stringtranslate.com

Radical hidroxilo

Fórmulas esqueléticas de 1-hidroxi-2 ( 1H ) -piridintiona y su tautómero

El radical hidroxilo , HO , es la forma neutra del ion hidróxido (HO ). Los radicales hidroxilo son muy reactivos y, en consecuencia, de vida corta; sin embargo, forman una parte importante de la química radical . En particular, los radicales hidroxilo se producen a partir de la descomposición de hidroperóxidos (ROOH) o, en la química atmosférica , por la reacción del oxígeno atómico excitado con agua. También es un radical importante que se forma en la química de la radiación, ya que conduce a la formación de peróxido de hidrógeno y oxígeno , que pueden mejorar la corrosión y el SCC en sistemas de refrigeración sujetos a ambientes radiactivos. Los radicales hidroxilo también se producen durante la disociación del H 2 O 2 con luz ultravioleta (sugerida en 1879) y probablemente en la química de Fenton , donde trazas de metales de transición reducidos catalizan oxidaciones de compuestos orgánicos mediadas por peróxido.

En síntesis orgánica, los radicales hidroxilo se generan más comúnmente por fotólisis de 1-hidroxi-2 (1H) -piridintiona .

El radical hidroxilo a menudo se denomina "detergente" de la troposfera porque reacciona con muchos contaminantes, actuando a menudo como el primer paso para su eliminación. También tiene un papel importante en la eliminación de algunos gases de efecto invernadero como el metano y el ozono . [2] La velocidad de reacción con el radical hidroxilo a menudo determina cuánto tiempo permanecen muchos contaminantes en la atmósfera, si no sufren fotólisis o son eliminados por lluvia. Por ejemplo, el metano, que reacciona relativamente lentamente con el radical hidroxilo, tiene una vida útil promedio de >5 años y muchos CFC tienen una vida útil de más de 50 años. Los contaminantes, como los hidrocarburos más grandes , pueden tener una vida media muy corta, de menos de unas pocas horas.

La primera reacción con muchos compuestos orgánicos volátiles (COV) es la eliminación de un átomo de hidrógeno, formando agua y un radical alquilo (R ).

HO + RH → H2O + R

El radical alquilo normalmente reaccionará rápidamente con el oxígeno formando un radical peroxi .

R + O 2 → RO 2

El destino de este radical en la troposfera depende de factores como la cantidad de luz solar, la contaminación en la atmósfera y la naturaleza del radical alquilo que lo formó (ver los capítulos 12 y 13 en Enlaces externos "Notas de conferencias universitarias sobre química atmosférica)

Importancia biológica

Ocasionalmente se pueden producir radicales hidroxilo como subproducto de la acción inmune . Los macrófagos y la microglia generan con mayor frecuencia este compuesto cuando se exponen a patógenos muy específicos , como ciertas bacterias. La acción destructiva de los radicales hidroxilo se ha implicado en varias enfermedades neurológicas autoinmunes , como HAND , cuando las células inmunitarias se vuelven sobreactivadas y tóxicas para las células sanas vecinas. [3]

El radical hidroxilo puede dañar prácticamente todos los tipos de macromoléculas: carbohidratos, ácidos nucleicos ( mutaciones ), lípidos ( peroxidación lipídica ) y aminoácidos (por ejemplo, conversión de Phe en m- tirosina y o- tirosina ). PMID 7776173. El radical hidroxilo tiene una vida media in vivo muy corta de aproximadamente 10 −9 segundos y una alta reactividad. [4] Esto lo convierte en un compuesto muy peligroso para el organismo. [5] [6]

A diferencia del superóxido , que puede ser desintoxicado por la superóxido dismutasa , el radical hidroxilo no puede eliminarse mediante una reacción enzimática . Los mecanismos para eliminar los radicales peroxilo para la protección de las estructuras celulares incluyen antioxidantes endógenos como la melatonina y el glutatión , y antioxidantes dietéticos como el manitol y la vitamina E. [5]

Importancia en la atmósfera terrestre

Los radicales hidroxilo HO son una de las principales especies químicas que controlan la capacidad oxidante de la atmósfera terrestre global. Esta especie reactiva oxidante tiene un impacto importante en las concentraciones y distribución de gases de efecto invernadero y contaminantes en la atmósfera terrestre. Es el oxidante más extendido en la troposfera , la parte más baja de la atmósfera. Comprender la variabilidad del HO es importante para evaluar los impactos humanos en la atmósfera y el clima. La especie HO tiene una vida útil en la atmósfera terrestre de menos de un segundo. [7] Comprender el papel del HO en el proceso de oxidación del metano (CH 4 ) presente en la atmósfera, primero a monóxido de carbono (CO) y luego a dióxido de carbono (CO 2 ), es importante para evaluar el tiempo de residencia de este gas de efecto invernadero. el presupuesto general de carbono de la troposfera y su influencia en el proceso de calentamiento global. La vida de los radicales HO en la atmósfera terrestre es muy corta, por lo que las concentraciones de HO en el aire son muy bajas y se requieren técnicas muy sensibles para su detección directa. [8] Las concentraciones promedio globales de radicales hidroxilo se han medido indirectamente analizando el metilcloroformo (CH 3 CCl 3 ) presente en el aire. Los resultados obtenidos por Montzka et al. (2011) [9] muestra que la variabilidad interanual en HO estimada a partir de mediciones de CH 3 CCl 3 es pequeña, lo que indica que HO global generalmente está bien protegido contra las perturbaciones. Esta pequeña variabilidad es consistente con las mediciones de metano y otros gases traza oxidados principalmente por HO, así como con los cálculos del modelo fotoquímico global.

Importancia astronómica

Primera detección de • HO interestelar

La primera evidencia experimental de la presencia de líneas de absorción de 18 cm del radical hidroxilo ( HO) en el espectro de radioabsorción de Casiopea A fue obtenida por Weinreb et al. (Nature, Vol. 200, págs. 829, 1963) basado en observaciones realizadas durante el período del 15 al 29 de octubre de 1963. [10]

Informes posteriores importantes sobre • detecciones astronómicas de HO

Niveles de energía

HO es una molécula diatómica. El momento angular electrónico a lo largo del eje molecular es +1 o -1, y el momento angular de espín electrónico S=1/2. Debido al acoplamiento órbita-espín, el momento angular de espín puede orientarse en direcciones paralelas o antiparalelas al momento angular orbital, produciendo la división en estados Π 1/2 y Π 3/2 . El estado fundamental 2 Π 3/2 de HO se divide mediante una interacción de duplicación lambda (una interacción entre la rotación del núcleo y el movimiento de los electrones desapareados alrededor de su órbita). La interacción hiperfina con el espín desapareado del protón divide aún más los niveles.

Química de la molécula • HO

Para estudiar la química interestelar en fase gaseosa, conviene distinguir dos tipos de nubes interestelares: nubes difusas, con T=30-100 K, y n=10-1000 cm −3 , y nubes densas con T=10-30K y densidad n=10 4 -10 3  cm −3 . En algunos trabajos se han establecido rutas químicas de iones tanto en nubes densas como difusas (Hartquist 1990).

Vías de producción de HO

El radical HO está relacionado con la producción de H 2 O en las nubes moleculares. Los estudios de distribución de HO en Taurus Molecular Cloud-1 (TMC-1) [19] sugieren que en gas denso, HO se forma principalmente por recombinación disociativa de H 3 O + . La recombinación disociativa es la reacción en la que un ion molecular se recombina con un electrón y se disocia en fragmentos neutros. Los mecanismos de formación importantes de HO son:

H 3 O + + e HO + H 2 (1a) Recombinación disociativa

H 3 O + + e HO + H + H (1b) Recombinación disociativa

HCO 2 + + e HO + CO (2a) Recombinación disociativa

O + HCO → HO + CO (3a) Neutro-neutro

H + H 3 O + HO + H 2 + H (4a) Neutralización de iones ion-molecular

Vías de destrucción de HO

Los datos experimentales sobre reacciones de asociación de H y HO sugieren que la asociación radiativa que involucra radicales neutros atómicos y diatómicos puede considerarse como un mecanismo eficaz para la producción de pequeñas moléculas neutras en las nubes interestelares. [20] La formación de O 2 se produce en fase gaseosa a través de la reacción de intercambio neutro entre O y HO, que también es el principal sumidero de HO en regiones densas. [19]

Podemos ver que el oxígeno atómico interviene tanto en la producción como en la destrucción de HO, por lo que la abundancia de HO depende principalmente de la abundancia de H 3 + . Entonces, las rutas químicas importantes que parten de los radicales HO son:

HO + O → O 2 + H (1A) Neutro-neutro

HO + C + → CO + + H (2A) Ion neutro

HO + N → NO + H (3A) Neutro-neutro

HO + C → CO + H (4A) Neutro-neutro

HO + H → H 2 O + fotón (5A) Neutro-neutro

Constantes de velocidad y tasas relativas para importantes mecanismos de formación y destrucción.

Las constantes de velocidad se pueden derivar del conjunto de datos publicado en el sitio web [1]. Las constantes de velocidad tienen la forma:

k(T) = alfa*(T/300) beta *exp(-gamma/T)cm 3 s −1

La siguiente tabla tiene las constantes de velocidad calculadas para una temperatura típica en una nube densa T=10 K.

Las tasas de formación r ix se pueden obtener utilizando las constantes de velocidad k(T) y las abundancias de las especies de reactivos C y D:

rix = k(T) ix [C][D]

donde [Y] representa la abundancia de la especie Y. En este enfoque, las abundancias se tomaron de la base de datos UMIST para astroquímica de 2006 , y los valores son relativos a la densidad de H2 . La siguiente tabla muestra la relación r ix /r 1a para poder ver las reacciones más importantes.

Los resultados sugieren que la reacción (1a) es la reacción más prominente en las nubes densas. Está en concordancia con Harju et al. 2000.

La siguiente tabla muestra los resultados siguiendo el mismo procedimiento para la reacción de destrucción:

Los resultados muestran que la reacción 1A es el principal sumidero de HO en nubes densas.

Importancia de las observaciones interestelares • HO

Los descubrimientos de los espectros de microondas de un número considerable de moléculas demuestran la existencia de moléculas bastante complejas en las nubes interestelares y ofrecen la posibilidad de estudiar nubes densas, que quedan oscurecidas por el polvo que contienen. [21] La molécula HO ha sido observada en el medio interestelar desde 1963 a través de sus transiciones de 18 cm. [22] En los años siguientes El HO fue observado por sus transiciones rotacionales en longitudes de onda del infrarrojo lejano, principalmente en la región de Orión. Debido a que cada nivel rotacional de HO se divide mediante la duplicación lambda, los astrónomos pueden observar una amplia variedad de estados de energía desde el estado fundamental.

HO como marcador de condiciones de shock

Se requieren densidades muy altas para termalizar las transiciones rotacionales de HO, [23] por lo que es difícil detectar líneas de emisión en el infrarrojo lejano desde una nube molecular inactiva. Incluso con densidades de H 2 de 10 6 cm −3 , el polvo debe ser ópticamente espeso en longitudes de onda infrarrojas. Pero el paso de una onda de choque a través de una nube molecular es precisamente el proceso que puede desequilibrar el gas molecular con el polvo, haciendo posible la observación de líneas de emisión en el infrarrojo lejano. Un choque moderadamente rápido puede producir un aumento transitorio en la abundancia de HO en relación con el hidrógeno. Por lo tanto, es posible que las líneas de emisión de HO en el infrarrojo lejano puedan ser un buen diagnóstico de las condiciones de choque.

En nubes difusas

Las nubes difusas son de interés astronómico porque desempeñan un papel primordial en la evolución y termodinámica del ISM. La observación del abundante hidrógeno atómico en 21 cm ha mostrado una buena relación señal-ruido tanto en emisión como en absorción. Sin embargo, las observaciones HI tienen una dificultad fundamental cuando se dirigen a regiones de baja masa del núcleo de hidrógeno, como la parte central de una nube difusa: el ancho térmico de las líneas de hidrógeno es del mismo orden que las estructuras de velocidades internas de interés, por lo que los componentes de las nubes de diversas temperaturas y velocidades centrales son indistinguibles en el espectro. En principio, las observaciones de líneas moleculares no sufren estos problemas. A diferencia del HI, las moléculas generalmente tienen una temperatura de excitación T ex << T kin , por lo que la emisión es muy débil incluso en especies abundantes. Se considera que el CO y el HO son las moléculas candidatas más fáciles de estudiar. El CO tiene transiciones en una región del espectro (longitud de onda < 3 mm) donde no hay fuertes fuentes continuas de fondo, pero El HO tiene la emisión de 18 cm, línea conveniente para observaciones de absorción. [15] Los estudios de observación proporcionan el medio más sensible para la detección de moléculas con excitación subtérmica y pueden proporcionar la opacidad de la línea espectral, que es una cuestión central para modelar la región molecular.

Los estudios basados ​​en la comparación cinemática de líneas de absorción de HO y HI de nubes difusas son útiles para determinar sus condiciones físicas, especialmente porque los elementos más pesados ​​proporcionan una mayor resolución de velocidad.

Máseres HO

Los máseres HO , un tipo de máser astrofísico , fueron los primeros máseres descubiertos en el espacio y se han observado en más entornos que cualquier otro tipo de máser.

En la Vía Láctea , los máseres HO se encuentran en máseres estelares (estrellas evolucionadas), máseres interestelares (regiones de formación estelar masiva) o en la interfaz entre restos de supernovas y material molecular. Los máseres interestelares de HO se observan a menudo a partir del material molecular que rodea las regiones ultracompactas H II (UC H II). Pero hay máseres asociados con estrellas muy jóvenes que aún no han creado regiones UCH II. [24] Esta clase de máseres de HO parece formarse cerca de los bordes de material muy denso, lugares donde se forman los máseres de H 2 O y donde las densidades totales caen rápidamente, y la radiación ultravioleta de las estrellas jóvenes puede disociar las moléculas de H 2 O. Por lo tanto, las observaciones de los máseres de HO en estas regiones pueden ser una forma importante de investigar la distribución de la importante molécula de H 2 O en choques interestelares a altas resoluciones espaciales .

Aplicación en la purificación del agua.

Los radicales hidroxilo también desempeñan un papel clave en la destrucción oxidativa de contaminantes orgánicos .

Ver también

Referencias

  1. ^ ab "Hidroxilo (CHEBI: 29191)". Entidades Químicas de Interés Biológico (ChEBI) . Reino Unido: Instituto Europeo de Bioinformática.
  2. ^ Forster, P.; V. Ramaswamy; P. Artaxo; T. Berntsen; R. Betts; DW Fahey; J. Haywood; J. Lean; DC Lowe; G. Myhre; J. Nganga; R. Prinn; G. Raga; el señor Schulz; R. Van Dorland (2007). "Cambios en los constituyentes atmosféricos y en el forzamiento radiativo" (PDF) . En Salomón, S.; D.Qin; Sr. Manning; Z. Chen; M. Marqués; KB Averyt; M.Tignor; HL Miller (eds.). Cambio climático 2007: la base de la ciencia física. Contribución del Grupo de Trabajo I al Cuarto Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático . Prensa de la Universidad de Cambridge. El radical libre hidroxilo (OH) es el principal químico oxidante de la atmósfera y destruye alrededor de 3,7 Gt de gases traza, incluido el CH4 y todos los HFC y HCFC, cada año (Ehhalt, 1999).
  3. ^ Kincaid-Colton, Carol; Wolfgang Streit (noviembre de 1995). "El sistema inmunológico del cerebro". Científico americano . PMID  8966536.
  4. ^ Sies, Helmut (marzo de 1993). "Estrategias de defensa antioxidante". Revista europea de bioquímica . 215 (2): 213–219. doi :10.1111/j.1432-1033.1993.tb18025.x. PMID  7688300.
  5. ^ ab Reiter RJ, Melchiorri D, Sewerynek E, et al. (Enero de 1995). "Una revisión de la evidencia que respalda el papel de la melatonina como antioxidante". J. Pineal Res . 18 (1): 1–11. doi :10.1111/j.1600-079x.1995.tb00133.x. PMID  7776173. S2CID  24184946.
  6. ^ Reiter RJ, Carneiro RC, Oh CS (agosto de 1997). "Melatonina en relación con los mecanismos de defensa antioxidante celular". Horma. Metab. Res . 29 (8): 363–72. doi :10.1055/s-2007-979057. PMID  9288572. S2CID  22573377.
  7. ^ Isaksen, ISA; SB Dalsøren (2011). "Obtener una mejor estimación de un radical atmosférico". Ciencia . 331 (6013): 38–39. Código Bib : 2011 Ciencia... 331... 38I. doi :10.1126/ciencia.1199773. PMID  21212344. S2CID  206530807 . Consultado el 9 de enero de 2011 .
  8. ^ Sanar, señor; Escuchado, DE; Pilling, MJ; Whitaker, BJ (1995). "Sobre el desarrollo y validación de FAGE para la medición local de HO y HO2 troposféricos". Revista de Ciencias Atmosféricas . 52 (19): 3428–3448. Código Bib : 1995JAtS...52.3428H. doi : 10.1175/1520-0469(1995)052<3428:OTDAVO>2.0.CO;2 . ISSN  1520-0469.
  9. ^ Montzka, SA; M. Krol; E. Dlugokencky; B. Salón; P. Jöckel; J. Lelieveld (2011). "Pequeña variabilidad interanual del hidroxilo atmosférico global". Ciencia . 331 (6013): 67–69. Código Bib : 2011 Ciencia... 331... 67M. doi :10.1126/ciencia.1197640. PMID  21212353. S2CID  11001130 . Consultado el 9 de enero de 2011 .
  10. ^ Dieter, Nuevo Hampshire; Ewen, Hawai (1964). "Observaciones de radio de la línea interestelar OH a 1.667 Mc/s". Naturaleza . 201 (4916): 279–281. Código Bib :1964Natur.201..279D. doi :10.1038/201279b0. ISSN  0028-0836. S2CID  4163406.
  11. ^ Robinson, BJ; McGee, RX (1967). "Oh moléculas en el medio interestelar". Revista Anual de Astronomía y Astrofísica . 5 (1): 183–212. Código bibliográfico : 1967ARA&A...5..183R. doi : 10.1146/annurev.aa.05.090167.001151. ISSN  0066-4146.
  12. ^ Heiles, Carl E. (1968). "Emisión normal de OH y nubes de polvo interestelar". La revista astrofísica . 151 : 919. Código bibliográfico : 1968ApJ...151..919H. doi :10.1086/149493. ISSN  0004-637X.
  13. ^ Rango, DM; Townes, CH; Welch, WJ (1971). "Moléculas interestelares y nubes densas". Ciencia . 174 (4014): 1083–1101. Código bibliográfico : 1971 Ciencia... 174.1083R. doi : 10.1126/ciencia.174.4014.1083. ISSN  0036-8075. PMID  17779392. S2CID  43499656.
  14. ^ Baudios, B.; Wouterloot, JGA (1980), "Observaciones OH de complejos moleculares en Orión y Tauro", Astronomía y Astrofísica , 90 : 297, Bibcode : 1980A&A....90..297B
  15. ^ ab Dickey JM, Crovisier J, Kazes I (mayo de 1981). "Observaciones de absorción de emisiones de HO en nubes interestelares difusas". Astronomía y Astrofísica . 98 (2): 271–285. Código bibliográfico : 1981A y A....98..271D.
  16. ^ Crutcher, RM; Troland, TH; Heiles, C. (1981). "Campos magnéticos en nubes moleculares - observaciones de OH Zeeman". La revista astrofísica . 249 : 134. Código bibliográfico : 1981ApJ...249..134C. doi :10.1086/159268. ISSN  0004-637X.
  17. ^ Piso, JWV; Watson, DM; Townes, CH (1981). "Detección de OH interestelar en el infrarrojo lejano". La revista astrofísica . 244 : L27. Código Bib : 1981ApJ...244L..27S. doi :10.1086/183472. ISSN  0004-637X.
  18. ^ Baan, Willem A.; Haschick, Aubrey D.; Henkel, cristiano (1989). "Salidas moleculares en potentes megamásers OH". La revista astrofísica . 346 : 680. Código bibliográfico : 1989ApJ...346..680B. doi :10.1086/168050. ISSN  0004-637X.
  19. ^ ab Harju, J.; Winnberg, A.; Wouterloot, JGA (2000), "La distribución de OH en Taurus Molecular Cloud-1", Astronomía y Astrofísica , 353 : 1065, Bibcode : 2000A&A...353.1065H
  20. ^ Field, D.; Adams, N. G.; Smith, D. (1980), "Molecular synthesis in interstellar clouds - The radiative association reaction H + OH yields H2O + h/nu/", Monthly Notices of the Royal Astronomical Society, 192: 1, Bibcode:1980MNRAS.192....1F, doi:10.1093/mnras/192.1.1
  21. ^ Rank DM, Townes CH, Welch WJ (1971-12-01). "Interstellar Molecules and Dense Clouds". Science. 174 (4014): 1083–1101. Bibcode:1971Sci...174.1083R. doi:10.1126/science.174.4014.1083. PMID 17779392. S2CID 43499656. Retrieved 2009-01-13.
  22. ^ Dieter NH, Ewen HI (1964-01-18). "Radio Observations of the Interstellar HO Line at 1,667 Mc/s". Nature. 201 (4916): 279–281. Bibcode:1964Natur.201..279D. doi:10.1038/201279b0. S2CID 4163406. Retrieved 2009-01-13.
  23. ^ Storey JW, Watson DM, Townes CH (1981-02-15). "Detection of interstellar HO in the far-infrared". Astrophysical Journal, Part 2 - Letters to the Editor. 244: L27–L30. Bibcode:1981ApJ...244L..27S. doi:10.1086/183472.
  24. ^ Argon AL, Reid MJ, Menten KM (August 2003). "A class of interstellar HO masers associated with protostellar outflows". The Astrophysical Journal. 593 (2): 925–930. arXiv:astro-ph/0304565. Bibcode:2003ApJ...593..925A. doi:10.1086/376592.

External links