stringtranslate.com

Temperatura del bulbo húmedo

Un psicrómetro de cabestrillo. El calcetín se moja con agua destilada y se agita durante un minuto o más antes de tomar las lecturas.

La temperatura de bulbo húmedo ( WBT ) es la temperatura leída por un termómetro cubierto con un paño empapado en agua (agua a temperatura ambiente) (un termómetro de bulbo húmedo ) sobre el cual pasa aire. [1] Con una humedad relativa del 100% , la temperatura de bulbo húmedo es igual a la temperatura del aire ( temperatura de bulbo seco ); a menor humedad, la temperatura de bulbo húmedo es menor que la temperatura de bulbo seco debido al enfriamiento por evaporación .

La temperatura de bulbo húmedo se define como la temperatura de una porción de aire enfriada hasta la saturación (100% de humedad relativa) por la evaporación de agua en ella, con el calor latente suministrado por la porción. [2] Un termómetro de bulbo húmedo indica una temperatura cercana a la temperatura verdadera (termodinámica) de bulbo húmedo. La temperatura de bulbo húmedo es la temperatura más baja que se puede alcanzar en las condiciones ambientales actuales mediante la evaporación del agua únicamente.

Incluso las personas adaptadas al calor no pueden realizar actividades normales al aire libre más allá de una temperatura de bulbo húmedo de 32 °C (90 °F), equivalente a un índice de calor de 55 °C (131 °F). Una lectura de 35 °C (95 °F), equivalente a un índice de calor de 71 °C (160 °F), se considera el límite teórico de supervivencia humana durante un máximo de seis horas de exposición. [3] [4]

General

La temperatura de bulbo húmedo es la temperatura más baja que se puede alcanzar mediante el enfriamiento por evaporación de una superficie ventilada y humedecida con agua.

Por el contrario, el punto de rocío es la temperatura a la que se debe enfriar el aire ambiente para alcanzar el 100% de humedad relativa , suponiendo que no haya más evaporación en el aire; es la temperatura donde se formaría la condensación (rocío) y las nubes.

Para una porción de aire que está menos que saturada (es decir, aire con menos del 100 por ciento de humedad relativa), la temperatura de bulbo húmedo es menor que la temperatura de bulbo seco , pero mayor que la temperatura del punto de rocío. Cuanto menor es la humedad relativa (más seco es el aire), mayores son las diferencias entre cada par de estas tres temperaturas. Por el contrario, cuando la humedad relativa aumenta al 100%, las tres cifras coinciden.

Para aire a una presión y temperatura de bulbo seco conocidas, la temperatura termodinámica de bulbo húmedo corresponde a valores únicos de humedad relativa y temperatura del punto de rocío. Por lo tanto, puede utilizarse para la determinación práctica de estos valores. Las relaciones entre estos valores se ilustran en una tabla psicrométrica .

Las temperaturas de bulbo húmedo más bajas que se corresponden con un aire más seco en verano pueden traducirse en ahorros de energía en edificios con aire acondicionado debido a:

  1. Carga de deshumidificación reducida para el aire de ventilación.
  2. Mayor eficiencia de las torres de enfriamiento.
  3. Mayor eficiencia de los enfriadores evaporativos.

Temperatura termodinámica de bulbo húmedo

La temperatura termodinámica de bulbo húmedo es la temperatura que tendría un volumen de aire si se enfriara adiabáticamente hasta la saturación mediante la evaporación de agua en él, siendo todo el calor latente suministrado por el volumen de aire.

La temperatura de una muestra de aire que ha pasado sobre una gran superficie de agua líquida en un canal aislado es la temperatura termodinámica de bulbo húmedo: el aire se ha saturado al pasar a través de una cámara de saturación adiabática ideal, de presión constante.

Los meteorólogos y otros pueden utilizar el término "temperatura de bulbo húmedo isobárico" para referirse a la "temperatura de bulbo húmedo termodinámica". También se le llama "temperatura de saturación adiabática", aunque los meteorólogos también usan "temperatura de saturación adiabática" para significar "temperatura en el nivel de saturación", es decir, la temperatura que alcanzaría la parcela si se expandiera adiabáticamente hasta saturarse. [5]

La temperatura termodinámica de bulbo húmedo es una propiedad termodinámica de una mezcla de aire y vapor de agua. El valor indicado por un simple termómetro de bulbo húmedo a menudo proporciona una aproximación adecuada de la temperatura termodinámica de bulbo húmedo.

Para un termómetro de bulbo húmedo preciso, "la temperatura de bulbo húmedo y la temperatura de saturación adiabática son aproximadamente iguales para mezclas de aire y vapor de agua a temperatura y presión atmosféricas. Esto no es necesariamente cierto a temperaturas y presiones que se desvían significativamente de las condiciones atmosféricas ordinarias". , o para otras mezclas de gas y vapor." [6]

Lectura de temperatura del termómetro de bulbo húmedo

Un higrómetro húmedo y seco con termómetro de bulbo húmedo

La temperatura del bulbo húmedo se mide utilizando un termómetro que tiene el bulbo envuelto en una tela (llamada calcetín ) que se mantiene húmeda con agua destilada mediante una acción de absorción . Un instrumento de este tipo se denomina termómetro de bulbo húmedo. Un dispositivo ampliamente utilizado para medir la temperatura de bulbo húmedo y seco es un psicrómetro de cabestrillo , que consiste en un par de termómetros de bulbo de mercurio, uno con un "calcetín" húmedo para medir la temperatura de bulbo húmedo y el otro con el bulbo expuesto y seco para la temperatura de bulbo seco. Los termómetros están sujetos a un mango giratorio, lo que permite girarlos para que el agua se evapore del calcetín y enfríe el bulbo húmedo hasta que alcance el equilibrio térmico .

Un termómetro de bulbo húmedo real lee una temperatura que es ligeramente diferente de la temperatura termodinámica de bulbo húmedo, pero tienen un valor muy cercano. Esto se debe a una coincidencia: para un sistema agua-aire la relación psicrométrica (ver más abajo) resulta ser cercana a 1, aunque para sistemas distintos de aire y agua es posible que no lo sean.

Para entender por qué esto es así, considere primero el cálculo de la temperatura termodinámica de bulbo húmedo.

Experimento 1

En este caso, se enfría una corriente de aire insaturado. El calor del enfriamiento de ese aire se utiliza para evaporar algo de agua, lo que aumenta la humedad del aire. En algún momento, el aire se satura con vapor de agua (y se enfría hasta la temperatura termodinámica de bulbo húmedo). En este caso podemos escribir el siguiente balance de energía por masa de aire seco:

Experimento 2

Para el caso del termómetro de bulbo húmedo, imagine una gota de agua sobre la que pasa aire no saturado. Mientras la presión de vapor del agua en la gota (en función de su temperatura) sea mayor que la presión parcial del vapor de agua en la corriente de aire, se producirá la evaporación. Inicialmente, el calor necesario para la evaporación procederá de la propia gota.

En cambio, a medida que la gota comienza a enfriarse, ahora está más fría que el aire, por lo que comienza a ocurrir una transferencia de calor convectiva del aire a la gota. Además, la tasa de evaporación depende de la diferencia de concentración de vapor de agua entre la interfaz de la corriente de gota y la corriente distante (es decir, la corriente "original", no afectada por la gota), y de un coeficiente de transferencia de masa convectiva, que es función de los componentes de la mezcla (es decir, agua y aire).

Después de un cierto período, se alcanza un equilibrio: la gota se ha enfriado hasta un punto en el que la velocidad del calor transportado por evaporación es igual al calor ganado por convección. En este punto, se cumple el siguiente balance de energía por área de interfaz:

Tenga en cuenta que:

Reorganicemos esa ecuación en:

Ahora volvamos a nuestro experimento original de "bulbo húmedo termodinámico", Experimento 1. Si la corriente de aire es la misma en ambos experimentos (es decir, y son iguales), entonces podemos igualar los lados derechos de ambas ecuaciones:

Reorganizar:

Si entonces la temperatura de la gota en el Experimento 2 es la misma que la temperatura de bulbo húmedo en el Experimento 1. Por coincidencia, para la mezcla de aire y vapor de agua este es el caso, siendo la relación (llamada relación psicrométrica ) cercana a 1. [7]

El experimento 2 es lo que sucede en un termómetro de bulbo húmedo común, lo que significa que su lectura es bastante cercana a la temperatura termodinámica ("real") de bulbo húmedo.

Experimentalmente, la lectura del termómetro de bulbo húmedo es la más cercana a la temperatura termodinámica de bulbo húmedo si:

En la práctica, el valor informado por un termómetro de bulbo húmedo difiere ligeramente de la temperatura termodinámica de bulbo húmedo porque:

Con humedades relativas inferiores al 100 por ciento, el agua se evapora del bulbo y lo enfría por debajo de la temperatura ambiente. Para determinar la humedad relativa, se mide la temperatura ambiente utilizando un termómetro común, más conocido en este contexto como termómetro de bulbo seco . A cualquier temperatura ambiente dada, una menor humedad relativa da como resultado una mayor diferencia entre las temperaturas de bulbo seco y de bulbo húmedo; el bulbo húmedo es más frío. La humedad relativa precisa se determina leyendo un gráfico psicrométrico de temperaturas de bulbo húmedo versus temperaturas de bulbo seco, o mediante cálculo.

Los psicrómetros son instrumentos con termómetro de bulbo húmedo y de bulbo seco.

También se puede utilizar un termómetro de bulbo húmedo al aire libre bajo la luz solar en combinación con un termómetro de globo (que mide la temperatura radiante incidente ) para calcular la temperatura de bulbo húmedo y globo (WBGT).

Temperatura adiabática de bulbo húmedo

La temperatura adiabática de bulbo húmedo es la temperatura que tendría un volumen de aire si se enfriara adiabáticamente hasta la saturación y luego se comprimiera adiabáticamente hasta la presión original en un proceso adiabático húmedo [ aclaración necesaria ] . [8] Dicho enfriamiento puede ocurrir a medida que la presión del aire se reduce con la altitud, [ se necesita aclaración ] como se indica en el artículo sobre el nivel de condensación elevado .

Este término, tal como se define en este artículo, puede ser [ vago ] el más frecuente en meteorología.

Como el valor denominado "temperatura termodinámica de bulbo húmedo" también se logra mediante un proceso adiabático, algunos ingenieros y otros pueden usar [ vago ] el término "temperatura adiabática de bulbo húmedo" para referirse a la "temperatura termodinámica de bulbo húmedo". . Como se mencionó anteriormente, los meteorólogos y otros pueden utilizar [ vago ] el término "temperatura de bulbo húmedo isobárico" para referirse a la "temperatura de bulbo húmedo termodinámica".

"La relación entre los procesos isobárico y adiabático es bastante oscura. Sin embargo, las comparaciones indican que las dos temperaturas rara vez difieren en más de unas pocas décimas de grado Celsius, y la versión adiabática es siempre la más pequeña de las dos para el aire no saturado. ... Como la diferencia es tan pequeña, en la práctica normalmente se pasa por alto." [9]

Depresión de bulbo húmedo

La depresión del bulbo húmedo es la diferencia entre la temperatura del bulbo seco y la temperatura del bulbo húmedo. Si hay 100% de humedad, las temperaturas de bulbo seco y de bulbo húmedo son idénticas, lo que hace que la depresión del bulbo húmedo sea igual a cero en tales condiciones. [10]

Temperatura de bulbo húmedo y salud

Los organismos vivos sólo pueden sobrevivir dentro de un cierto rango de temperatura. Cuando la temperatura ambiente es excesiva, muchos animales se enfrían por debajo de la temperatura ambiente mediante enfriamiento por evaporación (sudor en humanos y caballos, saliva y agua en perros y otros mamíferos); esto ayuda a prevenir una hipertermia potencialmente mortal debido al estrés por calor. La eficacia del enfriamiento evaporativo depende de la humedad; La temperatura de bulbo húmedo, o cantidades calculadas más complejas, como la temperatura de bulbo húmedo del globo (WBGT), que también tiene en cuenta la radiación solar , dan una indicación útil del grado de estrés por calor y son utilizadas por varias agencias como base para calcular el calor. Pautas de prevención del estrés.

Se ha pensado que una temperatura sostenida de bulbo húmedo que supere los 35 °C (95 °F), dado el requisito del cuerpo de mantener una temperatura central de aproximadamente 37 °C, probablemente sea fatal incluso para personas sanas y en forma, sin ropa. la sombra junto a un ventilador; a esta temperatura el cuerpo humano pasa de emitir calor al medio ambiente a obtener calor de él. [11] [12] En la práctica, estas condiciones ideales para que los humanos se enfríen no siempre existirán; de ahí los altos niveles de mortalidad en las olas de calor europeas de 2003 y rusas de 2010 , en las que las temperaturas de bulbo húmedo no superaron los 28 °C ( 82°F). [13] Un estudio de 2022 sobre el efecto del calor en los jóvenes encontró que la temperatura crítica de bulbo húmedo a la que el estrés por calor ya no se puede compensar, T wb,crit , en adultos jóvenes y sanos que realizan tareas a tasas metabólicas modestas que imitan las básicas Las actividades de la vida diaria fueron de aproximadamente 30,55 °C en ambientes húmedos de 36 a 40 °C, pero disminuyeron progresivamente en ambientes más cálidos y secos. [14] [15]

Un estudio de 2015 concluyó que, dependiendo del alcance del calentamiento global futuro , algunas partes del mundo podrían volverse inhabitables debido a las mortales temperaturas de bulbo húmedo. [16] Un estudio de 2020 informó casos en los que ya se había producido una temperatura de bulbo húmedo de 35 °C (95 °F), aunque demasiado brevemente y en una localidad demasiado pequeña para causar muertes. [13]

En 2018, Carolina del Sur implementó nuevas regulaciones para proteger a los estudiantes de secundaria de emergencias relacionadas con el calor durante actividades al aire libre. Existen pautas y restricciones específicas para temperaturas de globo húmedo entre 82,0 °F (27,8 °C) y 92,0 °F (33,3 °C); Las temperaturas de bulbo húmedo del globo de 92,1 °F (33,4 °C) o más requieren la cancelación de todas las actividades al aire libre. [17] [18]

Olas de calor con alta humedad

Temperaturas de bulbo húmedo más altas registradas

Los siguientes lugares han registrado temperaturas de bulbo húmedo de 34 °C (93 °F) o más. Las estaciones meteorológicas suelen estar en los aeropuertos, por lo que es posible que otros lugares de la ciudad hayan experimentado valores más altos. [24]

Cambio climático

Los resultados del estudio indican que limitar el calentamiento global a 1,5 °C evitaría que la mayoría de los trópicos alcanzaran la temperatura de bulbo húmedo del límite fisiológico humano de 35 °C. [25] [26]

Ver también

Referencias

  1. ^ Guy W. Gupton (2002). Controles de HVAC: operación y mantenimiento. The Fairmont Press, Inc. págs. 288–. ISBN 978-0-88173-394-5.
  2. ^ Un diccionario del tiempo . Referencia de Oxford. 2008.ISBN _ 978-0-19-954144-7.
  3. ^ "Están surgiendo en todo el mundo combinaciones potencialmente fatales de humedad y calor".
  4. ^ Buis, Alan. "Demasiado caliente para manejar: cómo el cambio climático puede hacer que algunos lugares sean demasiado calurosos para vivir". Cambio Climático: Signos Vitales del Planeta .
  5. ^ "Temperatura de saturación adiabática - Glosario de Meteorología". glosario.ametsoc.org .
  6. ^ VanWylen, Gordon J; Sonntag, Richard E. (1973). Fundamentos de la termodinámica clásica (2ª ed.). Wiley. pag. 448.ISBN _ 978-0471902270.
  7. ^ "consultado 20080408".
  8. ^ "Temperatura de bulbo húmedo - Glosario de Meteorología". glosario.ametsoc.org .
  9. ^ Módulo de formación remota del NWSTC; DIAGRAMA SKEW T LOG P Y ANÁLISIS DE SONIDO; RTM - 230; Centro de Capacitación del Servicio Meteorológico Nacional; Kansas City, MO 64153; 31 de julio de 2000
  10. ^ "Temperaturas de bulbo seco, bulbo húmedo y punto de rocío". www.ingenieríatoolbox.com .
  11. ^ Sherwood, Carolina del Sur; Huber, M. (25 de mayo de 2010). "Un límite de adaptabilidad al cambio climático por estrés térmico". Proc. Nacional. Acad. Ciencia. EE.UU . 107 (21): 9552–5. Código Bib : 2010PNAS..107.9552S. doi : 10.1073/pnas.0913352107 . PMC 2906879 . PMID  20439769. 
  12. ^ Zumbrun, Josh (11 de agosto de 2023). "¿Qué calor hace realmente? Los índices de temperatura no coinciden". Wall Street Journal - a través de www.wsj.com.
  13. ^ ab Raymond, Colin; Mateos, Tom; Horton, Radley M. (2020). "La aparición de calor y humedad demasiado severos para la tolerancia humana". Avances científicos . 6 (19): eaaw1838. Código Bib : 2020SciA....6.1838R. doi : 10.1126/sciadv.aaw1838 . PMC 7209987 . PMID  32494693. 
  14. ^ Vecellio, Daniel J.; Lobo, S. Tony; Cottle, Rachel M.; Kenney, W. Larry (1 de febrero de 2022). "Evaluación del umbral de adaptabilidad de la temperatura de bulbo húmedo de 35 ° C para sujetos jóvenes y sanos (Proyecto PSU HEAT)". Revista de fisiología aplicada . 132 (2): 340–345. doi : 10.1152/japplphysiol.00738.2021 . ISSN  8750-7587. PMC 8799385 . PMID  34913738. 
  15. ^ Timperley, Jocelyn (31 de julio de 2022). "¿Por qué hay que preocuparse por la 'temperatura de bulbo húmedo'". El guardián .
  16. ^ Amigo, Jeremy S.; Eltahir, Elfatih AB (2015). "Se prevé que la temperatura futura en el suroeste de Asia supere un umbral de adaptabilidad humana". Naturaleza . 6 (2): 197–200. Código Bib : 2016NatCC...6..197P. doi : 10.1038/nclimate2833.
  17. ^ Shelton, David (26 de julio de 2018). "Entran en vigor nuevas reglas para proteger a los atletas de secundaria de SC en el calor extremo". Correos y mensajería . Consultado el 16 de agosto de 2018 .
  18. ^ "Monitoreo de la temperatura del globo de bulbo húmedo (WBGT)" (PDF) . Liga de escuelas secundarias de Carolina del Sur . Consultado el 16 de agosto de 2018 .
  19. ^ Jason Samenow (31 de julio de 2015). "La ciudad de Irán alcanza un índice de calor sofocante de 165 grados, cerca del récord mundial". El Correo de Washington . Archivado desde el original el 26 de abril de 2016 . Consultado el 4 de junio de 2018 .
  20. ^ Henson, Bob (9 de mayo de 2020). "Calor y humedad cerca del umbral de supervivencia: ya está sucediendo". Clima subterráneo . Consultado el 10 de mayo de 2020 .
  21. ^ "La combinación mortal de calor y humedad". Los New York Times . 6 de junio de 2015 . Consultado el 16 de marzo de 2016 .
  22. ^ "La temperatura se siente como si alcanzara los 164 grados en Irán, 159 en Irak; se ordenaron días libres mientras Medio Oriente arde en una ola de calor extrema". Tiempo.com . 5 de agosto de 2015 . Consultado el 16 de marzo de 2016 .
  23. ^ "Humedad relativa y bulbo húmedo desde el punto de rocío". Servicio Meteorológico Nacional de EE. UU . Consultado el 4 de febrero de 2019 .El cálculo asumió una presión de aire de 760 mmHg (101 kPa).
  24. ^ "Mapa interactivo: temperatura máxima diaria de bulbo húmedo (°C)".
  25. ^ "El calentamiento global empuja a las regiones tropicales hacia los límites de la habitabilidad humana". El guardián . 8 de marzo de 2021 . Consultado el 19 de abril de 2021 .
  26. ^ Zhang, Yi; Retenido, Isaac; Fueglistaler, Stephan (marzo de 2021). "Proyecciones de estrés por calor tropical limitadas por la dinámica atmosférica". Geociencia de la naturaleza . 14 (3): 133-137. Código Bib : 2021NatGe..14..133Z. doi :10.1038/s41561-021-00695-3. ISSN  1752-0908. S2CID  232146008 . Consultado el 19 de abril de 2021 .

enlaces externos