stringtranslate.com

Reversibilidad microscópica

El principio de reversibilidad microscópica en física y química es doble:

Historia de la reversibilidad microscópica

La idea de la reversibilidad microscópica nació junto con la cinética física. En 1872, Ludwig Boltzmann representó la cinética de los gases como un conjunto estadístico de colisiones elementales. [2] Las ecuaciones de la mecánica son reversibles en el tiempo, por lo tanto, las colisiones inversas obedecen a las mismas leyes. Esta reversibilidad de las colisiones es el primer ejemplo de microrreversibilidad. Según Boltzmann, esta microrreversibilidad implica el principio de equilibrio detallado para las colisiones: en el conjunto de equilibrio cada colisión se equilibra con su colisión inversa. [2] Estas ideas de Boltzmann fueron analizadas en detalle y generalizadas por Richard C. Tolman . [3]

En química, JH van't Hoff (1884) [4] propuso la idea de que el equilibrio tiene una naturaleza dinámica y es el resultado del equilibrio entre las velocidades de reacción directa e inversa. No estudió los mecanismos de reacción con muchas reacciones elementales y no pudo formular el principio de equilibrio detallado para reacciones complejas. En 1901, Rudolf Wegscheider introdujo el principio de equilibrio detallado para reacciones químicas complejas. [5] Encontró que para una reacción compleja el principio de equilibrio detallado implica relaciones importantes y no triviales entre las constantes de velocidad de reacción para diferentes reacciones. En particular, demostró que los ciclos irreversibles de reacción son imposibles y para los ciclos reversibles el producto de las constantes de las reacciones directas (en la dirección "horario") es igual al producto de las constantes de las reacciones inversas (en la dirección "antihorario"). Lars Onsager (1931) utilizó estas relaciones en su conocido trabajo [6] , sin citarlo directamente pero con la siguiente observación:

"Sin embargo, los químicos suelen imponer aquí una restricción adicional muy interesante: cuando se alcanza el equilibrio, cada reacción individual debe equilibrarse por sí misma. Exigen que la transición se produzca con la misma frecuencia que la transición inversa, etc."

La teoría cuántica de emisión y absorción desarrollada por Albert Einstein (1916, 1917) [7] da un ejemplo de aplicación de la microreversibilidad y el equilibrio detallado al desarrollo de una nueva rama de la teoría cinética.

A veces, el principio de equilibrio detallado se formula en sentido estricto, sólo para reacciones químicas [8], pero en la historia de la física tiene un uso más amplio: se inventó para colisiones, se utilizó para la emisión y absorción de cuantos, para procesos de transporte [9] y para muchos otros fenómenos.

En su forma moderna, el principio de microreversibilidad fue publicado por Lewis (1925). [1] En los libros de texto clásicos [3] [10] se presenta la teoría completa y muchos ejemplos de aplicaciones.

Reversibilidad temporal de la dinámica

Las ecuaciones de Newton y de Schrödinger en ausencia de campos magnéticos macroscópicos y en el marco de referencia inercial son T-invariantes: si X(t) es una solución, entonces X(-t) también es una solución (aquí X es el vector de todas las variables dinámicas, incluidas todas las coordenadas de las partículas para las ecuaciones de Newton y la función de onda en el espacio de configuración para la ecuación de Schrödinger).

Existen dos fuentes de violación de esta regla:

Consecuencias macroscópicas de la reversibilidad temporal de la dinámica

En física y química, hay dos consecuencias macroscópicas principales de la reversibilidad temporal de la dinámica microscópica: el principio de equilibrio detallado y las relaciones recíprocas de Onsager .

La descripción estadística del proceso macroscópico como un conjunto de eventos elementales indivisibles (colisiones) fue inventada por L. Boltzmann y formalizada en la ecuación de Boltzmann . Descubrió que la reversibilidad temporal de la dinámica newtoniana conduce al balance detallado para la colisión: en equilibrio, las colisiones se equilibran mediante sus colisiones inversas. Este principio le permitió a Boltzmann deducir una fórmula simple y agradable para la producción de entropía y demostrar su famoso teorema H. ​​[2] De esta manera, la reversibilidad microscópica se utilizó para demostrar la irreversibilidad macroscópica y la convergencia de conjuntos de moléculas a sus equilibrios termodinámicos.

Otra consecuencia macroscópica de la reversibilidad microscópica es la simetría de los coeficientes cinéticos, las llamadas relaciones recíprocas. Las relaciones recíprocas fueron descubiertas en el siglo XIX por Thomson y Helmholtz para algunos fenómenos, pero la teoría general fue propuesta por Lars Onsager en 1931. [6] También encontró la conexión entre las relaciones recíprocas y el equilibrio detallado. Para las ecuaciones de la ley de acción de masas, las relaciones recíprocas aparecen en la aproximación lineal cerca del equilibrio como consecuencia de las condiciones de equilibrio detalladas. De acuerdo con las relaciones recíprocas, las oscilaciones amortiguadas en sistemas cerrados homogéneos cerca de equilibrios termodinámicos son imposibles porque el espectro de operadores simétricos es real. Por lo tanto, la relajación hasta el equilibrio en tal sistema es monótona si está suficientemente cerca del equilibrio.

Referencias

  1. ^ ab Lewis, GN (1925-03-01). "Un nuevo principio de equilibrio". Actas de la Academia Nacional de Ciencias de Estados Unidos . 11 (3). Actas de la Academia Nacional de Ciencias: 179–183. Bibcode :1925PNAS...11..179L. doi : 10.1073/pnas.11.3.179 . ISSN  0027-8424. PMC  1085913 . PMID  16576866.
  2. ^ abc Boltzmann, L. (1964), Conferencias sobre teoría de los gases, Berkeley, CA, EE. UU.: U. of California Press.
  3. ^ ab Tolman, RC (1938). Los principios de la mecánica estadística . Oxford University Press, Londres, Reino Unido.
  4. ^ Van't Hoff, JH Études de dynamique chimique. Frederic Müller, Ámsterdam, 1884.
  5. ^ Wegscheider, Rud (1911). "Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme". Monatshefte für Chemie (en alemán). 32 (8). Springer Science y Business Media LLC: 849–906. doi :10.1007/bf01517735. ISSN  0026-9247. S2CID  197766994.
  6. ^ ab Onsager, Lars (15 de febrero de 1931). "Relaciones recíprocas en procesos irreversibles. I." Physical Review . 37 (4). American Physical Society (APS): 405–426. Bibcode :1931PhRv...37..405O. doi : 10.1103/physrev.37.405 . ISSN  0031-899X.
  7. ^ Einstein, A. (1917). Zur Quantentheorie der Strahlung [=Sobre la teoría cuántica de la radiación], Physikalische Zeitschrift 18 (1917), 121-128. Traducción al inglés: D. ter Haar (1967): La antigua teoría cuántica. Prensa de Pérgamo, págs. 167-183.
  8. ^ Principio de reversibilidad microscópica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2012.
  9. ^ Gorban, Alexander N. ; Sargsyan, Hrachya P.; Wahab, Hafiz A. (2011). "Modelos cuasidiquímicos de difusión no lineal multicomponente". Modelado matemático de fenómenos naturales . 6 (5): 184–162. arXiv : 1012.2908 . doi :10.1051/mmnp/20116509. S2CID  18961678.
  10. ^ Lifshitz, EM y Pitaevskii, LP (1981). Cinética física . Londres: Pergamon. ISBN 0-08-026480-8.Vol. 10 del Curso de Física Teórica (3ª Ed).

Véase también