009). Western Civilization: Since 1500 Archived 27 March 2023 at the Wayback Machine. p. 607.
  239. ^ Bond, Eric; Gingerich, Sheena; Archer-Antonsen, Oliver; Purcell, Liam; Macklem, Elizabeth (17 February 2003). "The Industrial Revolution – Causes". Industrialrevolution.sea.ca. Archived from the original on 2 February 2010. Retrieved 30 January 2011.
  240. ^ Temple, Robert (1986). The Genius of China: 3000 years of science, discovery and invention. New York: Simon and Schuster.Based on the works of Joseph Needham>
  241. ^ Merson, John (1990). The Genius That Was China: East and West in the Making of the Modern World. Woodstock, NY: The Overlook Press. ISBN 978-0-87951-397-9.A companion to the PBS Series "The Genius That Was China
  242. ^ "Cobb-Douglas in pre-modern Europe1 – Simulating early modern growth" (PDF). Archived (PDF) from the original on 4 April 2023. Retrieved 8 May 2006. (254 KB) Jan Luiten van Zanden, International Institute of Social History/University of Utrecht. May 2005. Retrieved January 2007.
  243. ^ Landes, David (1999). The Wealth and Poverty of Nations. W.W. Norton & Company. ISBN 978-0-393-31888-3.
  244. ^ Landes, David S. (1969). The Unbound Prometheus. Press Syndicate of the University of Cambridge. pp. 20–32. ISBN 978-0-521-09418-4.
  245. ^ a b Stark, Rodney (2005). The Victory of Reason: How Christianity Led to Freedom, Capitalism and Western Success. New York: Random House Trade Paperbacks. ISBN 978-0-8129-7233-7.
  246. ^ Merson 1990, pp. 34–35
  247. ^ How Earth Made Us: Fire by Professor Iain Stewart
  248. ^ Jones, Eric (1981). The European Miracle: Environments, Economies and Geopolitics in the History of Europe and Asia. Cambridge: Cambridge University Press. p. 119.
  249. ^ Mokyr, Joel (6 January 2018). Mokyr, J.: A Culture of Growth: The Origins of the Modern Economy. (eBook and Hardcover). Princeton University Press. ISBN 978-0-691-18096-0. Archived from the original on 24 March 2017. Retrieved 9 March 2017.
  250. ^ North, Douglass C.; Weingast, Barry R. (1989). "Constitutions and Commitment: The Evolution of Institutions Governing Public Choice in Seventeenth-Century England". The Journal of Economic History. 49 (4): 803–832. doi:10.1017/S0022050700009451. ISSN 0022-0507.
  251. ^ Knutsen, Carl Henrik; Møller, Jørgen; Skaaning, Svend-Erik (2016). "Going historical: Measuring democraticness before the age of mass democracy". International Political Science Review. 37 (5): 679–689. doi:10.1177/0192512115618532. hdl:10852/59625. ISSN 0192-5121.
  252. ^ Christian, David (2004). Maps of Time. Berkeley: University of California Press. pp. 390. ISBN 978-0-520-23500-7.
  253. ^ Stearns, Peter (1998). The Industrial Revolution in World History. Boulder, Colorado: Westview Press. p. 36.
  254. ^ Julian Hoppit, "The Nation, the State, and the First Industrial Revolution," Journal of British Studies (April 2011) 50#2 pp. 307–331
  255. ^ "Eric Williams' Economic Interpretation of British Abolitionism – Seventy Years After Capitalism and Slavery" (International Journal of Business Management and Commerce, Vol. 3 No. 4) August 2018
  256. ^ "Old Naval College" (PDF). Archived from the original (PDF) on 26 June 2007.
  257. ^ Barrington Moore, Jr., Social Origins of Dictatorship and Democracy: Lord and Peasant in the Making of the Modern World, pp. 29–30, Boston, Beacon Press, 1966.
  258. ^ Voltaire, François Marie Arouet de. (1909–1914) [1734]. "Letter VI – On the Presbyterians. Letters on the English". www.bartleby.com. The Harvard Classics. Archived from the original on 27 April 2021. Retrieved 22 July 2017.
  259. ^ E.A. Wrigley, Continuity chance and change.
  260. ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
  261. ^ a b Crafts, Nicholas (1 April 2011). "Explaining the first Industrial Revolution: two views" (PDF). European Review of Economic History. 15 (1): 153–168. doi:10.1017/S1361491610000201. ISSN 1361-4916. Archived (PDF) from the original on 8 March 2021. Retrieved 9 December 2019.
  262. ^ Humphries, Jane; Schneider, Benjamin (23 May 2018). "Spinning the industrial revolution" (PDF). The Economic History Review. 72: 126–155. doi:10.1111/ehr.12693. ISSN 0013-0117. S2CID 152650710. Archived from the original (PDF) on 19 April 2021. Retrieved 9 December 2019.
  263. ^ Stephenson, Judy Z. (13 May 2017). "'Real' wages? Contractors, workers, and pay in London building trades, 1650–1800". The Economic History Review. 71 (1): 106–132. doi:10.1111/ehr.12491. ISSN 0013-0117. S2CID 157908061.
  264. ^ Kelly, Morgan; Mokyr, Joel; Grada, Cormac O (2022). "The Mechanics of the Industrial Revolution". Journal of Political Economy. 131: 59–94. doi:10.1086/720890. hdl:10197/11440. ISSN 0022-3808. S2CID 248787980. Archived from the original on 17 May 2022. Retrieved 17 May 2022.
  265. ^ "The Lunar Society". Archived from the original on 7 February 2008. Retrieved 7 February 2008.{{cite web}}: CS1 maint: bot: original URL status unknown (link) at Moreabout, the website of the Birmingham Jewellery Quarter guide, Bob Miles.
  266. ^ Foster, Charles (2004). Capital and Innovation: How Britain Became the First Industrial Nation. Northwich: Arley Hall Press. ISBN 978-0-9518382-4-2. Argues that capital accumulation and wealth concentration in an entrepreneurial culture following the commercial revolution made the industrial revolution possible, for example.
  267. ^ Robert Green, ed., The Weber Thesis Controversy (D.C. Heath, 1973)
  268. ^ Jelinski, L. W.; Graedel, T. E.; Laudise, R. A.; McCall, D. W.; Patel, C. K. (1 February 1992). "Industrial ecology: concepts and approaches". Proceedings of the National Academy of Sciences. 89 (3): 793–797. Bibcode:1992PNAS...89..793J. doi:10.1073/pnas.89.3.793. PMC 48326. PMID 11607253.
  269. ^ Albert, Michael J. (29 April 2020). "The Dangers of Decoupling: Earth System Crisis and the 'Fourth Industrial Revolution'" (PDF). Global Policy. 11 (2): 245–254. doi:10.1111/1758-5899.12791. S2CID 218777050. Archived (PDF) from the original on 8 November 2023. Retrieved 25 March 2024.
  270. ^ Thompson, E. P. (1967). "Time, Work-Discipline, and Industrial Capitalism". Past & Present (38): 56–97. doi:10.1093/past/38.1.56. JSTOR 649749.
  271. ^ Robert B. Bain "Children and the industrial revolution: Changes in policy." OAH Magazine of History 15.1 (2000): 48–56.
  272. ^ Ishay, Micheline (2004). "What are human rights? Six historical controversies". Journal of Human Rights. 3 (3): 359–371. doi:10.1080/1475483042000224897. Archived from the original on 15 August 2021. Retrieved 15 August 2021.
  273. ^ Chamsy el-Ojeili; Dylan Taylor (2020). "'The Future in the Past': Anarcho-primitivism and the Critique of Civilization Today" (PDF). Rethinking Marxism. 32 (2): 168–186. doi:10.1080/08935696.2020.1727256. S2CID 219015323. Archived (PDF) from the original on 6 October 2021. Retrieved 6 October 2021.
  274. ^ Smith, Mick (2002). "The State of Nature: The Political Philosophy of Primitivism and the Culture of Contamination". Environmental Values. 11 (4): 407–425. doi:10.3197/096327102129341154. JSTOR 30301899.
  275. ^ Smith, Mick (2007). "Wild-life: anarchy, ecology, and ethics". Environmental Politics. 16 (3): 470–487. Bibcode:2007EnvPo..16..470S. doi:10.1080/09644010701251714. S2CID 144572405.
  276. ^ Mawle, Angela (1 July 2010). "Climate change, human health, and unsustainable development". Journal of Public Health Policy. 31 (2): 272–277. doi:10.1057/jphp.2010.12. PMID 20535108.
  277. ^ Harvey, Fiona (18 August 2011). "Climate change driving species out of habitats much faster than expected". The Guardian. Archived from the original on 9 June 2021. Retrieved 8 November 2015.
  278. ^ Waters, C.N.; et al. (8 January 2016). "The Anthropocene is functionally and stratigraphically distinct from the Holocene". Science. 351 (6269): aad2622. Bibcode:2016Sci...351.2622W. doi:10.1126/science.aad2622. PMID 26744408. S2CID 206642594.
  279. ^ Nuwer, Rachel (14 September 2012). "From Ancient Deforestation, a Delta Is Born". The New York Times. Archived from the original on 1 May 2021. Retrieved 14 June 2018.
  280. ^ Michael Löwy and Robert Sayre, eds., Romanticism against the Tide of Modernity (Duke University Press, 2001).
  281. ^ ICONS – a portrait of England. Icon: Jerusalem (hymn) Feature: And did those feet? Archived 12 December 2009 at the Wayback Machine Accessed 28 June 2021
  282. ^ AJ George, The development of French romanticism: the impact of the industrial revolution on literature (1955)

Further reading

Historiography

External links