stringtranslate.com

Prótesis

Un hombre con una prótesis de extremidad inferior

En medicina , una prótesis ( pl.: prótesis ; del griego antiguo : πρόσθεσις , romanizadoprósthesis , lit.  'adición, aplicación, fijación'), [1] o un implante protésico , [2] [3] es un dispositivo artificial que reemplaza una parte del cuerpo faltante, que puede perderse por un traumatismo físico , una enfermedad o una afección presente al nacer ( trastorno congénito ). Las prótesis están destinadas a restaurar las funciones normales de la parte del cuerpo faltante. [4] La rehabilitación de amputados está coordinada principalmente por un fisiatra como parte de un equipo interdisciplinario formado por fisiatras, protésicos, enfermeras, fisioterapeutas y terapeutas ocupacionales. [5] Las prótesis se pueden crear a mano o con diseño asistido por computadora (CAD), una interfaz de software que ayuda a los creadores a diseñar y analizar la creación con gráficos 2D y 3D generados por computadora, así como herramientas de análisis y optimización. [6]

Tipos

La prótesis de una persona debe diseñarse y ensamblarse de acuerdo con su apariencia y sus necesidades funcionales. Por ejemplo, una persona puede necesitar una prótesis transradial, pero debe elegir entre un dispositivo funcional estético, un dispositivo mioeléctrico, un dispositivo accionado por el cuerpo o un dispositivo específico para una actividad. Los objetivos futuros de la persona y sus capacidades económicas pueden ayudarla a elegir entre uno o más dispositivos.

Las prótesis craneofaciales incluyen prótesis intraorales y extraorales. Las prótesis extraorales se dividen a su vez en hemifaciales, auriculares (orejas), nasales, orbitales y oculares . Las prótesis intraorales incluyen prótesis dentales , como dentaduras postizas , obturadores e implantes dentales .

Las prótesis del cuello incluyen sustitutos de laringe , tráquea y esófago superior ,

Las prótesis somato del torso incluyen prótesis mamarias que pueden ser simples o bilaterales, dispositivos mamarios completos o prótesis de pezón .

Las prótesis de pene se utilizan para tratar la disfunción eréctil , corregir la deformidad del pene , realizar procedimientos de faloplastia en hombres cisgénero y para construir un nuevo pene en cirugías de reasignación de género de mujer a hombre .

Prótesis de miembros

Las prótesis de extremidades incluyen tanto prótesis de extremidades superiores como inferiores.

Las prótesis de miembros superiores se utilizan en distintos niveles de amputación: extremidad anterior, desarticulación del hombro, prótesis transhumeral, desarticulación del codo, prótesis transradial, desarticulación de la muñeca, mano completa, mano parcial, dedo, dedo parcial. Una prótesis transradial es una extremidad artificial que reemplaza un brazo que falta por debajo del codo.

Un ejemplo de dos prótesis de extremidades superiores, una accionada por el cuerpo (brazo derecho) y otra mioeléctrica (brazo izquierdo)

Las prótesis de miembros superiores se pueden clasificar en tres categorías principales: dispositivos pasivos, dispositivos accionados por el cuerpo y dispositivos accionados externamente (mioeléctricos). Los dispositivos pasivos pueden ser manos pasivas, utilizadas principalmente con fines cosméticos, o herramientas pasivas, utilizadas principalmente para actividades específicas (por ejemplo, ocio o vocacionales). Se puede encontrar una descripción general y clasificación extensa de los dispositivos pasivos en una revisión de la literatura de Maat et.al. [7] Un dispositivo pasivo puede ser estático, lo que significa que el dispositivo no tiene partes móviles, o puede ser ajustable, lo que significa que su configuración se puede ajustar (por ejemplo, apertura de mano ajustable). A pesar de la ausencia de agarre activo, los dispositivos pasivos son muy útiles en tareas bimanuales que requieren fijación o apoyo de un objeto, o para la gesticulación en la interacción social. Según datos científicos, un tercio de los amputados de miembros superiores en todo el mundo usan una mano protésica pasiva. [7] Las extremidades accionadas por el cuerpo o accionadas por cable funcionan sujetando un arnés y un cable alrededor del hombro opuesto del brazo dañado. Un enfoque reciente impulsado por el cuerpo ha explorado la utilización de la respiración del usuario para impulsar y controlar la mano protésica para ayudar a eliminar el cable de actuación y el arnés. [8] [9] [10] La tercera categoría de dispositivos protésicos disponibles comprende los brazos mioeléctricos. Esta clase particular de dispositivos se distingue de los anteriores debido a la inclusión de un sistema de batería. Esta batería tiene el doble propósito de proporcionar energía tanto para los componentes de actuación como de detección. Si bien la actuación se basa predominantemente en sistemas motores o neumáticos, [11] se han explorado diversas soluciones para capturar la actividad muscular, incluidas técnicas como la electromiografía , la sonomiografía, la miocinética y otras. [12] [13] [14] Estos métodos funcionan detectando las diminutas corrientes eléctricas generadas por los músculos contraídos durante el movimiento de la parte superior del brazo , generalmente empleando electrodos u otras herramientas adecuadas. Posteriormente, estas señales adquiridas se convierten en patrones de agarre o posturas que luego ejecutará la mano artificial.

En la industria de las prótesis, a un brazo protésico transradial a menudo se lo denomina prótesis "BE" o debajo del codo.

Las prótesis de miembros inferiores proporcionan reemplazos en distintos niveles de amputación. Estas incluyen desarticulación de cadera , prótesis transfemoral, desarticulación de rodilla, prótesis transtibial, amputación de Syme, pie, pie parcial y dedo del pie. Las dos subcategorías principales de dispositivos protésicos de miembros inferiores son transtibiales (cualquier amputación que seccione el hueso tibial o una anomalía congénita que resulte en una deficiencia tibial) y transfemorales (cualquier amputación que seccione el hueso fémur o una anomalía congénita que resulte en una deficiencia femoral). [ cita requerida ]

Una prótesis transfemoral es una extremidad artificial que reemplaza una pierna que falta por encima de la rodilla. Los amputados transfemorales pueden tener muchas dificultades para recuperar el movimiento normal. En general, un amputado transfemoral debe utilizar aproximadamente un 80% más de energía para caminar que una persona con dos piernas enteras. [15] Esto se debe a las complejidades del movimiento asociado con la rodilla. En los diseños más nuevos y mejorados, se emplean sistemas hidráulicos, fibra de carbono, conexiones mecánicas, motores, microprocesadores informáticos y combinaciones innovadoras de estas tecnologías para dar más control al usuario. En la industria protésica, a una pierna protésica transfemoral a menudo se la denomina "AK" o prótesis por encima de la rodilla.

Una prótesis transtibial es una extremidad artificial que reemplaza una pierna que falta por debajo de la rodilla. Una persona con amputación transtibial suele recuperar el movimiento normal con mayor facilidad que una persona con una amputación transfemoral, en gran parte debido a que conserva la rodilla, lo que permite un movimiento más fácil. Las prótesis de extremidades inferiores describen miembros reemplazados artificialmente ubicados a la altura de la cadera o más abajo. En la industria protésica, una pierna protésica transtibial suele denominarse "BK" o prótesis por debajo de la rodilla.

Las prótesis son fabricadas y ajustadas por protésicos clínicos. Los protésicos son profesionales de la salud responsables de fabricar, ajustar y ajustar las prótesis y, en el caso de las prótesis de miembros inferiores, evaluarán tanto la marcha como la alineación protésica. Una vez que un protésico haya ajustado una prótesis, un fisioterapeuta de rehabilitación (llamado fisioterapeuta en Estados Unidos) ayudará a enseñar a un nuevo usuario de prótesis a caminar con una prótesis de pierna. Para ello, el fisioterapeuta puede proporcionar instrucciones verbales y también puede ayudar a guiar a la persona utilizando el tacto o señales táctiles. Esto puede hacerse en una clínica o en el hogar. Hay algunas investigaciones que sugieren que este entrenamiento en el hogar puede ser más exitoso si el tratamiento incluye el uso de una cinta de correr. [16] El uso de una cinta de correr, junto con el tratamiento de fisioterapia, ayuda a la persona a experimentar muchos de los desafíos de caminar con una prótesis.

En el Reino Unido, el 75% de las amputaciones de miembros inferiores se realizan debido a una circulación inadecuada (disvascularidad). [17] Esta afección a menudo se asocia con muchas otras afecciones médicas ( comorbilidades ), incluidas la diabetes y las enfermedades cardíacas , que pueden dificultar la recuperación y el uso de una prótesis para recuperar la movilidad y la independencia. [17] En el caso de las personas que tienen una circulación inadecuada y han perdido un miembro inferior, no hay pruebas suficientes debido a la falta de investigación para informarles sobre su elección de enfoques de rehabilitación protésica. [17]

Tipos de prótesis utilizadas para reemplazar articulaciones en el cuerpo humano

Las prótesis de miembros inferiores a menudo se clasifican por el nivel de amputación o según el nombre de un cirujano: [18] [19]

Materias primas protésicas

Las prótesis son livianas para mayor comodidad del amputado. Algunos de estos materiales incluyen:

Las prótesis con ruedas también se han utilizado ampliamente en la rehabilitación de animales domésticos heridos, incluidos perros, gatos, cerdos, conejos y tortugas. [20]

Historia

Dedo protésico del antiguo Egipto

Las prótesis se originaron en el antiguo Cercano Oriente alrededor del 3000 a. C., y las primeras evidencias de prótesis aparecen en el antiguo Egipto e Irán . La primera mención registrada de prótesis oculares proviene de la historia egipcia del Ojo de Horus , que data de alrededor del 3000 a. C., que implica que el ojo izquierdo de Horus fue arrancado y luego restaurado por Thoth . Alrededor del 3000-2800 a. C., la evidencia arqueológica más antigua de prótesis se encuentra en el antiguo Irán, donde se encontró una prótesis ocular enterrada con una mujer en Shahr-i Shōkhta . Probablemente estaba hecha de pasta de betún que estaba cubierta con una fina capa de oro. [21] Los egipcios también fueron pioneros de las prótesis de pie, como lo demuestra el dedo del pie de madera encontrado en un cuerpo del Imperio Nuevo alrededor del 1000 a. C. [22] Otra mención textual temprana se encuentra en el sur de Asia alrededor del 1200 a. C., que involucra a la reina guerrera Vishpala en el Rigveda . [23] También se han encontrado coronas de bronce romanas , pero su uso podría haber sido más estético que médico. [24]

Una mención temprana de una prótesis proviene del historiador griego Heródoto , quien cuenta la historia de Hegesistratus , un adivino griego que se cortó el pie para escapar de sus captores espartanos y lo reemplazó por uno de madera. [25]

Prótesis de madera y metal

La pierna de Capua (réplica)
Una prótesis de pierna de madera del cementerio de Shengjindian , alrededor del año 300 a. C., Museo de Turpan . Se trata de "la prótesis de pierna funcional más antigua conocida hasta la fecha". [26]
Mano protésica de hierro que se cree que perteneció a Götz von Berlichingen (1480-1562)
"Ilustración de una mano mecánica", hacia  1564
Se cree que la mano de hierro artificial data de entre 1560 y 1600

Plinio el Viejo también registró la historia de un general romano, Marco Sergio , cuya mano derecha fue cortada mientras estaba en campaña y se hizo una mano de hierro para sostener su escudo para poder regresar a la batalla. Un brazo protésico histórico famoso y bastante refinado [27] fue el de Götz von Berlichingen , fabricado a principios del siglo XVI. Sin embargo, el primer uso confirmado de un dispositivo protésico es del 950 al 710 a. C. En 2000, los patólogos investigadores descubrieron una momia de este período enterrada en la necrópolis egipcia cerca de la antigua Tebas que poseía un dedo gordo artificial. Este dedo, que consistía en madera y cuero, exhibía evidencia de uso. Cuando fue reproducido por ingenieros biomecánicos en 2011, los investigadores descubrieron que esta antigua prótesis permitía a su portador caminar descalzo y con sandalias de estilo egipcio. Anteriormente, la prótesis más antigua descubierta fue una pierna artificial de Capua . [28]

En la misma época, también se dice que François de la Noue tenía una mano de hierro, al igual que, en el siglo XVII, René-Robert Cavalier de la Salle . [29] Henri de Tonti tenía un gancho protésico en lugar de mano. Durante la Edad Media, las prótesis seguían siendo bastante básicas en su forma. A los caballeros debilitados se les colocaban prótesis para que pudieran sostener un escudo, agarrar una lanza o una espada, o estabilizar a un guerrero montado. [30] Solo los ricos podían permitirse algo que los ayudara en la vida diaria. [31]

Una prótesis notable fue la que pertenecía a un hombre italiano, que los científicos estiman que reemplazó su mano derecha amputada con un cuchillo. [32] [33] Los científicos que investigaron el esqueleto, que fue encontrado en un cementerio longobardo en Povegliano Veronese , estimaron que el hombre había vivido en algún momento entre los siglos VI y VIII d. C. [34] [33] Los materiales encontrados cerca del cuerpo del hombre sugieren que la prótesis de cuchillo estaba sujeta con una correa de cuero, que apretó repetidamente con los dientes. [34]

Durante el Renacimiento, se desarrollaron prótesis con el uso de hierro, acero, cobre y madera. Las prótesis funcionales comenzaron a aparecer en el siglo XVI. [35]

El progreso tecnológico antes del siglo XX

Un cirujano italiano registró la existencia de un amputado que tenía un brazo que le permitía quitarse el sombrero, abrir su cartera y firmar con su nombre. [36] La mejora en la cirugía de amputación y el diseño de prótesis llegó de la mano de Ambroise Paré . Entre sus inventos se encontraba un dispositivo por encima de la rodilla que era una prótesis de pie y pierna de palo arrodillada con una posición fija, arnés ajustable y control de bloqueo de rodilla. La funcionalidad de sus avances mostró cómo podrían desarrollarse las prótesis futuras.

Otras mejoras importantes antes de la era moderna:

Al finalizar la Segunda Guerra Mundial, la Academia Nacional de Ciencias (NAS) comenzó a promover una mejor investigación y desarrollo de prótesis. Gracias a la financiación gubernamental, se desarrolló un programa de investigación y desarrollo dentro del Ejército, la Marina, la Fuerza Aérea y la Administración de Veteranos.

Historia moderna de las extremidades inferiores

Una fábrica de miembros artificiales en 1941

Después de la Segunda Guerra Mundial, un equipo de la Universidad de California, Berkeley, que incluía a James Foort y CW Radcliff, ayudó a desarrollar el encaje cuadrilátero mediante el desarrollo de un sistema de ajuste de plantilla para amputaciones por encima de la rodilla. La tecnología de encajes para miembros inferiores experimentó una nueva revolución durante la década de 1980, cuando John Sabolich CPO inventó el encaje CATCAM (método de alineación trocantérica controlada con aducción contorneada), que más tarde se convertiría en el encaje Sabolich. Siguió la dirección de Ivan Long y Ossur Christensen cuando desarrollaron alternativas al encaje cuadrilátero, que a su vez siguió el encaje de tapón de extremo abierto, creado a partir de madera. [39] El avance se debió a la diferencia en el modelo de contacto del encaje con el paciente. Antes de esto, los encajes se hacían en forma de cuadrado sin contención especializada para el tejido muscular. De este modo, los nuevos diseños ayudan a fijar la anatomía ósea, fijándola en su lugar y distribuyendo el peso de manera uniforme sobre la extremidad existente, así como sobre la musculatura del paciente. La contención isquiática es bien conocida y utilizada hoy en día por muchos protésicos para ayudar en el cuidado del paciente. Por lo tanto, existen variaciones del encaje de contención isquiática y cada encaje se adapta a las necesidades específicas del paciente. Otros que contribuyeron al desarrollo y los cambios del encaje a lo largo de los años incluyen a Tim Staats, Chris Hoyt y Frank Gottschalk. Gottschalk cuestionó la eficacia del encaje CAT-CAM, insistiendo en que el procedimiento quirúrgico realizado por el cirujano de amputación era lo más importante para preparar al amputado para un buen uso de una prótesis de cualquier tipo de diseño de encaje. [40]

Las primeras prótesis de rodilla controladas por microprocesador aparecieron a principios de los años 90. La prótesis inteligente fue la primera prótesis de rodilla controlada por microprocesador disponible comercialmente. Fue lanzada por Chas. A. Blatchford & Sons, Ltd., de Gran Bretaña, en 1993 y permitió que caminar con la prótesis se sintiera y pareciera más natural. [41] En 1995 se lanzó una versión mejorada con el nombre de prótesis inteligente Plus. Blatchford lanzó otra prótesis, la prótesis adaptativa, en 1998. La prótesis adaptativa utilizaba controles hidráulicos, controles neumáticos y un microprocesador para proporcionar al amputado una marcha que respondiera mejor a los cambios en la velocidad de la marcha. El análisis de costos revela que una prótesis sofisticada por encima de la rodilla costará alrededor de un millón de dólares en 45 años, considerando solo los ajustes del costo de vida anual. [42]

En 2019 se puso en marcha un proyecto en el marco del programa AT2030 en el que se fabrican conectores a medida utilizando un termoplástico, en lugar de mediante un molde de yeso. Esto es más rápido de hacer y significativamente menos costoso. Los conectores se denominaron conectores Amparo Confidence. [43] [44]

Historia moderna de la extremidad superior

DARPA revoluciona las prótesis: el brazo LUKE

En 2005, DARPA inició el programa Revolutionizing Prosthetics. [45] [46] [47] [48] [49] [50] Según DARPA, el objetivo del programa de 100 millones de dólares era "desarrollar una prótesis electromecánica avanzada de miembro superior con un control casi natural que mejoraría drásticamente la independencia y la calidad de vida de los amputados". [51] [52] En 2014, el brazo LUKE desarrollado por Dean Kamen y su equipo en DEKA Research and Development Corp. se convirtió en el primer brazo protésico aprobado por la FDA que "traduce señales de los músculos de una persona para realizar tareas complejas", según la FDA. [52] [53] La Universidad Johns Hopkins y el Departamento de Asuntos de Veteranos de los EE. UU. también participaron en el programa. [52] [54]

Tendencias de diseño que avanzan

Hay muchos pasos en la evolución de las tendencias de diseño protésico que avanzan con el tiempo. Muchas tendencias de diseño apuntan a materiales más ligeros, más duraderos y flexibles como la fibra de carbono, la silicona y los polímeros avanzados. Estos no solo hacen que la prótesis sea más ligera y duradera, sino que también le permiten imitar el aspecto y la sensación de la piel natural, proporcionando a los usuarios una experiencia más cómoda y natural. [55] Esta nueva tecnología ayuda a los usuarios de prótesis a mimetizarse con las personas con ligamentos normales para reducir el estigma de las personas que usan prótesis. Otra tendencia apunta hacia el uso de componentes biónicos y mioeléctricos en el diseño protésico. Estas extremidades utilizan sensores para detectar señales eléctricas de los músculos residuales del usuario. Las señales luego se convierten en movimientos, lo que permite a los usuarios controlar sus extremidades protésicas utilizando sus propias contracciones musculares. Esto ha mejorado enormemente el rango y la fluidez de los movimientos disponibles para los amputados, haciendo que tareas como agarrar objetos o caminar de forma natural sean mucho más factibles. [55] La integración con IA también está a la vanguardia del diseño protésico. Las prótesis de miembros habilitadas con IA pueden aprender y adaptarse a los hábitos y preferencias del usuario a lo largo del tiempo, lo que garantiza una funcionalidad óptima. Al analizar la forma de andar, el agarre y otros movimientos del usuario, estas prótesis de miembros inteligentes pueden realizar ajustes en tiempo real, lo que proporciona movimientos más suaves y naturales. [55]

Procedimiento del paciente

Una prótesis es un reemplazo funcional de una extremidad amputada o con malformación congénita o faltante. Los protésicos son responsables de la prescripción, el diseño y el manejo de un dispositivo protésico.

En la mayoría de los casos, el protésico comienza tomando un molde de yeso de la extremidad afectada del paciente. Se fabrican termoplásticos ligeros y de alta resistencia a medida para este modelo del paciente. Los materiales de última generación, como la fibra de carbono, el titanio y el kevlar, proporcionan resistencia y durabilidad, al tiempo que hacen que la nueva prótesis sea más ligera. Las prótesis más sofisticadas están equipadas con electrónica avanzada, lo que proporciona estabilidad y control adicionales. [56]

Tecnología y fabricación actuales

Prótesis de rodilla fabricada con el software de fabricación asistida por ordenador WorkNC

A lo largo de los años, se han producido avances en el campo de las prótesis. Los nuevos plásticos y otros materiales, como la fibra de carbono , han permitido que las prótesis sean más resistentes y ligeras, lo que limita la cantidad de energía adicional necesaria para operar la extremidad. Esto es especialmente importante para los amputados transfemorales. Los materiales adicionales han permitido que las prótesis parezcan mucho más realistas, lo que es importante para los amputados transradiales y transhumerales porque es más probable que tengan la prótesis expuesta. [57]

Fabricación de un dedo protésico

Además de los nuevos materiales, el uso de la electrónica se ha vuelto muy común en las prótesis. Las prótesis mioeléctricas, que controlan las extremidades convirtiendo los movimientos musculares en señales eléctricas, se han vuelto mucho más comunes que las prótesis operadas por cable. Las señales mioeléctricas son captadas por electrodos, la señal se integra y una vez que excede un cierto umbral, se activa la señal de control de la prótesis, por lo que inherentemente, todos los controles mioeléctricos se retrasan. Por el contrario, el control por cable es inmediato y físico, y a través de eso ofrece un cierto grado de retroalimentación de fuerza directa que el control mioeléctrico no ofrece. Las computadoras también se utilizan ampliamente en la fabricación de extremidades. El diseño asistido por computadora y la fabricación asistida por computadora se utilizan a menudo para ayudar en el diseño y la fabricación de prótesis. [57] [58]

La mayoría de las prótesis modernas se fijan al muñón del paciente mediante cinturones y esposas o mediante succión . El muñón se ajusta directamente en un receptáculo de la prótesis o, más comúnmente hoy en día, se utiliza un inserto que luego se fija al receptáculo mediante vacío (receptáculos de succión) o un pasador de bloqueo. Los insertos son suaves y, por eso, pueden crear un ajuste de succión mucho mejor que los receptáculos duros. Los insertos de silicona se pueden obtener en tamaños estándar, principalmente con una sección transversal circular (redonda), pero para cualquier otra forma de miembro residual, se pueden hacer insertos personalizados. El receptáculo se fabrica a medida para adaptarse al miembro residual y para distribuir las fuerzas del miembro artificial en el área del miembro residual (en lugar de solo en un pequeño punto), lo que ayuda a reducir el desgaste del miembro residual.

Fabricación de encaje protésico

La producción de un encaje protésico comienza con la captura de la geometría del miembro residual, este proceso se denomina captura de forma. El objetivo de este proceso es crear una representación precisa del miembro residual, lo que es fundamental para lograr un buen ajuste del encaje. [59] El encaje personalizado se crea tomando un molde de yeso del miembro residual o, más comúnmente hoy en día, del revestimiento que se usa sobre el miembro residual, y luego haciendo un molde a partir del molde de yeso. El compuesto comúnmente utilizado se llama yeso de París. [60] En los últimos años, se han desarrollado varios sistemas de captura de forma digital que se pueden ingresar directamente a una computadora, lo que permite un diseño más sofisticado. En general, el proceso de captura de forma comienza con la adquisición digital de datos geométricos tridimensionales (3D) del miembro residual del amputado. Los datos se adquieren con una sonda, un escáner láser, un escáner de luz estructurada o un sistema de escaneo 3D basado en fotografías. [61]

Después de la captura de la forma, la segunda fase de la producción del encaje se llama rectificación, que es el proceso de modificar el modelo del miembro residual añadiendo volumen a la prominencia ósea y a los puntos de presión potenciales y quitando volumen del área de soporte de carga. Esto se puede hacer manualmente añadiendo o quitando yeso al modelo positivo, o virtualmente manipulando el modelo computarizado en el software. [62] Por último, la fabricación del encaje protésico comienza una vez que el modelo ha sido rectificado y finalizado. Los protésicos envolverían el modelo positivo con una lámina de plástico semifundido o fibra de carbono recubierta de resina epoxi para construir el encaje protésico. [59] Para el modelo computarizado, se puede imprimir en 3D utilizando una variedad de materiales con diferente flexibilidad y resistencia mecánica. [63]

El ajuste óptimo del encaje entre el miembro residual y el encaje es fundamental para el funcionamiento y el uso de toda la prótesis. Si el ajuste entre el miembro residual y el encaje es demasiado flojo, esto reducirá el área de contacto entre el miembro residual y el encaje o el revestimiento, y aumentará las bolsas entre la piel del miembro residual y el encaje o el revestimiento. Entonces, la presión es mayor, lo que puede ser doloroso. Las bolsas de aire pueden permitir que se acumule sudor que puede ablandar la piel. En última instancia, esta es una causa frecuente de erupciones cutáneas con picazón. Con el tiempo, esto puede provocar el deterioro de la piel. [15] Por otro lado, un ajuste muy ajustado puede aumentar excesivamente las presiones de la interfaz, lo que también puede provocar el deterioro de la piel después de un uso prolongado. [64]

Las prótesis se fabrican normalmente siguiendo los pasos siguientes: [57]

  1. Medición del miembro residual
  2. Medición del cuerpo para determinar el tamaño requerido para la prótesis
  3. Colocación de un revestimiento de silicona
  4. Creación de un modelo del liner que se coloca sobre el miembro residual
  5. Formación de una lámina termoplástica alrededor del modelo: luego se utiliza para probar el ajuste de la prótesis.
  6. Formación de alvéolo permanente
  7. Formación de piezas plásticas de miembros artificiales: se utilizan diferentes métodos, incluido el moldeado al vacío y el moldeo por inyección.
  8. Creación de piezas metálicas de miembros artificiales mediante fundición a presión
  9. Ensamblaje de toda la extremidad

Brazos accionados por el cuerpo

La tecnología actual permite que los brazos accionados por el cuerpo pesen aproximadamente entre la mitad y un tercio de lo que pesa un brazo mioeléctrico.

Zócalos

Los brazos actuales que funcionan con el cuerpo contienen encajes fabricados con resina epoxi o fibra de carbono. Estos encajes o "interfaces" se pueden hacer más cómodos si se revisten con un material de espuma más suave y comprimible que proporciona un acolchado para las prominencias óseas. Un diseño de encaje autosuspendido o supracondíleo es útil para aquellos con ausencia de extremidades por debajo del codo de corta a media. Las extremidades más largas pueden requerir el uso de un revestimiento interno tipo roll-on con bloqueo o un arnés más complejo para ayudar a aumentar la suspensión.

Muñecas

Las unidades de muñeca son conectores roscados con rosca UNF 1/2-20 (EE. UU.) o conectores de liberación rápida, de los cuales existen diferentes modelos.

Apertura voluntaria y cierre voluntario

Existen dos tipos de sistemas accionados por el cuerpo, los de apertura voluntaria "tirar para abrir" y los de cierre voluntario "tirar para cerrar". Prácticamente todas las prótesis "split hook" funcionan con un sistema de apertura voluntaria.

Los "prensores" más modernos, llamados GRIPS, utilizan sistemas de cierre voluntario. Las diferencias son significativas. Los usuarios de sistemas de apertura voluntaria dependen de bandas elásticas o resortes para la fuerza de agarre, mientras que los usuarios de sistemas de cierre voluntario dependen de su propia fuerza y ​​energía corporal para crear la fuerza de agarre.

Los usuarios que utilizan el método de cierre voluntario pueden generar fuerzas de prensión equivalentes a las de una mano normal, hasta cien libras o más. Los GRIPS de cierre voluntario requieren una tensión constante para sujetar, como una mano humana, y en esa propiedad, se acercan más al rendimiento de la mano humana. Los usuarios que utilizan el método de apertura voluntaria con gancho dividido están limitados a las fuerzas que pueden generar sus gomas o resortes, que generalmente son inferiores a 20 libras.

Comentario

Existe una diferencia adicional en la biorretroalimentación creada que permite al usuario "sentir" lo que se está sujetando. Una vez activados, los sistemas de apertura voluntaria proporcionan la fuerza de sujeción de modo que funcionan como un tornillo de banco pasivo en el extremo del brazo. No se proporciona ninguna retroalimentación de agarre una vez que el gancho se ha cerrado alrededor del objeto que se está sujetando. Los sistemas de cierre voluntario proporcionan un control directamente proporcional y biorretroalimentación de modo que el usuario puede sentir cuánta fuerza está aplicando.

En 1997, el profesor colombiano Álvaro Ríos Poveda , investigador en biónica en América Latina , desarrolló una prótesis de miembro superior y mano con retroalimentación sensorial . Esta tecnología permite a los pacientes amputados manipular sistemas protésicos de mano de una manera más natural. [65]

Un estudio reciente demostró que, al estimular los nervios mediano y cubital, según la información proporcionada por los sensores artificiales de una prótesis de mano, se podía proporcionar a un amputado información sensorial fisiológicamente apropiada (casi natural). Esta retroalimentación le permitió al participante modular eficazmente la fuerza de agarre de la prótesis sin retroalimentación visual o auditiva. [66]

En febrero de 2013, investigadores de la Escuela Politécnica Federal de Lausana en Suiza y la Escuela Superior Sant'Anna en Italia implantaron electrodos en el brazo de un amputado, lo que le proporcionó al paciente retroalimentación sensorial y le permitió controlar la prótesis en tiempo real. [67] Con cables conectados a nervios en la parte superior de su brazo, el paciente danés pudo manipular objetos y recibir instantáneamente una sensación de tacto a través de la mano artificial especial que fue creada por Silvestro Micera e investigadores tanto en Suiza como en Italia. [68]

En julio de 2019, investigadores de la Universidad de Utah , dirigidos por Jacob George, ampliaron aún más esta tecnología . El grupo de investigadores implantó electrodos en el brazo del paciente para mapear varios preceptos sensoriales. Luego estimularían cada electrodo para descubrir cómo se activaba cada precepto sensorial y luego procederían a mapear la información sensorial en la prótesis. Esto permitiría a los investigadores obtener una buena aproximación del mismo tipo de información que el paciente recibiría de su mano natural. Desafortunadamente, el brazo es demasiado caro para que el usuario promedio lo adquiera, sin embargo, Jacob mencionó que las compañías de seguros podrían cubrir los costos de la prótesis. [69]

Dispositivos terminales

Los dispositivos terminales contienen una gama de ganchos, prensores, manos u otros dispositivos.

Manos

Los sistemas de gancho dividido de apertura voluntaria son simples, cómodos, ligeros, robustos, versátiles y relativamente asequibles.

Un gancho no se compara con una mano humana normal en apariencia o versatilidad general, pero sus tolerancias materiales pueden exceder y sobrepasar la mano humana normal en cuanto a estrés mecánico (uno puede incluso usar un gancho para cortar cajas o como un martillo mientras que lo mismo no es posible con una mano normal), en estabilidad térmica (uno puede usar un gancho para agarrar objetos del agua hirviendo, para dar vuelta la carne en una parrilla, para sostener un fósforo hasta que se haya quemado por completo) y en cuanto a riesgos químicos (ya que un gancho de metal resiste ácidos o lejía, y no reacciona a los solventes como un guante protésico o la piel humana).

Manos
El actor Owen Wilson agarra el brazo protésico mioeléctrico de un infante de marina de los Estados Unidos

Las manos protésicas están disponibles en versiones de apertura y cierre voluntario y, debido a su mecánica más compleja y la cubierta cosmética del guante, requieren una fuerza de activación relativamente grande, que, según el tipo de arnés utilizado, puede resultar incómoda. [70] Un estudio reciente de la Universidad Tecnológica de Delft, Países Bajos, mostró que el desarrollo de manos protésicas mecánicas se ha descuidado durante las últimas décadas. El estudio mostró que el nivel de fuerza de pellizco de la mayoría de las manos mecánicas actuales es demasiado bajo para su uso práctico. [71] La mano mejor probada fue una mano protésica desarrollada alrededor de 1945. Sin embargo, en 2017, Laura Hruby de la Universidad Médica de Viena inició una investigación con manos biónicas . [72] [73] También están disponibles algunas manos biónicas imprimibles en 3D de hardware abierto. [74] Algunas empresas también están produciendo manos robóticas con antebrazo integrado, para colocarlas en la parte superior del brazo del paciente [75] [76] y en 2020, en el Instituto Italiano de Tecnología (IIT), se desarrolló otra mano robótica con antebrazo integrado (Soft Hand Pro). [77]

Proveedores comerciales y materiales

Hosmer y Otto Bock son importantes proveedores de ganchos comerciales. Hosmer y Otto Bock también venden manos mecánicas; la familia Becker sigue fabricando la mano Becker. Las manos protésicas pueden equiparse con guantes de silicona estándar o de aspecto cosmético hechos a medida. Pero también se pueden usar guantes de trabajo normales. Otros dispositivos terminales incluyen el V2P Prehensor, una pinza robusta y versátil que permite a los clientes modificar aspectos de la misma, Texas Assist Devices (con una gran variedad de herramientas) y TRS, que ofrece una gama de dispositivos terminales para deportes. Los arneses de cables se pueden construir utilizando cables de acero para aviación, bisagras de bola y fundas de cable autolubricantes. Algunas prótesis se han diseñado específicamente para su uso en agua salada. [78]

Prótesis de miembros inferiores

Una pierna protésica usada por Ellie Cole

Las prótesis de miembros inferiores son miembros reemplazados artificialmente ubicados a nivel de la cadera o más abajo. Ephraim et al. (2003) encontraron una estimación mundial de amputaciones de miembros inferiores por todas las causas de 2,0 a 5,9 por cada 10 000 habitantes para todas las edades. En cuanto a las tasas de prevalencia al nacimiento de deficiencias congénitas de miembros, encontraron una estimación de entre 3,5 y 7,1 casos por cada 10 000 nacimientos. [79]

Las dos subcategorías principales de dispositivos protésicos para miembros inferiores son las transtibiales (cualquier amputación que seccione el hueso tibial o una anomalía congénita que resulte en una deficiencia tibial) y las transfemorales (cualquier amputación que seccione el hueso fémur o una anomalía congénita que resulte en una deficiencia femoral). En la industria protésica, una prótesis de pierna transtibial se conoce a menudo como "BK" o prótesis por debajo de la rodilla, mientras que la prótesis de pierna transfemoral se conoce a menudo como "AK" o prótesis por encima de la rodilla.

Otros casos menos frecuentes de extremidades inferiores incluyen los siguientes:

  1. Desarticulaciones de cadera: esto suele hacer referencia a cuando un paciente amputado o con problemas congénitos tiene una amputación o anomalía en la articulación de la cadera o en las proximidades de esta. Ver reemplazo de cadera
  2. Desarticulaciones de rodilla: esto suele hacer referencia a una amputación a través de la rodilla que desarticula el fémur de la tibia. Véase reemplazo de rodilla
  3. Symes: Es una desarticulación del tobillo conservando la almohadilla del talón.

Enchufe

El encaje sirve como interfaz entre el residuo y la prótesis, permitiendo idealmente soportar peso cómodamente, control del movimiento y propiocepción . [80] Los problemas del encaje, como la incomodidad y el deterioro de la piel, se clasifican entre los problemas más importantes que enfrentan los amputados de miembros inferiores. [81]

Vástago y conectores

Esta pieza crea distancia y soporte entre la articulación de la rodilla y el pie (en el caso de una prótesis de pierna superior) o entre el encaje y el pie. El tipo de conectores que se utilizan entre la caña y la rodilla/pie determina si la prótesis es modular o no. Modular significa que el ángulo y el desplazamiento del pie con respecto al encaje se pueden cambiar después de la colocación. En los países en desarrollo, la mayoría de las prótesis no son modulares, con el fin de reducir los costos. Al considerar a los niños, la modularidad del ángulo y la altura es importante debido a su crecimiento promedio de 1,9 cm al año. [82]

Al proporcionar contacto con el suelo, el pie proporciona absorción de impactos y estabilidad durante la postura. [83] Además, influye en la biomecánica de la marcha por su forma y rigidez. Esto se debe a que la trayectoria del centro de presión (COP) y el ángulo de las fuerzas de reacción del suelo están determinados por la forma y la rigidez del pie y deben coincidir con la constitución del sujeto para producir un patrón de marcha normal. [84] Andrysek (2010) encontró 16 tipos diferentes de pies, con resultados muy variables en cuanto a durabilidad y biomecánica. El principal problema encontrado en los pies actuales es la durabilidad, la resistencia varía de 16 a 32 meses [85] Estos resultados son para adultos y probablemente serán peores para los niños debido a los niveles de actividad más altos y los efectos de escala. La evidencia que compara diferentes tipos de pies y dispositivos protésicos de tobillo no es lo suficientemente sólida como para determinar si un mecanismo de tobillo/pie es superior a otro. [86] Al decidir sobre un dispositivo, se debe considerar el costo del dispositivo, la necesidad funcional de una persona y la disponibilidad de un dispositivo en particular. [86]

Articulación de la rodilla

En caso de una amputación transfemoral (por encima de la rodilla), también existe la necesidad de un conector complejo que proporcione articulación, permitiendo la flexión durante la fase de balanceo pero no durante la postura. Como su propósito es reemplazar la rodilla, la articulación de rodilla protésica es el componente más crítico de la prótesis para amputados transfemorales. La función de la buena articulación de rodilla protésica es imitar la función de la rodilla normal, como proporcionar soporte estructural y estabilidad durante la fase de postura pero capaz de flexionarse de manera controlable durante la fase de balanceo. Por lo tanto, permite a los usuarios tener una marcha suave y energéticamente eficiente y minimizar el impacto de la amputación. [87] La ​​rodilla protésica está conectada al pie protésico por la caña, que generalmente está hecha de un tubo de aluminio o grafito.

Uno de los aspectos más importantes de una articulación protésica de rodilla sería su mecanismo de control de la fase de apoyo. La función del control de la fase de apoyo es evitar que la pierna se doble cuando la extremidad se carga durante la aceptación del peso. Esto garantiza la estabilidad de la rodilla para soportar la tarea de apoyo de una sola extremidad de la fase de apoyo y proporciona una transición suave a la fase de balanceo. El control de la fase de apoyo se puede lograr de varias maneras, incluidos los bloqueos mecánicos, [88] la alineación relativa de los componentes protésicos, [89] el control de fricción activado por el peso, [89] y los mecanismos policéntricos. [90]

Control por microprocesador

Para imitar la funcionalidad de la rodilla durante la marcha, se han desarrollado articulaciones de rodilla controladas por microprocesador que controlan la flexión de la rodilla. Algunos ejemplos son la C-leg de Otto Bock , presentada en 1997, la Rheo Knee de Ossur , lanzada en 2005, la Power Knee de Ossur, presentada en 2006, la Plié Knee de Freedom Innovations y la Self Learning Knee (SLK) de DAW Industries. [91]

La idea fue desarrollada originalmente por Kelly James, un ingeniero canadiense, en la Universidad de Alberta . [92]

Se utiliza un microprocesador para interpretar y analizar las señales de los sensores de ángulo de rodilla y de momento. El microprocesador recibe señales de sus sensores para determinar el tipo de movimiento que realiza la persona amputada. La mayoría de las articulaciones de rodilla controladas por microprocesador funcionan con una batería alojada en el interior de la prótesis.

Las señales sensoriales calculadas por el microprocesador se utilizan para controlar la resistencia generada por los cilindros hidráulicos en la articulación de la rodilla. Unas pequeñas válvulas controlan la cantidad de fluido hidráulico que puede entrar y salir del cilindro, regulando así la extensión y la compresión de un pistón conectado a la sección superior de la rodilla. [42]

La principal ventaja de una prótesis controlada por microprocesador es que se acerca más a la marcha natural de un amputado. Algunas permiten a los amputados caminar a una velocidad cercana a la de una persona o correr. También es posible que se produzcan variaciones de velocidad, que son tomadas en cuenta por sensores y comunicadas al microprocesador, que se ajusta a estos cambios en consecuencia. También permite a los amputados bajar escaleras con un enfoque paso a paso, en lugar del enfoque de un paso a la vez que se utiliza con las rodillas mecánicas. [93] Hay algunas investigaciones que sugieren que las personas con prótesis controladas por microprocesador informan de una mayor satisfacción y una mejora en la funcionalidad, la salud del miembro residual y la seguridad. [94] Las personas pueden realizar actividades cotidianas a mayor velocidad, incluso mientras realizan varias tareas a la vez, y reducir su riesgo de caídas. [94]

Sin embargo, algunas tienen algunos inconvenientes importantes que dificultan su uso. Pueden ser susceptibles a daños por agua, por lo que se debe tener mucho cuidado para garantizar que la prótesis permanezca seca. [95]

Mioeléctrico

Una prótesis mioeléctrica utiliza como información la tensión eléctrica generada cada vez que un músculo se contrae. Esta tensión puede captarse de los músculos contraídos voluntariamente mediante electrodos aplicados sobre la piel para controlar los movimientos de la prótesis, como la flexión/extensión del codo, la supinación/pronación (rotación) de la muñeca o la apertura/cierre de los dedos. Una prótesis de este tipo utiliza el sistema neuromuscular residual del cuerpo humano para controlar las funciones de una mano, muñeca, codo o pie protésico accionado eléctricamente. [96] Esto es diferente de una prótesis con interruptor eléctrico, que requiere correas o cables activados por los movimientos del cuerpo para activar u operar interruptores que controlan los movimientos de la prótesis. No hay evidencia clara que concluya que las prótesis mioeléctricas de extremidades superiores funcionan mejor que las prótesis accionadas por el cuerpo. [97] Las ventajas de utilizar una prótesis mioeléctrica de extremidad superior incluyen la posibilidad de mejorar el atractivo estético (este tipo de prótesis puede tener un aspecto más natural), puede ser mejor para actividades cotidianas ligeras y puede ser beneficiosa para las personas que experimentan dolor en el miembro fantasma . [97] En comparación con una prótesis accionada por el cuerpo, una prótesis mioeléctrica puede no ser tan duradera, puede tener un tiempo de entrenamiento más largo, puede requerir más ajustes, puede necesitar más mantenimiento y no proporciona retroalimentación al usuario. [97]

El profesor Álvaro Ríos Poveda lleva varios años trabajando en una solución no invasiva y asequible a este problema de retroalimentación. Considera que: "Las prótesis de miembros que se pueden controlar con el pensamiento son muy prometedoras para el amputado, pero sin la retroalimentación sensorial de las señales que regresan al cerebro, puede resultar difícil alcanzar el nivel de control necesario para realizar movimientos precisos. Al conectar el sentido del tacto de una mano mecánica directamente al cerebro, las prótesis pueden restaurar la función del miembro amputado de una manera casi natural". Presentó la primera mano protésica mioeléctrica con retroalimentación sensorial en el XVIII Congreso Mundial de Física Médica e Ingeniería Biomédica , 1997, celebrado en Niza, Francia . [98] [99]

La URSS fue la primera en desarrollar un brazo mioeléctrico en 1958, [100] mientras que el primer brazo mioeléctrico se comercializó en 1964 por el Instituto Central de Investigación Protésica de la URSS , y fue distribuido por la Hangar Limb Factory del Reino Unido . [101] [102] Las prótesis mioeléctricas son costosas, requieren un mantenimiento regular, son sensibles al sudor y la humedad, lo que afecta el rendimiento del sensor.

Prótesis robóticas

Control cerebral del movimiento de un brazo protésico en 3D (golpear objetivos). Este vídeo se grabó cuando el participante controlaba el movimiento en 3D de un brazo protésico para golpear objetivos físicos en un laboratorio de investigación.

Los robots se pueden utilizar para generar medidas objetivas del deterioro del paciente y el resultado de la terapia, ayudar en el diagnóstico, personalizar terapias basadas en las habilidades motoras del paciente y asegurar el cumplimiento de los regímenes de tratamiento y mantener los registros del paciente. Se muestra en muchos estudios que hay una mejora significativa en la función motora de la extremidad superior después de un accidente cerebrovascular utilizando robótica para la rehabilitación de la extremidad superior. [103] Para que una prótesis robótica funcione, debe tener varios componentes para integrarla en la función del cuerpo: Los biosensores detectan señales de los sistemas nervioso o muscular del usuario. Luego transmite esta información a un microcontrolador ubicado dentro del dispositivo y procesa la retroalimentación de la extremidad y el actuador, por ejemplo, posición o fuerza, y la envía al controlador. Los ejemplos incluyen electrodos de superficie que detectan la actividad eléctrica en la piel, electrodos de aguja implantados en el músculo o matrices de electrodos de estado sólido con nervios que crecen a través de ellos. Un tipo de estos biosensores se emplean en prótesis mioeléctricas .

Un dispositivo, conocido como controlador, está conectado a los sistemas nervioso y muscular del usuario y al dispositivo en sí. Envía comandos de intención del usuario a los actuadores del dispositivo e interpreta la retroalimentación de los sensores mecánicos y biosensores al usuario. El controlador también es responsable de la supervisión y el control de los movimientos del dispositivo.

Un actuador imita las acciones de un músculo al producir fuerza y ​​movimiento. Algunos ejemplos incluyen un motor que ayuda o reemplaza el tejido muscular original.

La reinervación muscular dirigida (TMR) es una técnica en la que los nervios motores , que anteriormente controlaban los músculos de una extremidad amputada, se redirigen quirúrgicamente de modo que reinerven una pequeña región de un músculo grande e intacto, como el pectoral mayor . Como resultado, cuando un paciente piensa en mover el pulgar de su mano faltante, una pequeña área de músculo en su pecho se contraerá en su lugar. Al colocar sensores sobre el músculo reinervado, estas contracciones se pueden hacer para controlar el movimiento de una parte apropiada de la prótesis robótica. [104] [105]

Una variante de esta técnica se denomina reinervación sensorial dirigida (TSR, por sus siglas en inglés). Este procedimiento es similar a la TMR, excepto que los nervios sensoriales se redirigen quirúrgicamente a la piel del pecho, en lugar de redirigir los nervios motores al músculo. Recientemente, las extremidades robóticas han mejorado en su capacidad de tomar señales del cerebro humano y traducir esas señales en movimiento en la extremidad artificial. DARPA , la división de investigación del Pentágono, está trabajando para lograr aún más avances en esta área. Su deseo es crear una extremidad artificial que se conecte directamente al sistema nervioso . [106]

Brazos robóticos

Los avances en los procesadores utilizados en los brazos mioeléctricos han permitido a los desarrolladores obtener ganancias en el control preciso de la prótesis. El brazo digital Boston es una prótesis reciente que ha aprovechado estos procesadores más avanzados. El brazo permite el movimiento en cinco ejes y permite programarlo para una sensación más personalizada. Recientemente, la mano I-LIMB , inventada en Edimburgo, Escocia, por David Gow , se ha convertido en la primera prótesis de mano disponible comercialmente con cinco dedos accionados individualmente. La mano también posee un pulgar giratorio manualmente que es operado pasivamente por el usuario y permite que la mano agarre en modos de precisión, potencia y agarre clave. [107]

Otra prótesis neuronal es el Proto 1 del Laboratorio de Física Aplicada de la Universidad Johns Hopkins. Además del Proto 1, la universidad también terminó el Proto 2 en 2010. [108] A principios de 2013, Max Ortiz Catalan y Rickard Brånemark de la Universidad Tecnológica de Chalmers y el Hospital Universitario Sahlgrenska en Suecia, lograron fabricar el primer brazo robótico que se controla mentalmente y se puede unir permanentemente al cuerpo (mediante osteointegración ). [109] [110] [111]

Un método muy útil es el llamado rotación del brazo, que es común para amputados unilaterales, es decir, una amputación que afecta solo un lado del cuerpo; y también es esencial para amputados bilaterales, una persona a la que le faltan o le han amputado ambos brazos o piernas, para realizar actividades de la vida diaria. Esto implica insertar un pequeño imán permanente en el extremo distal del hueso residual de sujetos con amputaciones de miembros superiores. Cuando un sujeto gira el brazo residual, el imán rotará con el hueso residual, lo que provocará un cambio en la distribución del campo magnético. [112] Las señales de EEG (electroencefalograma), detectadas mediante pequeños discos de metal planos adheridos al cuero cabelludo, que esencialmente decodifican la actividad cerebral humana utilizada para el movimiento físico, se utilizan para controlar las extremidades robóticas. Esto permite al usuario controlar la pieza directamente. [113]

Prótesis transtibiales robóticas

La investigación de piernas robóticas ha avanzado mucho con el tiempo, permitiendo un movimiento y control precisos.

En septiembre de 2013, investigadores del Instituto de Rehabilitación de Chicago anunciaron que habían desarrollado una pierna robótica que traduce los impulsos neuronales de los músculos del muslo del usuario en movimiento, siendo la primera pierna protésica que lo hace. Actualmente se encuentra en fase de pruebas. [114]

Hugh Herr, jefe del grupo de biomecatrónica del Media Lab del MIT, desarrolló una pierna transtibial robótica (PowerFoot BiOM). [115] [116]

La empresa islandesa Össur también ha creado una pierna transtibial robótica con tobillo motorizado que se mueve mediante algoritmos y sensores que ajustan automáticamente el ángulo del pie durante diferentes puntos de la zancada de su portador. También existen piernas biónicas controladas por el cerebro que permiten a una persona mover sus extremidades con un transmisor inalámbrico. [117]

Diseño de prótesis

El objetivo principal de una prótesis robótica es proporcionar una actuación activa durante la marcha para mejorar la biomecánica de la marcha, incluyendo, entre otras cosas, la estabilidad, la simetría o el gasto de energía para los amputados. [118] Hay varias piernas protésicas motorizadas actualmente en el mercado, incluyendo piernas totalmente motorizadas, en las que los actuadores impulsan directamente las articulaciones, y piernas semiactivas, que utilizan pequeñas cantidades de energía y un pequeño actuador para cambiar las propiedades mecánicas de la pierna pero no inyectan energía neta positiva en la marcha. Algunos ejemplos específicos incluyen The emPOWER de BionX, el Proprio Foot de Ossur y el Elan Foot de Endolite. [119] [120] [121] Varios grupos de investigación también han experimentado con piernas robóticas durante la última década. [122] Entre los temas centrales que se están investigando se incluyen el diseño del comportamiento del dispositivo durante las fases de apoyo y balanceo, el reconocimiento de la tarea de deambulación actual y varios problemas de diseño mecánico como la robustez, el peso, la duración/eficiencia de la batería y el nivel de ruido. Sin embargo, los científicos de la Universidad de Stanford y la Universidad Nacional de Seúl han desarrollado un sistema de nervios artificiales que ayudará a las prótesis a sentir. [123] Este sistema de nervios sintético permite que las prótesis perciban el braille , sientan el sentido del tacto y respondan al entorno. [124] [125]

Uso de materiales reciclados

En todo el mundo se están fabricando prótesis a partir de botellas y tapas de plástico recicladas. [126] [127] [128] [129] [130]

Fijación ósea directa y osteointegración

La mayoría de las prótesis se adhieren al exterior del cuerpo de forma no permanente. El método de muñón y encaje puede causar un dolor importante en el amputado, por lo que se ha estudiado ampliamente la fijación directa al hueso.

La osteointegración es un método de fijación de la prótesis al cuerpo mediante un implante protésico. Este método también se denomina a veces exoprótesis (fijación de una prótesis al hueso) o endoexoprótesis . Las endoprótesis son implantes articulares protésicos que permanecen totalmente dentro del cuerpo, como los implantes de reemplazo de rodilla y cadera .

El método consiste en insertar un perno de titanio en el hueso, en el extremo del muñón. Después de varios meses, el hueso se adhiere al perno de titanio y se fija un pilar al perno de titanio. El pilar se extiende fuera del muñón y luego se fija la prótesis (extraíble) al pilar. Algunos de los beneficios de este método incluyen los siguientes:

La principal desventaja de este método es que los amputados con fijación ósea directa no pueden tener grandes impactos en la extremidad, como los que se experimentan al trotar, debido a la posibilidad de que el hueso se rompa. [15]

Cosmesis

Las prótesis cosméticas se han utilizado durante mucho tiempo para disimular lesiones y desfiguraciones. Con los avances en la tecnología moderna, se ha hecho posible la cosmesis , la creación de miembros realistas hechos de silicona o PVC . [131] Estas prótesis, incluidas las manos artificiales, ahora se pueden diseñar para simular la apariencia de manos reales, completas con pecas, venas, cabello, huellas dactilares e incluso tatuajes. Las cosméticas hechas a medida son generalmente más caras (cuestan miles de dólares estadounidenses, dependiendo del nivel de detalle), mientras que las cosméticas estándar vienen prefabricadas en una variedad de tamaños, aunque a menudo no son tan realistas como sus contrapartes hechas a medida. Otra opción es la cubierta de silicona hecha a medida, que se puede hacer para que coincida con el tono de piel de una persona, pero no con detalles como pecas o arrugas. Las cosméticas se adhieren al cuerpo de varias formas, utilizando un adhesivo, succión, piel ajustada, elástica o una funda de piel.

Cognición

A diferencia de las prótesis neuromotoras, las prótesis neurocognitivas detectarían o modularían la función neuronal para reconstruir o aumentar físicamente los procesos cognitivos como la función ejecutiva , la atención , el lenguaje y la memoria. Actualmente no hay prótesis neurocognitivas disponibles, pero se ha propuesto el desarrollo de interfaces neurocognitivas cerebro-computadora implantables para ayudar a tratar afecciones como accidente cerebrovascular , lesión cerebral traumática , parálisis cerebral , autismo y enfermedad de Alzheimer . [132] El campo reciente de la tecnología de asistencia para la cognición se refiere al desarrollo de tecnologías para aumentar la cognición humana. Los dispositivos de programación como Neuropage recuerdan a los usuarios con problemas de memoria cuándo realizar ciertas actividades, como visitar al médico. Los dispositivos de micro-aviso como PEAT, AbleLink y Guide se han utilizado para ayudar a los usuarios con problemas de memoria y función ejecutiva a realizar actividades de la vida diaria .

Mejora protésica

El sargento Jerrod Fields entrena en el Centro de Entrenamiento Olímpico de Estados Unidos en Chula Vista, California.

Además de la extremidad artificial estándar para el uso diario, muchos amputados o pacientes congénitos tienen extremidades y dispositivos especiales para facilitar la participación en deportes y actividades recreativas.

Dentro de la ciencia ficción y, más recientemente, dentro de la comunidad científica , se ha considerado el uso de prótesis avanzadas para reemplazar partes sanas del cuerpo con mecanismos y sistemas artificiales para mejorar la función. La moralidad y la conveniencia de tales tecnologías están siendo debatidas por transhumanistas , otros especialistas en ética y otros en general. [133] [134] [135] [136] Se pueden reemplazar partes del cuerpo como piernas, brazos, manos, pies y otras.

El primer experimento con un individuo sano parece haber sido el del científico británico Kevin Warwick . En 2002, se insertó un implante directamente en el sistema nervioso de Warwick. El conjunto de electrodos , que contenía alrededor de cien electrodos , se colocó en el nervio mediano . Las señales producidas fueron lo suficientemente detalladas como para que un brazo robótico pudiera imitar las acciones del propio brazo de Warwick y proporcionar una forma de retroalimentación táctil a través del implante. [137]

La empresa DEKA de Dean Kamen desarrolló el "brazo Luke", una prótesis avanzada controlada por nervios . Los ensayos clínicos comenzaron en 2008, [138] con la aprobación de la FDA en 2014 y la fabricación comercial por parte de Universal Instruments Corporation se espera para 2017. Se espera que el precio ofrecido al por menor por Mobius Bionics sea de alrededor de $100,000. [139]

En abril de 2019, se realizaron más investigaciones que permitieron mejorar la función protésica y la comodidad de los sistemas portátiles personalizados impresos en 3D. En lugar de una integración manual después de la impresión, la integración de sensores electrónicos en la intersección entre la prótesis y el tejido del usuario puede recopilar información, como la presión sobre el tejido del usuario, que puede ayudar a mejorar la iteración posterior de este tipo de prótesis. [140]

Oscar Pistorius

A principios de 2008, Oscar Pistorius , el "Blade Runner" de Sudáfrica, fue declarado inelegible para competir en los Juegos Olímpicos de Verano de 2008 porque se decía que sus prótesis transtibiales le daban una ventaja injusta sobre los corredores que tenían tobillos. Un investigador descubrió que sus extremidades utilizaban un veinticinco por ciento menos de energía que las de un corredor sin discapacidades que se desplazaba a la misma velocidad. Esta sentencia fue revocada en apelación, y el tribunal de apelación declaró que no se había tenido en cuenta el conjunto general de ventajas y desventajas de las extremidades de Pistorius.

Pistorius no se clasificó para el equipo sudafricano para los Juegos Olímpicos, pero arrasó en los Juegos Paralímpicos de Verano de 2008 , y ha sido considerado elegible para clasificarse para futuros Juegos Olímpicos. [ cita requerida ] Se clasificó para el Campeonato Mundial de 2011 en Corea del Sur y llegó a la semifinal donde terminó último en cuanto a tiempo, fue 14º en la primera ronda, su mejor marca personal en 400 m le habría dado el quinto lugar en la final. En los Juegos Olímpicos de Verano de 2012 en Londres, Pistorius se convirtió en el primer corredor amputado en competir en unos Juegos Olímpicos. [141] Corrió en las semifinales de la carrera de 400 metros , [142] [143] [144] y en las finales de la carrera de relevos 4 × 400 metros . [145] También compitió en 5 eventos en los Juegos Paralímpicos de Verano de 2012 en Londres. [146]

Consideraciones de diseño

Existen múltiples factores a tener en cuenta al diseñar una prótesis transtibial. Los fabricantes deben tomar decisiones sobre sus prioridades en relación con estos factores.

Actuación

Sin embargo, hay ciertos elementos de la mecánica del pie y del encaje que son invaluables para el atleta, y estos son el foco de atención de las compañías de prótesis de alta tecnología de la actualidad:

Otro

Al comprador también le preocupan muchos otros factores:

Diseño para prótesis

Una característica clave de las prótesis y el diseño protésico es la idea de “diseñar para las discapacidades”. Puede parecer una buena idea en la que las personas con discapacidades pueden participar en un diseño equitativo, pero lamentablemente no es así. La idea de diseñar para las discapacidades es problemática en primer lugar debido al significado subyacente de discapacidades. Les dice a los amputados que hay una manera correcta e incorrecta de moverse y caminar y que si los amputados se adaptan al entorno que los rodea por sus propios medios, entonces esa es la manera incorrecta. Junto con ese significado subyacente de discapacidades, muchas personas que diseñan para discapacidades en realidad no son discapacitadas. El “diseño para la discapacidad” a partir de estas experiencias toma la discapacidad como objeto, con la sensación de los diseñadores sin discapacidad de que han aprendido adecuadamente sobre su trabajo a partir de su propia simulación de la experiencia. La simulación es engañosa y perjudica a las personas discapacitadas, por lo que el diseño que surge de esto es altamente problemático. La participación en el diseño de discapacidades debería ser… con, idealmente, miembros del equipo que tengan la discapacidad relevante y sean parte de comunidades que sean importantes para la investigación. [147] Esto lleva a las personas, que no saben cuáles son las experiencias personales del día a día, a diseñar materiales que no satisfacen las necesidades o dificultan las necesidades de las personas con discapacidades reales.

Libertad de costes y de fuentes

De alto costo

En los EE. UU., una prótesis típica cuesta entre $15 000 y $90 000, dependiendo del tipo de extremidad deseada por el paciente. Con un seguro médico, un paciente generalmente pagará entre el 10 % y el 50 % del costo total de una prótesis, mientras que la compañía de seguros cubrirá el resto del costo. El porcentaje que paga el paciente varía según el tipo de plan de seguro, así como la extremidad solicitada por el paciente. [148] En el Reino Unido, gran parte de Europa, Australia y Nueva Zelanda, el costo total de las prótesis se cubre con fondos estatales o seguros legales. Por ejemplo, en Australia, las prótesis están financiadas completamente por planes estatales en el caso de amputación debido a una enfermedad, y por compensación laboral o seguro por lesiones de tránsito en el caso de la mayoría de las amputaciones traumáticas. [149] El Plan Nacional de Seguro por Discapacidad , que se está implementando a nivel nacional entre 2017 y 2020, también paga las prótesis.

Las prótesis transradiales (amputación por debajo del codo) y transtibiales (amputación por debajo de la rodilla) suelen costar entre 6.000 y 8.000 dólares , mientras que las prótesis transfemorales (amputación por encima de la rodilla) y transhumerales (amputación por encima del codo) cuestan aproximadamente el doble, con un rango de 10.000 a 15.000 dólares, y a veces pueden alcanzar costos de 35.000 dólares. El costo de una prótesis suele ser recurrente, mientras que una prótesis normalmente necesita ser reemplazada cada 3 o 4 años debido al desgaste por el uso diario. Además, si el encaje tiene problemas de ajuste, debe reemplazarse dentro de varios meses desde el inicio del dolor. Si la altura es un problema, se pueden cambiar componentes como los pilones. [150]

El paciente no sólo tiene que pagar por sus múltiples prótesis, sino que también tiene que pagar por la fisioterapia y la terapia ocupacional que conlleva la adaptación a vivir con una prótesis. A diferencia del costo recurrente de las prótesis, el paciente normalmente sólo pagará entre 2.000 y 5.000 dólares por la terapia durante el primer o segundo año de vida como amputado. Una vez que el paciente se sienta fuerte y cómodo con su nueva extremidad, ya no necesitará ir a terapia. A lo largo de su vida, se estima que un amputado típico pasará por tratamientos por valor de 1,4 millones de dólares, que incluyen cirugías, prótesis y terapias. [148]

Bajo costo

Las prótesis de bajo costo por encima de la rodilla a menudo brindan solo un soporte estructural básico con una función limitada. Esta función a menudo se logra con articulaciones de rodilla rudimentarias, no articuladas, inestables o con bloqueo manual. Un número limitado de organizaciones, como el Comité Internacional de la Cruz Roja (CICR), crean dispositivos para países en desarrollo. Su dispositivo, fabricado por CR Equipments, es una prótesis de rodilla de polímero con bloqueo manual y de un solo eje. [151]

Tabla. Lista de tecnologías de articulación de rodilla basadas en la revisión de la literatura. [85]

Prótesis de rodilla de bajo costo: rodilla del CICR (izquierda) y rodilla de LC (derecha)

Un plan para una pierna artificial de bajo costo, diseñado por Sébastien Dubois, fue presentado en la Exposición y entrega de premios de Diseño Internacional de 2007 en Copenhague, Dinamarca, donde ganó el Premio Index: Award . Sería posible crear una pierna protésica con retorno de energía por US $ 8,00, compuesta principalmente de fibra de vidrio . [153]

Antes de la década de 1980, las prótesis de pie simplemente restablecían la capacidad básica para caminar. Estos primeros dispositivos se caracterizaban por un simple accesorio artificial que conectaba el muñón al suelo.

La introducción del Seattle Foot (Seattle Limb Systems) en 1981 revolucionó el campo, al poner de relieve el concepto de pie protésico con almacenamiento de energía (ESPF). Otras empresas siguieron su ejemplo y, en poco tiempo, había varios modelos de prótesis con almacenamiento de energía en el mercado. Cada modelo utilizaba alguna variación de un talón comprimible. El talón se comprime durante el contacto inicial con el suelo, almacenando energía que luego se devuelve durante la última fase del contacto con el suelo para ayudar a impulsar el cuerpo hacia adelante.

Desde entonces, la industria de las prótesis de pie ha estado dominada por pequeñas y constantes mejoras en el rendimiento, la comodidad y la comercialización.

Con las impresoras 3D es posible fabricar un único producto sin necesidad de disponer de moldes metálicos , por lo que los costes se pueden reducir drásticamente. [154]

Jaipur foot , una prótesis procedente de Jaipur , India , cuesta unos 40 dólares estadounidenses.

Prótesis robóticas de código abierto

Brazo de héroe con temática de Star Wars de Open Bionics

There is currently an open-design Prosthetics forum known as the "Open Prosthetics Project". The group employs collaborators and volunteers to advance Prosthetics technology while attempting to lower the costs of these necessary devices.[155] Open Bionics is a company that is developing open-source robotic prosthetic hands. They utilize 3D printing to manufacture the devices and low-cost 3D scanners to fit them onto the residual limb of a specific patient. Open Bionics' use of 3D printing allows for more personalized designs, such as the "Hero Arm" which incorporates the users favourite colours, textures, and even aesthetics to look like superheroes or characters from Star Wars with the aim of lowering the cost. A review study on a wide range of printed prosthetic hands found that 3D printing technology holds a promise for individualised prosthesis design, is cheaper than commercial prostheses available on the market, and is more expensive than mass production processes such as injection molding. The same study also found that evidence on the functionality, durability and user acceptance of 3D printed hand prostheses is still lacking.[156]

Low-cost prosthetics for children

Artificial limbs for a juvenile thalidomide survivor 1961–1965

In the USA an estimate was found of 32,500 children (<21 years) had a major paediatric amputation, with 5,525 new cases each year, of which 3,315 congenital.[157]

Carr et al. (1998) investigated amputations caused by landmines for Afghanistan, Bosnia and Herzegovina, Cambodia and Mozambique among children (<14 years), showing estimates of respectively 4.7, 0.19, 1.11 and 0.67 per 1000 children.[158] Mohan (1986) indicated in India a total of 424,000 amputees (23,500 annually), of which 10.3% had an onset of disability below the age of 14, amounting to a total of about 43,700 limb deficient children in India alone.[159]

Few low-cost solutions have been created specially for children. Examples of low-cost prosthetic devices include:

Pole and crutch

This hand-held pole with leather support band or platform for the limb is one of the simplest and cheapest solutions found. It serves well as a short-term solution, but is prone to rapid contracture formation if the limb is not stretched daily through a series of range-of motion (RoM) sets.[82]

Bamboo, PVC or plaster limbs

This also fairly simple solution comprises a plaster socket with a bamboo or PVC pipe at the bottom, optionally attached to a prosthetic foot. This solution prevents contractures because the knee is moved through its full RoM. The David Werner Collection, an online database for the assistance of disabled village children, displays manuals of production of these solutions.[160]

Adjustable bicycle limb

This solution is built using a bicycle seat post up side down as foot, generating flexibility and (length) adjustability. It is a very cheap solution, using locally available materials.[161]

Sathi Limb

It is an endoskeletal modular lower limb from India, which uses thermoplastic parts. Its main advantages are the small weight and adaptability.[82]

Monolimb

Monolimbs are non-modular prostheses and thus require more experienced prosthetist for correct fitting, because alignment can barely be changed after production. However, their durability on average is better than low-cost modular solutions.[162]

Cultural and social theory perspectives

A number of theorists have explored the meaning and implications of prosthetic extension of the body. Elizabeth Grosz writes, "Creatures use tools, ornaments, and appliances to augment their bodily capacities. Are their bodies lacking something, which they need to replace with artificial or substitute organs?...Or conversely, should prostheses be understood, in terms of aesthetic reorganization and proliferation, as the consequence of an inventiveness that functions beyond and perhaps in defiance of pragmatic need?"[163] Elaine Scarry argues that every artifact recreates and extends the body. Chairs supplement the skeleton, tools append the hands, clothing augments the skin.[164] In Scarry's thinking, "furniture and houses are neither more nor less interior to the human body than the food it absorbs, nor are they fundamentally different from such sophisticated prosthetics as artificial lungs, eyes and kidneys. The consumption of manufactured things turns the body inside out, opening it up to and as the culture of objects."[165] Mark Wigley, a professor of architecture, continues this line of thinking about how architecture supplements our natural capabilities, and argues that "a blurring of identity is produced by all prostheses."[166] Some of this work relies on Freud's earlier characterization of man's relation to objects as one of extension.

Negative social implications

Prosthetics play a vital role in how a person perceives themselves and how other people perceive them. The ability to conceal such use enabled participants to ward off social stigmatization that in turn enabled their social integration and the reduction of emotional problems surrounding such disability.[167] People that lose a limb first have to deal with the emotional result of losing that limb. Regardless of the reasons for amputation, whether due to traumatic causes or as a consequence of illness, emotional shock exists. It may have a smaller or larger amplitude depending on a variety of factors such as patient age, medical culture, medical cause, etc. As a result of amputation, the research participants' reports were loaded with drama. The first emotional response to amputation was one of despair, a severe sense of self-collapse, something almost unbearable.[168] Emotional factors are just a small part of looking at social implications. Many people who lose a limb may have lots of anxiety surrounding prosthetics and their limbs. After surgery, for an extended period of time, the interviewed patients from the National Library of Medicine noticed the appearance and increase of anxiety. A lot of negative thoughts invaded their minds. Projections about the future were grim, marked by sadness, helplessness, and even despair. Existential uncertainty, lack of control, and further anticipated losses in one's life due to amputation were the primary causes of anxiety and consequently ruminations and insomnia.[168] From losing a leg and getting a prosthetics there were also many factors that can happen including anger and regret. The amputation of a limb is associated not only with physical loss and change in body image but also with an abrupt severing in one's sense of continuity. For participants with amputation as a result of physical trauma the event is often experienced as a transgression and can lead to frustration and anger.[168]

Ethical concerns

There are also many ethical concerns about how the prosthetics are made and produced. A wide range of ethical issues arise in connection with experiments and clinical usage of sensory prostheses: animal experimentation; informed consent, for instance, in patients with a locked-in syndrome that may be alleviated with a sensory prosthesis; unrealistic expectations of research subjects testing new devices.[169] How prosthetics come to be and testing of the usability of the device is a major concern in the medical world. Although many positives come when a new prosthetic design is announced, how the device got to where it is leads to some questioning the ethics of prosthetics.

Debates

There are also many debates among the prosthetic community about whether they should wear prosthetics at all. This is sparked by whether prosthetics help in day-to-day living or make it harder. Many people have adapted to their loss of limb making it work for them and do not need a prosthesis in their life. Not all amputees will wear a prosthesis. In a 2011 national survey of Australian amputees, Limbs 4 Life found that 7 percent of amputees do not wear a prosthesis, and in another Australian hospital study, this number was closer to 20 percent.[170] Many people report being uncomfortable in prostheses and not wanting to wear them, even reporting that wearing a prosthetic is more cumbersome than not having one at all. These debates are natural among the prosthetic community and help us shed light on the issues that they are facing.

Notable users of prosthetic devices

See also

References

Citations

  1. ^ πρόσθεσις. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  2. ^ Nathan, Stuart (28 November 2018). "Prosthetic implant provides realistic wrist movement to amputees". Retrieved 2019-01-30.
  3. ^ "Prosthetic implants – Prosthetic limbs and body parts – Plastic surgery – Services A-Z – Services". www.royalfree.nhs.uk. Retrieved 2019-01-30.
  4. ^ a b "How artificial limb is made – material, manufacture, making, used, parts, components, structure, procedure". www.madehow.com. Retrieved 2017-10-24.
  5. ^ "Physical Medicine and Rehabilitation Treatment Team". Department of Rehabilitation and Regenerative Medicine. Retrieved 2019-02-24.
  6. ^ "4: Prosthetic Management: Overview, Methods, and Materials | O&P Virtual Library". www.oandplibrary.org. Retrieved 2017-10-24.
  7. ^ a b Maat, Bartjan; Smit, Gerwin; Plettenburg, Dick; Breedveld, Paul (1 March 2017). "Passive prosthetic hands and tools: A literature review". Prosthetics and Orthotics International. 42 (1): 66–74. doi:10.1177/0309364617691622. PMC 5810914. PMID 28190380.
  8. ^ Nagaraja, Vikranth H.; da Ponte Lopes, Jhonatan; Bergmann, Jeroen H. M. (September 2022). "Reimagining Prosthetic Control: A Novel Body-Powered Prosthetic System for Simultaneous Control and Actuation". Prosthesis. 4 (3): 394–413. doi:10.3390/prosthesis4030032.
  9. ^ Nagaraja, Vikranth H.; Moulic, Soikat Ghosh; D’souza, Jennifer V.; Limesh, M.; Walters, Peter; Bergmann, Jeroen H. M. (December 2022). "A Novel Respiratory Control and Actuation System for Upper-Limb Prosthesis Users: Clinical Evaluation Study". IEEE Access. 10: 128764–128778. Bibcode:2022IEEEA..10l8764N. doi:10.1109/ACCESS.2022.3226697. S2CID 254339929.
  10. ^ "Oxford researchers develop breathing-powered prosthetic hand". BBC News. 14 December 2022.
  11. ^ Belter, Joseph T.; Segil, Jacob L.; Dollar, Aaron M.; Weir, Richard F. (2013). "Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review". The Journal of Rehabilitation Research and Development. 50 (5): 599. doi:10.1682/jrrd.2011.10.0188. ISSN 0748-7711. PMID 24013909.
  12. ^ Scheme, Erik; Englehart, Kevin (2011). "Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use". The Journal of Rehabilitation Research and Development. 48 (6): 643–659. doi:10.1682/jrrd.2010.09.0177. ISSN 0748-7711. PMID 21938652. S2CID 14883575.
  13. ^ Nazari, Vaheh; Zheng, Yong-Ping (2023-02-08). "Controlling Upper Limb Prostheses Using Sonomyography (SMG): A Review". Sensors. 23 (4): 1885. Bibcode:2023Senso..23.1885N. doi:10.3390/s23041885. ISSN 1424-8220. PMC 9959820. PMID 36850483.
  14. ^ Clemente, Francesco; Ianniciello, Valerio; Gherardini, Marta; Cipriani, Christian (2019-07-17). "Development of an Embedded Myokinetic Prosthetic Hand Controller". Sensors. 19 (14): 3137. Bibcode:2019Senso..19.3137C. doi:10.3390/s19143137. ISSN 1424-8220. PMC 6679265. PMID 31319463.
  15. ^ a b c "Getting an artificial leg up – Cathy Johnson". Australian Broadcasting Corporation. Retrieved 2010-10-03.
  16. ^ Highsmith, M. Jason; Andrews, Casey R.; Millman, Claire; Fuller, Ashley; Kahle, Jason T.; Klenow, Tyler D.; Lewis, Katherine L.; Bradley, Rachel C.; Orriola, John J. (2016-09-16). "Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review". Technology and Innovation. 18 (2–3): 99–113. doi:10.21300/18.2-3.2016.99. PMC 5218520. PMID 28066520.
  17. ^ a b c Barr, Steven; Howe, Tracey E. (2018). "Prosthetic rehabilitation for older dysvascular people following a unilateral transfemoral amputation". The Cochrane Database of Systematic Reviews. 2018 (10): CD005260. doi:10.1002/14651858.CD005260.pub4. ISSN 1469-493X. PMC 6517199. PMID 30350430.
  18. ^ Bowker, John H.; Michael, John W. (2002). Atlas of limb prosthetics : surgical, prosthetic, and rehabilitation principles. American Academy of Orthopaedic Surgeons (2nd ed.). St. Louis: Mosby Year Book. pp. 389, 413, 429, 479, 501, 535, 885. ISBN 978-0892032754. OCLC 54693136.
  19. ^ a b Söderberg, Bengt (2001). Partial foot amputations (2nd ed.). Sweden: Centre for Partial Foot Amputees. p. 21. ISBN 978-9163107566. OCLC 152577368.
  20. ^ "An Amazing Menagerie of Animal Prostheses". Scientific American. March 2013.
  21. ^ Pine, Keith R.; Sloan, Brian H.; Jacobs, Robert J. (2015). Clinical Ocular Prosthetics. Springer. ISBN 9783319190570.
  22. ^ "No. 1705: A 3000-Year-Old Toe". Uh.edu. 2004-08-01. Retrieved 2013-03-13.
  23. ^ Vanderwerker, Earl E. Jr. (1976). "A Brief Review of the History of Amputations and Prostheses". ICIB. 15 (5): 15–16. Archived from the original on 2007-10-14.
  24. ^ Rosenfeld, Amnon; Dvorachek, Michael; Rotstein, Ilan (July 2000). "Bronze Single Crown-like Prosthetic Restorations of Teeth from the Late Roman Period". Journal of Archaeological Science. 27 (7): 641–644. Bibcode:2000JArSc..27..641R. doi:10.1006/jasc.1999.0517.
  25. ^ Herodotus, The Histories. 9.37
  26. ^ Li, Xiao; Wagner, Mayke; Wu, Xiaohong; Tarasov, Pavel; Zhang, Yongbin; Schmidt, Arno; Goslar, Tomasz; Gresky, Julia (21 March 2013). "Archaeological and palaeopathological study on the third/second century BC grave from Turfan, China: Individual health history and regional implications". Quaternary International. 290–291: 335–343. Bibcode:2013QuInt.290..335L. doi:10.1016/j.quaint.2012.05.010. ISSN 1040-6182. Ten radiocarbon dates on the prosthesis, human bones and wood pieces from the same grave suggest the most probable age of the burial is about 300–200 BC (68% confidence interval), thus introducing the oldest functional leg prosthesis known to date.
  27. ^ "The Iron Hand of the Goetz von Berlichingen". Karlofgermany.com. Retrieved 2009-11-03.
  28. ^ Finch, Jacqueline (February 2011). "The ancient origins of prosthetic medicine". The Lancet. 377 (9765): 548–9. doi:10.1016/s0140-6736(11)60190-6. PMID 21341402. S2CID 42637892.
  29. ^ Bryce, Geore (1887). A Short History of the Canadian People. London: S. Low, Marston, Searle & Rivington.
  30. ^ Friedman, Lawrence (1978). The Psychological Rehabilitation of the Amputee. Springfield, IL.: Charles C. Thomas.
  31. ^ Breiding, Authors: Dirk H. "Arms and Armor—Common Misconceptions and Frequently Asked Questions | Essay | The Metropolitan Museum of Art | Heilbrunn Timeline of Art History". The Met’s Heilbrunn Timeline of Art History. Retrieved 2024-04-15.
  32. ^ Starr, Michelle. "This Medieval Italian Man Replaced His Amputated Hand With a Weapon". ScienceAlert. Retrieved 2018-04-17.
  33. ^ a b Micarelli, I; Paine, R; Giostra, C; Tafuri, MA; Profico, A; Boggioni, M; Di Vincenzo, F; Massani, D; Papini, A; Manzi, G (31 December 2018). "Survival to amputation in pre-antibiotic era: a case study from a Longobard necropolis (6th-8th centuries AD)". Journal of Anthropological Sciences. 96 (96): 185–200. doi:10.4436/JASS.96001. PMID 29717991.
  34. ^ a b Killgrove, Kristina. "Archaeologists Find Ancient Knife-Hand Prosthesis on Medieval Warrior". Forbes. Retrieved 2018-04-17.
  35. ^ "The History of Prosthetics". UNYQ. 2015-09-21. Retrieved 2018-04-17.
  36. ^ Romm, Sharon (July 1989). "Arms by Design". Plastic and Reconstructive Surgery. 84 (1): 158–63. doi:10.1097/00006534-198907000-00029. PMID 2660173.
  37. ^ "A Brief History of Prosthetics". inMotion: A Brief History of Prosthetics. November–December 2007. Retrieved 23 November 2010.
  38. ^ Bigg, Henry Robert Heather (1885) Artificial Limbs and the Amputations which Afford the Most Appropriate Stumps in Civil and Military Surgery. London
  39. ^ Long, Ivan A. (1985). "Normal Shape-Normal Alignment (NSNA) Above-Knee Prosthesis". Clinical Prosthetics & Orthotics. 9 (4): 9–14 – via O&P Virtual Library.
  40. ^ Gottschalk, Frank A.; Kourosh, Sohrab; Stills, Melvin; McClellan, Bruce; Roberts, Jim (October 1989). "Does Socket Configuration Influence the Position of the Femur in Above-Knee Amputation?". Journal of Prosthetics and Orthotics. 2 (1): 94. doi:10.1097/00008526-198910000-00009.
  41. ^ "Blatchford Company History", Blatchford Group.
  42. ^ a b Pike, Alvin (May/June 1999). "The New High Tech Prostheses". InMotion Magazine 9 (3)
  43. ^ One small step for an amputee and a giant leap for Amparo and GDI Hub
  44. ^ Changing Prosthetic Service Delivery with Amparo
  45. ^ Johannes, Matthew S.; Bigelow, John D.; Burck, James M.; Harshbarger, Stuart D.; Kozlowski, Matthew V.; Van Doren, Thomas (2011). "An Overview of the Developmental Process for the Modular Prosthetic Limb" (PDF). Johns Hopkins APL Technical Digest. 30 (3): 207–16. Archived from the original (PDF) on 2017-09-19. Retrieved 2017-10-05.
  46. ^ Adee, Sally (January 2009). "The revolution will be prosthetized". IEEE Spectrum. 46 (1): 44–8. doi:10.1109/MSPEC.2009.4734314. S2CID 34235585.
  47. ^ Burck, James M.; Bigelow, John D.; Harshbarger, Stuart D. (2011). "Revolutionizing Prosthetics: Systems Engineering Challenges and Opportunities". Johns Hopkins APL Technical Digest. 30 (3): 186–97. CiteSeerX 10.1.1.685.6772.
  48. ^ Bogue, Robert (21 August 2009). "Exoskeletons and robotic prosthetics: a review of recent developments". Industrial Robot. 36 (5): 421–427. doi:10.1108/01439910910980141.
  49. ^ Miranda, Robbin A.; Casebeer, William D.; Hein, Amy M.; Judy, Jack W.; Krotkov, Eric P.; Laabs, Tracy L.; Manzo, Justin E.; Pankratz, Kent G.; Pratt, Gill A.; Sanchez, Justin C.; Weber, Douglas J.; Wheeler, Tracey L.; Ling, Geoffrey S.F. (April 2015). "DARPA-funded efforts in the development of novel brain–computer interface technologies". Journal of Neuroscience Methods. 244: 52–67. doi:10.1016/j.jneumeth.2014.07.019. PMID 25107852. S2CID 14678623.
  50. ^ "The Pentagon's Bionic Arm". CBS News. 10 April 2009. Retrieved 9 May 2015.
  51. ^ "Revolutionizing Prosthetics". darpa.mil. Retrieved June 4, 2024.
  52. ^ a b c "Dean Kamen's "Luke Arm" Prosthesis Receives FDA Approval - IEEE Spectrum". IEEE. Retrieved 2024-06-04.
  53. ^ "Winner: The Revolution Will Be Prosthetized - IEEE Spectrum". IEEE. Retrieved 2024-06-04.
  54. ^ "The LUKE/DEKA advanced prosthetic arm". www.research.va.gov. Retrieved 2024-06-04.
  55. ^ a b c "The Evolution of Prosthetic Limbs: Current Technological Advancements". premierprosthetic.com. September 28, 2023. Retrieved 2023-11-27.
  56. ^ "Custom Prosthetics, Artificial Limbs LI, NY | Progressive O&P". Progoandp.com. Retrieved 2016-12-28.
  57. ^ a b c "How artificial limb is made – Background, Raw materials, The manufacturing process of artificial limb, Physical therapy, Quality control". Madehow.com. 1988-04-04. Retrieved 2010-10-03.
  58. ^ Mamalis, AG; Ramsden, JJ; Grabchenko, AI; Lytvynov, LA; Filipenko, VA; Lavrynenko, SN (2006). "A novel concept for the manufacture of individual sapphire-metallic hip joint endoprostheses". Journal of Biological Physics and Chemistry. 6 (3): 113–117. doi:10.4024/30601.jbpc.06.03.
  59. ^ a b Suyi Yang, Eddie; Aslani, Navid; McGarry, Anthony (October 2019). "Influences and trends of various shape-capture methods on outcomes in trans-tibial prosthetics: A systematic review". Prosthetics and Orthotics International. 43 (5): 540–555. doi:10.1177/0309364619865424. ISSN 1746-1553. PMID 31364475. S2CID 198999869.
  60. ^ Sharma, Hemant; Prabu, Dhanasekara (September 2013). "Plaster of Paris: Past, present and future". Journal of Clinical Orthopaedics and Trauma. 4 (3): 107–109. doi:10.1016/j.jcot.2013.09.004. ISSN 0976-5662. PMC 3880430. PMID 26403547.
  61. ^ Herbert, Nicholas; Simpson, David; Spence, William D.; Ion, William (March 2005). "A preliminary investigation into the development of 3-D printing of prosthetic sockets". Journal of Rehabilitation Research and Development. 42 (2): 141–146. doi:10.1682/jrrd.2004.08.0134 (inactive 2024-06-26). ISSN 1938-1352. PMID 15944878. S2CID 9385882.{{cite journal}}: CS1 maint: DOI inactive as of June 2024 (link)
  62. ^ Sewell, P.; Noroozi, S.; Vinney, J.; Andrews, S. (August 2000). "Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research". Prosthetics and Orthotics International. 24 (2): 97–107. doi:10.1080/03093640008726532. ISSN 0309-3646. PMID 11061196. S2CID 20147798.
  63. ^ Ribeiro, Danielle; Cimino, Stephanie R.; Mayo, Amanda L.; Ratto, Matt; Hitzig, Sander L. (2019-08-16). "3D printing and amputation: a scoping review". Disability & Rehabilitation: Assistive Technology. 16 (2): 221–240. doi:10.1080/17483107.2019.1646825. ISSN 1748-3115. PMID 31418306. S2CID 201018681.
  64. ^ Mak, A. F.; Zhang, M.; Boone, D. A. (March 2001). "State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review". Journal of Rehabilitation Research and Development. 38 (2): 161–174. ISSN 0748-7711. PMID 11392649.
  65. ^ Rios Poveda, Alvaro (2002). Myoelectric Prostheses with Sensorial Feedback. Myoelectric Symposium. ISBN 978-1-55131-029-9.
  66. ^ Raspopovic, Stanisa; Capogrosso, Marco; Petrini, Francesco Maria; Bonizzato, Marco; Rigosa, Jacopo; Di Pino, Giovanni; et al. (5 February 2014). "Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses". Science Translational Medicine. 6 (222): 222ra19. doi:10.1126/scitranslmed.3006820. PMID 24500407. S2CID 206682721.
  67. ^ "With a new prosthetic, researchers have managed to restore the sense of touch for a Denmark man who lost his left hand nine years ago.", USA Today, February 5, 2014
  68. ^ "Artificial hand offering immediate touch response a success", Channelnewsasia, February 7, 2014
  69. ^ DelViscio, Jeffery. "A Robot Hand Helps Amputees "Feel" Again". Scientific American. Retrieved 2020-06-12.
  70. ^ Smit G, Plettenburg DH (2010). "Efficiency of Voluntary Closing Hand and Hook Prostheses". Prosthetics and Orthotics International. 34 (4): 411–427. doi:10.3109/03093646.2010.486390. PMID 20849359. S2CID 22327910.
  71. ^ Smit, G; Bongers, RM; Van der Sluis, CK; Plettenburg, DH (2012). "Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development?". Journal of Rehabilitation Research and Development. 49 (4): 523–534. doi:10.1682/JRRD.2011.07.0125. PMID 22773256.
  72. ^ Robitzski, Dan (May 2017) [First published 18 April 2017 as "A Spare Hand"]. "Disabled Hands Successfully Replaced with Bionic Prosthetics". Scientific American. Vol. 316, no. 5. p. 17. doi:10.1038/scientificamerican0517-17.
  73. ^ Hruby, Laura A.; Sturma, Agnes; Mayer, Johannes A.; Pittermann, Anna; Salminger, Stefan; Aszmann, Oskar C. (November 2017). "Algorithm for bionic hand reconstruction in patients with global brachial plexopathies". Journal of Neurosurgery. 127 (5): 1163–1171. doi:10.3171/2016.6.JNS16154. PMID 28093018. S2CID 28143731.
  74. ^ 3D bionic hands
  75. ^ UK woman can ride bike for first time with 'world's most lifelike bionic hand'
  76. ^ Bebionic robotic hand
  77. ^ A helping hand: EU researchers develop bionic hand that imitates life
  78. ^ Onken, Sarah. "Dive In". cityviewnc.com. Archived from the original on 10 September 2015. Retrieved 24 August 2015.
  79. ^ Ephraim, P. L.; Dillingham, T. R.; Sector, M; Pezzin, L. E.; MacKenzie, E. J. (2003). "Epidemiology of limb loss and congenital limb deficiency: A review of the literature". Archives of Physical Medicine and Rehabilitation. 84 (5): 747–61. doi:10.1016/S0003-9993(02)04932-8. PMID 12736892.
  80. ^ Mak, A. F.; Zhang, M; Boone, D. A. (2001). "State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: A review". Journal of Rehabilitation Research and Development. 38 (2): 161–74. PMID 11392649.
  81. ^ Legro, MW; Reiber, G; del Aguila, M; Ajax, MJ; Boone, DA; Larsen, JA; Smith, DG; Sangeorzan, B (July 1999). "Issues of importance reported by persons with lower limb amputations and prostheses". Journal of Rehabilitation Research and Development. 36 (3): 155–63. PMID 10659798.
  82. ^ a b c Strait, E. (2006) Prosthetics in Developing Countries. oandp.org Retrieved 2019-03-11
  83. ^ Stark, Gerald (2005). "Perspectives on How and Why Feet are Prescribed". Journal of Prosthetics and Orthotics. 17: S18–S22. doi:10.1097/00008526-200510001-00007.
  84. ^ Jian, Yuancheng; Winter, DA; Ishac, MG; Gilchrist, L (1993). "Trajectory of the body COG and COP during initiation and termination of gait". Gait & Posture. 1: 9–22. doi:10.1016/0966-6362(93)90038-3.
  85. ^ a b Andrysek, Jan (December 2010). "Lower-limb prosthetic technologies in the developing world: A review of literature from 1994–2010". Prosthetics and Orthotics International. 34 (4): 378–398. doi:10.3109/03093646.2010.520060. PMID 21083505. S2CID 27233705.
  86. ^ a b Hofstad, Cheriel J; van der Linde, Harmen; van Limbeek, Jacques; Postema, Klaas (26 January 2004). "Prescription of prosthetic ankle-foot mechanisms after lower limb amputation" (PDF). Cochrane Database of Systematic Reviews. 2010 (1): CD003978. doi:10.1002/14651858.CD003978.pub2. PMC 8762647. PMID 14974050.
  87. ^ Andrysek, Jan; Naumann, Stephen; Cleghorn, William L. (December 2004). "Design characteristics of pediatric prosthetic knees". IEEE Transactions on Neural Systems and Rehabilitation Engineering. 12 (4): 369–378. doi:10.1109/TNSRE.2004.838444. ISSN 1534-4320. PMID 15614992. S2CID 1860735.
  88. ^ Wyss, Dominik (2012-11-27). Evaluation and Design of a Globally Applicable Rear-locking Prosthetic Knee Mechanism (Thesis thesis).
  89. ^ a b R. Stewart and A. Staros, "Selection and application of knee mechanisms," Bulletin of Prosthetics Research, vol. 18, pp. 90-158, 1972.
  90. ^ M. Greene, "Four bar linkage knee analysis," Prosthetics and Orthotics International, vol. 37, pp. 15-24, 1983.
  91. ^ "The SLK, The Self-Learning Knee" Archived 2012-04-25 at the Wayback Machine, DAW Industries. Retrieved 16 March 2008.
  92. ^ Marriott, Michel (2005-06-20). "Titanium and Sensors Replace Ahab's Peg Leg". The New York Times. Retrieved 2008-10-30.
  93. ^ Martin, Craig W. (November 2003) "Otto Bock C-leg: A review of its effectiveness" Archived 2016-12-28 at the Wayback Machine. WCB Evidence Based Group
  94. ^ a b Kannenberg, Andreas; Zacharias, Britta; Pröbsting, Eva (2014). "Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: Systematic review". Journal of Rehabilitation Research and Development. 51 (10): 1469–1496. doi:10.1682/JRRD.2014.05.0118. PMID 25856664. S2CID 5942534.
  95. ^ Highsmith, M. Jason; Kahle, Jason T.; Bongiorni, Dennis R.; Sutton, Bryce S.; Groer, Shirley; Kaufman, Kenton R. (December 2010). "Safety, Energy Efficiency, and Cost Efficacy of the C-Leg for Transfemoral Amputees: A Review of the Literature". Prosthetics and Orthotics International. 34 (4): 362–377. doi:10.3109/03093646.2010.520054. PMID 20969495. S2CID 23608311.
  96. ^ "Amputees control bionic legs with their thoughts". Reuters. 20 May 2015.
  97. ^ a b c Carey, Stephanie L.; Lura, Derek J.; Highsmith, M. Jason; CP.; FAAOP. (2015). "Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review". Journal of Rehabilitation Research and Development. 52 (3): 247–262. doi:10.1682/JRRD.2014.08.0192. PMID 26230500.
  98. ^ International Federation for Medical and Biological Engineering (17 December 2012). "World Congress on Medical Physics and Biomedical Engineering". IFMBE. Retrieved 19 March 2022.
  99. ^ Rios, Alvaro (1997). Microcontroller system for myoelectric prosthesis with sensory feedback. World Congress on Medical Physics and Biomedical Engineering: XVIII International Conference on Medical and Biological Engineering and XI International Conference on Medical Physics. Nice, France.
  100. ^ Wirta, R. W.; Taylor, D. R.; Finley, F. R. (1978). "Pattern-recognition arm prosthesis: A historical perspective-a final report" (PDF). Bulletin of Prosthetics Research: 8–35. PMID 365281.
  101. ^ Sherman, E. David (1964). "A Russian Bioelectric-Controlled Prosthesis: Report of a Research Team from the Rehabilitation Institute of Montreal". Canadian Medical Association Journal. 91 (24): 1268–1270. PMC 1927453. PMID 14226106.
  102. ^ Muzumdar, Ashok (2004). Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer. ISBN 978-3-540-40406-4.
  103. ^ Reinkensmeyer David J (2009). "Robotic Assistance For Upper Extremity Training After Stroke" (PDF). Studies in Health Technology and Informatics. 145: 25–39. PMID 19592784. Archived from the original (PDF) on 2016-12-28. Retrieved 2016-12-28.
  104. ^ Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasco PD, Zhou P, Dumanian GA (February 3, 2007). "Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study". Lancet. 369 (9559): 371–80. doi:10.1016/S0140-6736(07)60193-7. PMID 17276777. S2CID 20041254.
  105. ^ "Blogs: TR Editors' blog: Patients Test an Advanced Prosthetic Arm". Technology Review. 2009-02-10. Retrieved 2010-10-03.
  106. ^ "Defense Sciences Office". Darpa.mil. Archived from the original on 2009-04-26. Retrieved 2010-10-03.
  107. ^ Binedell, Trevor; Meng, Eugene; Subburaj, Karupppasamy (2020-08-25). "Design and development of a novel 3D-printed non-metallic self-locking prosthetic arm for a forequarter amputation". Prosthetics and Orthotics International. 45: 94–99. doi:10.1177/0309364620948290. ISSN 1746-1553. PMID 32842869. S2CID 221326246.
  108. ^ "Proto 1 and Proto 2". Ric.org. 2007-05-01. Archived from the original on 2011-07-27. Retrieved 2010-10-03.
  109. ^ "World premiere of muscle and nerve controlled arm prosthesis". Sciencedaily.com. February 2013. Retrieved 2016-12-28.
  110. ^ Williams, Adam (2012-11-30). "Mind-controlled permanently-attached prosthetic arm could revolutionize prosthetics". Gizmag.com. Retrieved 2016-12-28.
  111. ^ Ford, Jason (2012-11-28). "Trials imminent for implantable thought-controlled robotic arm". Theengineer.co.uk. Retrieved 2016-12-28.
  112. ^ Li, Guanglin; Kuiken, Todd A (2008). "Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone". IEEE Transactions on Biomedical Engineering. 55 (9): 2134–2142. doi:10.1109/tbme.2008.923914. PMC 3038244. PMID 18713682.
  113. ^ Contreras-Vidal José L.; et al. (2012). "Restoration of Whole Body Movement: Toward a Noninvasive Brain-Machine Interface System". IEEE Pulse. 3 (1): 34–37. doi:10.1109/mpul.2011.2175635. PMC 3357625. PMID 22344949.
  114. ^ "Rehabilitation Institute of Chicago First to Develop Thought Controlled Robotic Leg". Medgadget.com. September 2013. Retrieved 2016-12-28.
  115. ^ Is This the Future of Robotic Legs?
  116. ^ "Transtibial Powered Prostheses". Biomechatronics. MIT Media Lab.
  117. ^ "Brain-Controlled Bionic Legs Are Finally Here". Popular Science. Retrieved 2018-12-01.
  118. ^ Liacouras, Peter C.; Sahajwalla, Divya; Beachler, Mark D.; Sleeman, Todd; Ho, Vincent B.; Lichtenberger, John P. (2017). "Using computed tomography and 3D printing to construct custom prosthetics attachments and devices". 3D Printing in Medicine. 3 (1): 8. doi:10.1186/s41205-017-0016-1. ISSN 2365-6271. PMC 5954798. PMID 29782612.
  119. ^ "Home – BionX Medical Technologies". www.bionxmed.com. Archived from the original on 2017-12-03. Retrieved 2018-01-08.
  120. ^ Össur. "PROPRIO FOOT". www.ossur.com. Retrieved 2018-01-08.
  121. ^ "Elan – Carbon, Feet, Hydraulic – Endolite USA – Lower Limb Prosthetics". Endolite USA – Lower Limb Prosthetics. Retrieved 2018-01-08.
  122. ^ Windrich, Michael; Grimmer, Martin; Christ, Oliver; Rinderknecht, Stephan; Beckerle, Philipp (19 December 2016). "Active lower limb prosthetics: a systematic review of design issues and solutions". BioMedical Engineering OnLine. 15 (S3): 140. doi:10.1186/s12938-016-0284-9. PMC 5249019. PMID 28105948.
  123. ^ ENGINEERING.com. "Researchers Create Artificial Nerve System". www.engineering.com. Retrieved 2018-06-08.
  124. ^ "Stanford researchers create artificial nerve system for robots – Xinhua | English.news.cn". www.xinhuanet.com. Archived from the original on June 7, 2018. Retrieved 2018-06-08.
  125. ^ University, Stanford (2018-05-31). "An artificial nerve system gives prosthetic devices and robots a sense of touch | Stanford News". Stanford News. Retrieved 2018-06-08.
  126. ^ "Affordable prosthetics made from recycled plastic waste". MaterialDistrict. 14 January 2019. Retrieved 3 November 2020.
  127. ^ "These researchers are turning plastic bottles into prosthetic limbs". World Economic Forum. 4 October 2019. Retrieved 3 November 2020.
  128. ^ Bell, Sarah Jane (21 April 2019). "Recycling shampoo bottles to make prosthetic limbs becomes retired hairdresser's dream". ABC News. Australian Broadcasting Corporation. Retrieved 3 November 2020.
  129. ^ Conway, Elle (26 June 2019). "Canberra family turning bottle caps into plastic hands and arms for children". ABC News. Australian Broadcasting Corporation. Retrieved 3 November 2020.
  130. ^ "Envision Hands". Envision. 19 February 2020. Retrieved 3 November 2020.
  131. ^ Thomas, Daniel J.; Singh, Deepti (August 2020). "3D printing for developing patient specific cosmetic prosthetics at the point of care". International Journal of Surgery. 80: 241–242. doi:10.1016/j.ijsu.2020.04.023. ISSN 1743-9159. PMID 32311524. S2CID 216047962.
  132. ^ Serruya MD, Kahana MJ (2008). "Techniques and devices to restore cognition". Behav Brain Res. 192 (2): 149–65. doi:10.1016/j.bbr.2008.04.007. PMC 3051349. PMID 18539345.
  133. ^ "Enhancements, Oxford Uehiro Centre for Practical Ethics". Practicalethics.ox.ac.uk. Archived from the original on 2016-12-28. Retrieved 2016-12-28.
  134. ^ Caplan, Arthur; Elliott, Carl (2004). "Is It Ethical to Use Enhancement Technologies to Make Us Better than Well?". PLOS Medicine. 1 (3): e52. doi:10.1371/journal.pmed.0010052. PMC 539045. PMID 15630464.
  135. ^ Buchanan, Allen E. (2011). Beyond Humanity?. doi:10.1093/acprof:oso/9780199587810.001.0001. ISBN 9780199587810.
  136. ^ Anomaly, Jonny (2012). "Beyond Humanity? The Ethics of Biomedical Enhancement – by Allen Buchanan". Bioethics. 26 (7): 391–392. doi:10.1111/j.1467-8519.2012.01964.x.
  137. ^ Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Andrews B, Teddy P, Shad A (2003). "The Application of Implant Technology for Cybernetic Systems". Archives of Neurology. 60 (10): 1369–1373. doi:10.1001/archneur.60.10.1369. PMID 14568806.
  138. ^ Adee, Sarah (2008-02-01). "Dean Kamen's "Luke Arm" Prosthesis Readies for Clinical Trials". IEEE Spectrum.
  139. ^ "DARPA's Mind-Controlled Arm Prosthesis Preps for Commercial Launch".
  140. ^ Garner, Courtney (2019-04-05). "Wearable system interfaces: How can electronic sensors be integrated into improved 3D printed prosthetics?". SciTech Europa. Retrieved 2019-05-06.
  141. ^ Robert Klemko (10 August 2012), "Oscar Pistorius makes history, leaves without medal", USA Today, archived from the original on 11 August 2012
  142. ^ Oscar Pistorius makes Olympic history in 400m at London 2012, BBC Sport, 4 August 2012
  143. ^ Bill Chappell (4 August 2012), Oscar Pistorius makes Olympic history in 400 meters, and moves on to semi-final, NPR, archived from the original on 4 August 2012
  144. ^ "Men's 400m – semi-finals", london2012.com, archived from the original on 16 December 2012, retrieved 4 August 2012
  145. ^ Greenberg, Chris (10 August 2012), "Oscar Pistorius, South African 4×400m relay team finish 8th as Bahamas wins gold", Huffington Post, archived from the original on 10 August 2012
  146. ^ "Hawking, Pistorius open London's Paralympics: Wheelchair-bound physicist Stephen Hawking challenged athletes to 'look to the stars' as he helped open a record-setting Paralympics Games that will run for 11 days in near sold-out venues". Yahoo! Sports. Reuters. 29 August 2012. Archived from the original on 2 September 2012.
  147. ^ Shew, Ashley (2022-03-16). "How To Get A Story Wrong: Technoableism, Simulation, and Cyborg Resistance". Including Disability (1): 13–36. doi:10.51357/id.vi1.169. ISSN 2817-6731.
  148. ^ a b "Cost of a Prosthetic Limb". Cost Helper Health. Retrieved 13 April 2015.
  149. ^ "Funding for your prosthesis". Limbs4life. Retrieved 28 January 2018.
  150. ^ "Cost of Prosthetics Stirs Debate", Boston Globe, 5 July 2005. Retrieved 11 February 2007.
  151. ^ "ICRC: Trans-Femoral Prosthesis – Manufacturing Guidelines" (PDF). Retrieved 2010-10-03.
  152. ^ Phoengsongkhro, S., Tangpornprasert, P., Yotnuengnit, P. et al. Development of four-bar polycentric knee joint with stance-phase knee flexion. Sci Rep 13, 22809 (2023). https://doi.org/10.1038/s41598-023-49879-4
  153. ^ INDEX:2007 INDEX: AWARD Archived February 2, 2009, at the Wayback Machine
  154. ^ Nagata, Kazuaki (2015-05-10). "Robot arm startup taps 3-D printers in quest to make prosthetics affordable". The Japan Times Online. Japantimes.co.jp. Retrieved 2016-12-28.
  155. ^ "Open Prosthetics Website". Openprosthetics.org. Archived from the original on 2006-10-04. Retrieved 2016-12-28.
  156. ^ ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul (2 February 2017). "3D-printed upper limb prostheses: a review". Disability and Rehabilitation: Assistive Technology. 12 (3): 300–314. doi:10.1080/17483107.2016.1253117. PMID 28152642. S2CID 38036558.
  157. ^ Krebs, D. E.; Edelstein, J. E.; Thornby, M. A. (1991). "Prosthetic management of children with limb deficiencies". Physical Therapy. 71 (12): 920–34. doi:10.1097/01241398-199205000-00033. PMID 1946626.
  158. ^ Carr, D.B. (1998). "Pain and Rehabilitation from Landmine Injury" (PDF). Update in Anaesthesia. 6 (2): 91.
  159. ^ Mohan, D. (1986) A Report on Amputees in India. oandplibrary.org
  160. ^ Werner, David (1987). Disabled village children: A guide for community health workers, rehabilitation workers, and families (1st ed.). Palo Alto, CA, USA: Hesperian Foundation. ISBN 0-942364-06-6.
  161. ^ Cheng, V. (2004) A victim assistance solution. School of Industrial Design, Carleton University.
  162. ^ Lee, Winson C. C.; Zhang, Ming (2005-08-01). "Design of monolimb using finite element modelling and statistics-based Taguchi method" (PDF). Clinical Biomechanics. 20 (7): 759–766. doi:10.1016/j.clinbiomech.2005.03.015. ISSN 0268-0033. PMID 15963612.
  163. ^ Grosz, Elizabeth (2003). "Prosthetic Objects" in The State of Architecture at the Beginning of the 21st Century. pp. 96–97. The Monacelli Press. ISBN 1580931340.
  164. ^ Scarry, Elaine (1985). The Body in Pain: The Making and Unmaking of the World. Oxford University Press.
  165. ^ Lupton and Miller (1992). "Streamlining: The Aesthetics of Waste" in Taylor, M. and Preston, J. (eds.) 2006. Intimus: Interior Design Theory Reader. pp. 204–212. ISBN 978-0-470-01570-4.
  166. ^ Wigley, Mark (1991). "Prosthetic Theory: The Disciplining of Architecture". Assemblage (15): 6–29. doi:10.2307/3171122. JSTOR 3171122.
  167. ^ Murray, Craig D. (May 2005). "The social meanings of prosthesis use". Journal of Health Psychology. 10 (3): 425–441. doi:10.1177/1359105305051431. ISSN 1359-1053. PMID 15857872.
  168. ^ a b c Roșca, Andra Cătălina; Baciu, Cosmin Constantin; Burtăverde, Vlad; Mateizer, Alexandru (2021-05-26). "Psychological Consequences in Patients With Amputation of a Limb. An Interpretative-Phenomenological Analysis". Frontiers in Psychology. 12: 537493. doi:10.3389/fpsyg.2021.537493. ISSN 1664-1078. PMC 8189153. PMID 34122200.
  169. ^ Hansson, Sven Ove (2015), Clausen, Jens; Levy, Neil (eds.), "Ethical Implications of Sensory Prostheses", Handbook of Neuroethics, Dordrecht: Springer Netherlands, pp. 785–797, doi:10.1007/978-94-007-4707-4_46, ISBN 978-94-007-4707-4, retrieved 2023-11-27
  170. ^ "Not everyone uses a prosthesis". Limbs 4 life. Retrieved 2023-11-27.

Sources

External links