stringtranslate.com

teorema de bertrand

José Bertrand

En mecánica clásica , el teorema de Bertrand establece que entre los potenciales de fuerza central con órbitas ligadas, sólo hay dos tipos de potenciales escalares de fuerza central (radiales) con la propiedad de que todas las órbitas ligadas también son órbitas cerradas . [1] [2]

El primero de estos potenciales es una fuerza central del cuadrado inverso, como el potencial gravitacional o electrostático :

con fuerza .

El segundo es el potencial del oscilador armónico radial :

con fuerza .

El teorema lleva el nombre de su descubridor, Joseph Bertrand .

Derivación

Pequeños cambios en la potencia de la fuerza que aumenta con la distancia conducirán a tipos de órbitas significativamente diferentes.

Todas las fuerzas centrales de atracción pueden producir órbitas circulares , que son órbitas naturalmente cerradas . El único requisito es que la fuerza central sea exactamente igual a la fuerza centrípeta , que determina la velocidad angular requerida para un radio circular dado. Las fuerzas no centrales (es decir, aquellas que dependen de las variables angulares así como del radio) se ignoran aquí, ya que en general no producen órbitas circulares.

La ecuación de movimiento para el radio de una partícula de masa que se mueve en un potencial central viene dada por las ecuaciones de movimiento

donde , y el momento angular se conserva. A modo de ilustración, el primer término de la izquierda es cero para órbitas circulares y la fuerza aplicada hacia adentro es igual al requisito de fuerza centrípeta , como se esperaba.

La definición de momento angular permite un cambio de variable independiente de a :

dando la nueva ecuación de movimiento que es independiente del tiempo:

Esta ecuación se vuelve cuasilineal al realizar el cambio de variables y multiplicar ambos lados por (ver también ecuación de Binet ):

Como se señaló anteriormente, todas las fuerzas centrales pueden producir órbitas circulares dada una velocidad inicial apropiada. Sin embargo, si se introduce algo de velocidad radial, estas órbitas no necesitan ser estables (es decir, permanecer en órbita indefinidamente) ni cerradas (regresar repetidamente exactamente a la misma trayectoria). Aquí mostramos que una condición necesaria para órbitas no circulares estables y exactamente cerradas es una fuerza inversa al cuadrado o un potencial de oscilador armónico radial. En las siguientes secciones, mostramos que esas dos leyes de fuerza producen órbitas estables y exactamente cerradas (una condición suficiente ) [no está claro para el lector exactamente cuál es la condición suficiente].

Definir como

donde representa la fuerza radial. El criterio para el movimiento perfectamente circular con un radio es que el primer término de la izquierda sea cero:

dónde .

El siguiente paso es considerar la ecuación para pequeñas perturbaciones de órbitas perfectamente circulares. A la derecha, la función se puede expandir en una serie de Taylor estándar :

Sustituyendo esta expansión en la ecuación y restando los términos constantes se obtiene

que se puede escribir como

donde es una constante. debe ser no negativo; de lo contrario, el radio de la órbita variaría exponencialmente alejándose de su radio inicial. (La solución corresponde a una órbita perfectamente circular.) Si se puede despreciar el lado derecho (es decir, para perturbaciones pequeñas), las soluciones son

donde la amplitud es una constante de integración. Para que las órbitas sean cerradas, debe ser un número racional . Es más, debe ser el mismo número racional para todos los radios, ya que no puede cambiar continuamente; los números racionales están totalmente desconectados unos de otros. Usando la definición de junto con la ecuación ( 1 ),

Dado que esto debe ser válido para cualquier valor de ,

lo que implica que la fuerza debe seguir una ley potencial

Por lo tanto debe tener la forma general

Para desviaciones más generales de la circularidad (es decir, cuando no podemos descuidar los términos de orden superior en la expansión de Taylor de ), se puede expandir en una serie de Fourier, por ejemplo,

Sustituimos esto en la ecuación ( 2 ) e igualamos los coeficientes que pertenecen a la misma frecuencia, manteniendo solo los términos de orden más bajo. Como mostramos a continuación, y son más pequeños que , siendo de orden . , y todos los demás coeficientes, son al menos de orden . Esto tiene sentido, ya que todos deben desaparecer más rápido que cuando se acerca a una órbita circular.

Del término obtenemos

donde en el último paso sustituimos los valores de y .

Usando las ecuaciones ( 3 ) y ( 1 ), podemos calcular las derivadas segunda y tercera de evaluado en :

Sustituyendo estos valores en la última ecuación se obtiene el resultado principal del teorema de Bertrand :

Por lo tanto, los únicos potenciales que pueden producir órbitas no circulares cerradas estables son la ley de la fuerza del cuadrado inverso ( ) y el potencial del oscilador armónico radial ( ). La solución corresponde a órbitas perfectamente circulares, como se señaló anteriormente.

Potenciales de campo clásicos

Para una ley de fuerza del cuadrado inverso, como el potencial gravitacional o electrostático , el potencial se puede escribir

La órbita u (θ) se puede derivar de la ecuación general

cuya solución es la constante más una sinusoide simple:

donde e (la excentricidad ) y θ 0 (el desplazamiento de fase ) son constantes de integración.

Ésta es la fórmula general para una sección cónica que tiene un foco en el origen; e = 0 corresponde a un círculo , 0 < e < 1 corresponde a una elipse, e = 1 corresponde a una parábola y e > 1 corresponde a una hipérbola . La excentricidad e está relacionada con la energía total E (ver vector de Laplace-Runge-Lenz ):

La comparación de estas fórmulas muestra que E < 0 corresponde a una elipse, E = 0 corresponde a una parábola y E > 0 corresponde a una hipérbola . En particular, para órbitas perfectamente circulares .

Oscilador armónico

Para resolver la órbita bajo un potencial de oscilador armónico radial , es más fácil trabajar en componentes r = ( x , y , z ). El potencial se puede escribir como

La ecuación de movimiento de una partícula de masa m viene dada por tres ecuaciones de Euler independientes :

donde la constante debe ser positiva (es decir, k > 0) para garantizar órbitas cerradas y acotadas; de lo contrario, la partícula volará hasta el infinito . Las soluciones de estas ecuaciones simples del oscilador armónico son todas similares:

donde las constantes positivas A x , Ay y Az representan las amplitudes de las oscilaciones , y los ángulos φ x , φ y y φ z representan sus fases . La órbita resultante r ( t ) = [ x ( t ), y ( y ), z ( t )] está cerrada porque se repite exactamente después de un período.

El sistema también es estable porque pequeñas perturbaciones en las amplitudes y fases provocan cambios correspondientemente pequeños en la órbita general.

Referencias

  1. ^ Bertrand J (1873). "Teorema relativo al movimiento de un punto de vestimenta versus un centro fijo". CR Acad. Ciencia . 77 : 849–853.
  2. ^ Johnson, Porter Wear (24 de febrero de 2010). Mecánica clásica con aplicaciones. Científico mundial. págs.149–. ISBN 9789814304153. Consultado el 2 de diciembre de 2012 .

Otras lecturas