stringtranslate.com

Mitigación del cambio climático

Diversos aspectos de la mitigación del cambio climático: energía renovable ( solar y eólica ) en Inglaterra , transporte público electrificado en Francia , un proyecto de reforestación en Haití para eliminar el dióxido de carbono de la atmósfera y un ejemplo de una comida a base de plantas.

La mitigación del cambio climático (o descarbonización ) es una acción para limitar los gases de efecto invernadero en la atmósfera que causan el cambio climático . Las acciones de mitigación del cambio climático incluyen la conservación de energía y la sustitución de combustibles fósiles por fuentes de energía limpia . Las estrategias de mitigación secundarias incluyen cambios en el uso de la tierra y la eliminación de dióxido de carbono (CO 2 ) de la atmósfera. [1] Las políticas actuales de mitigación del cambio climático son insuficientes, ya que aún darían como resultado un calentamiento global de aproximadamente 2,7 °C para 2100, [2] significativamente por encima del objetivo del Acuerdo de París de 2015 [ 3 ] de limitar el calentamiento global a menos de 2 °C. [4] [5]

La energía solar y eólica pueden reemplazar a los combustibles fósiles al menor costo en comparación con otras opciones de energía renovable . [6] La disponibilidad de luz solar y viento es variable y puede requerir actualizaciones de la red eléctrica , como el uso de transmisión de electricidad a larga distancia para agrupar una variedad de fuentes de energía. [7] El almacenamiento de energía también se puede utilizar para equilibrar la producción de energía, y la gestión de la demanda puede limitar el uso de energía cuando la generación de energía es baja. La electricidad generada de manera limpia generalmente puede reemplazar a los combustibles fósiles para impulsar el transporte, calentar edificios y hacer funcionar procesos industriales. [ cita requerida ] Ciertos procesos son más difíciles de descarbonizar, como los viajes aéreos y la producción de cemento . La captura y almacenamiento de carbono (CCS) puede ser una opción para reducir las emisiones netas en estas circunstancias, aunque las plantas de energía de combustibles fósiles con tecnología CCS son actualmente una estrategia de mitigación del cambio climático de alto costo. [8]

Los cambios en el uso de la tierra por parte de los seres humanos, como la agricultura y la deforestación, causan aproximadamente una cuarta parte del cambio climático. Estos cambios afectan la cantidad de CO2 que absorbe la materia vegetal y la cantidad de materia orgánica que se descompone o se quema para liberar CO2 . Estos cambios son parte del ciclo rápido del carbono , mientras que los combustibles fósiles liberan CO2 que quedó enterrado bajo tierra como parte del ciclo lento del carbono. El metano es un gas de efecto invernadero de corta duración que se produce por la descomposición de la materia orgánica y el ganado, así como por la extracción de combustibles fósiles. Los cambios en el uso de la tierra también pueden afectar los patrones de precipitación y la reflectividad de la superficie de la Tierra . Es posible reducir las emisiones de la agricultura reduciendo el desperdicio de alimentos , cambiando a una dieta más basada en plantas (también conocida como dieta baja en carbono ) y mejorando los procesos agrícolas. [9]

Diversas políticas pueden fomentar la mitigación del cambio climático. Se han establecido sistemas de fijación de precios del carbono que gravan las emisiones de CO2 o limitan las emisiones totales y comercializan créditos de emisión . Se pueden eliminar los subsidios a los combustibles fósiles en favor de subsidios a las energías limpias y ofrecer incentivos para instalar medidas de eficiencia energética o cambiar a fuentes de energía eléctrica. [10] Otra cuestión es superar las objeciones ambientales a la hora de construir nuevas fuentes de energía limpia y realizar modificaciones en la red.

Definiciones y alcance

La mitigación del cambio climático tiene como objetivo sustentar los ecosistemas para mantener la civilización humana . Esto requiere reducciones drásticas en las emisiones de gases de efecto invernadero. [11] : 1–64  El Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) define la mitigación (del cambio climático) como "una intervención humana para reducir las emisiones o mejorar los sumideros de gases de efecto invernadero ". [12] : 2239 

Es posible abordar varias medidas de mitigación en paralelo, ya que no existe una única vía para limitar el calentamiento global a 1,5 o 2 °C. [13] : 109  Hay cuatro tipos de medidas:

  1. Energía sostenible y transporte sostenible
  2. Conservación de energía , incluido el uso eficiente de la energía
  3. Agricultura sostenible y política industrial verde
  4. Mejorar los sumideros de carbono y la eliminación de dióxido de carbono (CDR), incluido el secuestro de carbono

El IPCC definió la eliminación de dióxido de carbono como "actividades antropogénicas que eliminan dióxido de carbono (CO2 ) de la atmósfera y lo almacenan de forma duradera en depósitos geológicos, terrestres u oceánicos, o en productos. Incluye la mejora antropogénica existente y potencial de los sumideros de CO2 biológicos o geoquímicos y la captura y almacenamiento directos de dióxido de carbono en el aire (DACCS), pero excluye la absorción natural de CO2 no causada directamente por actividades humanas". [12]

Relación con la modificación de la radiación solar (SRM)

Si bien la modificación de la radiación solar (MRS) podría reducir las temperaturas de la superficie, enmascara temporalmente el cambio climático en lugar de abordar la causa raíz, que son los gases de efecto invernadero. [14] : 14–56  La MRS funcionaría alterando la cantidad de radiación solar que absorbe la Tierra. [14] : 14–56  Los ejemplos incluyen la reducción de la cantidad de luz solar que llega a la superficie, la reducción del espesor óptico y la vida útil de las nubes, y el cambio de la capacidad de la superficie para reflejar la radiación. [15] El IPCC describe la MRS como una estrategia de reducción del riesgo climático o una opción complementaria en lugar de una opción de mitigación climática. [14]

La terminología en esta área aún está evolucionando. Los expertos a veces usan el término geoingeniería o ingeniería climática en la literatura científica tanto para CDR como para SRM, si las técnicas se utilizan a escala global. [11] : 6–11  Los informes del IPCC ya no usan los términos geoingeniería o ingeniería climática . [12]

Tendencias de emisiones y compromisos

Emisiones de GEI 2020 por tipo de gas
sin cambio de uso del suelo
utilizando GWP de 100 años
Total: 49,8 GtCO 2 e [16] : 5 

  CO2 principalmente de combustibles fósiles (72% )
  CH4 metano ( 19%)
  norte
2
Óxido
nitroso (6%)
  Gases fluorados (3%)

Emisiones de CO2 por tipo de combustible [17]

  carbón (39%)
  aceite (34%)
  gas (21%)
  cemento (4%)
  otros (1,5%)

Las emisiones de gases de efecto invernadero de las actividades humanas refuerzan el efecto invernadero , lo que contribuye al cambio climático . La mayor parte es dióxido de carbono procedente de la quema de combustibles fósiles : carbón, petróleo y gas natural. Las emisiones provocadas por el hombre han aumentado el dióxido de carbono atmosférico en un 50% aproximadamente con respecto a los niveles preindustriales. Las emisiones en la década de 2010 promediaron un récord de 56 mil millones de toneladas (Gt) al año. [18] En 2016, la energía para electricidad, calor y transporte fue responsable del 73,2% de las emisiones de GEI. Los procesos industriales directos representaron el 5,2%, los residuos el 3,2% y la agricultura, la silvicultura y el uso de la tierra el 18,4%. [19]

La generación de electricidad y el transporte son importantes emisores. La mayor fuente individual son las centrales eléctricas de carbón con el 20% de las emisiones de gases de efecto invernadero. [20] La deforestación y otros cambios en el uso de la tierra también emiten dióxido de carbono y metano. Las mayores fuentes de emisiones antropogénicas de metano son la agricultura y la ventilación de gases y las emisiones fugitivas de la industria de combustibles fósiles. La mayor fuente de metano agrícola es la ganadería. Los suelos agrícolas emiten óxido nitroso , en parte debido a los fertilizantes. [21] Ahora existe una solución política al problema de los gases fluorados de los refrigerantes . Esto se debe a que muchos países han ratificado la Enmienda de Kigali . [22]

El dióxido de carbono (CO 2 ) es el principal gas de efecto invernadero emitido. Las emisiones de metano ( CH 4 ) tienen casi el mismo impacto a corto plazo. [23] El óxido nitroso (N 2 O) y los gases fluorados (F-Gases) desempeñan un papel menor. El ganado y el estiércol producen el 5,8% de todas las emisiones de gases de efecto invernadero. [19] Pero esto depende del marco temporal utilizado para calcular el potencial de calentamiento global del gas respectivo. [24] [25]

Las emisiones de gases de efecto invernadero (GEI) se miden en equivalentes de CO 2 . Los científicos determinan sus equivalentes de CO 2 a partir de su potencial de calentamiento global (GWP). Esto depende de su tiempo de vida en la atmósfera. Hay métodos de contabilidad de gases de efecto invernadero ampliamente utilizados que convierten volúmenes de metano, óxido nitroso y otros gases de efecto invernadero en equivalentes de dióxido de carbono . Las estimaciones dependen en gran medida de la capacidad de los océanos y los sumideros terrestres para absorber estos gases. Los contaminantes climáticos de vida corta (SLCP) persisten en la atmósfera durante un período que va desde días hasta 15 años. El dióxido de carbono puede permanecer en la atmósfera durante milenios. [26] Los contaminantes climáticos de vida corta incluyen metano , hidrofluorocarbonos (HFC) , ozono troposférico y carbono negro .

Los científicos utilizan cada vez más los satélites para localizar y medir las emisiones de gases de efecto invernadero y la deforestación. Antes, los científicos dependían en gran medida de estimaciones de las emisiones de gases de efecto invernadero y de los datos que proporcionaban los propios gobiernos. [27] [28]

Recortes necesarios de emisiones

Escenarios globales de emisiones de gases de efecto invernadero, basados ​​en políticas y compromisos al 21/11

En el informe anual sobre la disparidad de emisiones elaborado por el PNUMA en 2022 se afirmaba que era necesario reducir casi a la mitad las emisiones. "Para encaminarnos a limitar el calentamiento global a 1,5 °C, las emisiones anuales mundiales de GEI deben reducirse en un 45 por ciento en comparación con las proyecciones de emisiones según las políticas vigentes en tan solo ocho años, y deben seguir disminuyendo rápidamente después de 2030, para evitar agotar el limitado presupuesto restante de carbono atmosférico ". [9] : xvi  El informe comentaba que el mundo debería centrarse en transformaciones económicas de base amplia y no en cambios incrementales. [9] : xvi 

En 2022, el Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) publicó su Sexto Informe de Evaluación sobre el Cambio Climático. En él se advierte que las emisiones de gases de efecto invernadero deben alcanzar su punto máximo antes de 2025 a más tardar y disminuir un 43% para 2030 para tener una buena posibilidad de limitar el calentamiento global a 1,5 °C (2,7 °F). [29] [30] O, en palabras del Secretario General de las Naciones Unidas, António Guterres : "Los principales emisores deben reducir drásticamente sus emisiones a partir de este año". [31]

Promesas

Climate Action Tracker describió la situación el 9 de noviembre de 2021 de la siguiente manera: la temperatura global aumentará 2,7 °C para finales de siglo con las políticas actuales y 2,9 °C con las políticas adoptadas a nivel nacional. La temperatura aumentará 2,4 °C si los países solo implementan los compromisos para 2030. El aumento sería de 2,1 °C también con el logro de los objetivos a largo plazo. El logro completo de todos los objetivos anunciados significaría que el aumento de la temperatura global alcanzaría un máximo de 1,9 °C y bajaría a 1,8 °C para el año 2100. [32] Los expertos recopilan información sobre los compromisos climáticos en el Portal de Acción Climática Global - Nazca . La comunidad científica está verificando su cumplimiento. [33]

No se ha hecho una evaluación definitiva o detallada de la mayoría de los objetivos fijados para 2020, pero parece que el mundo no logró cumplir la mayoría o ninguno de los objetivos internacionales fijados para ese año. [34] [35]

Una de las novedades se produjo durante la Conferencia de las Naciones Unidas sobre el Cambio Climático de 2021 en Glasgow. El grupo de investigadores que dirige el Climate Action Tracker examinó los países responsables del 85% de las emisiones de gases de efecto invernadero y descubrió que solo cuatro países o entidades políticas (la UE, el Reino Unido, Chile y Costa Rica) han publicado un plan de políticas oficial detallado que describe los pasos para alcanzar los objetivos de mitigación de 2030. Estos cuatro países son responsables del 6% de las emisiones mundiales de gases de efecto invernadero. [36]

En 2021, Estados Unidos y la Unión Europea lanzaron el Compromiso Global sobre el Metano para reducir las emisiones de metano en un 30 % para 2030. El Reino Unido, Argentina, Indonesia, Italia y México se sumaron a la iniciativa. Ghana e Irak manifestaron su interés en sumarse. Un resumen de la reunión realizado por la Casa Blanca señaló que esos países representan a seis de los 15 principales emisores de metano a nivel mundial. [37] Israel también se unió a la iniciativa. [38]

Energía baja en carbono

El carbón, el petróleo y el gas natural siguen siendo las principales fuentes de energía a nivel mundial, aun cuando las energías renovables han comenzado a aumentar rápidamente. [39]

El sistema energético incluye el suministro y uso de energía. Es el principal emisor de dióxido de carbono (CO 2 ). [40] : 6–6  Es necesario reducir rápidamente y en profundidad las emisiones de dióxido de carbono y otros gases de efecto invernadero del sector energético para limitar el calentamiento global a muy por debajo de los 2 °C. [40] : 6–3  Las recomendaciones del IPCC incluyen reducir el consumo de combustibles fósiles, aumentar la producción a partir de fuentes de energía con bajas emisiones de carbono y sin emisiones de carbono, y aumentar el uso de electricidad y portadores de energía alternativos. [40] : 6–3 

Casi todos los escenarios y estrategias implican un aumento importante en el uso de energía renovable en combinación con mayores medidas de eficiencia energética. [41] : xxiii  Será necesario acelerar el despliegue de energía renovable seis veces, desde un crecimiento anual del 0,25% en 2015 al 1,5% para mantener el calentamiento global por debajo de los 2 °C. [42]

Las fuentes de energía renovables, especialmente la solar fotovoltaica y la eólica , están aportando una proporción cada vez mayor de la capacidad energética. [43]

La competitividad de las energías renovables es clave para una rápida implementación. En 2020, la energía eólica terrestre y la solar fotovoltaica fueron las fuentes más baratas para la generación de electricidad a granel en muchas regiones. [44] Las energías renovables pueden tener costos de almacenamiento más altos, pero las no renovables pueden tener costos de limpieza más altos. [45] Un precio al carbono puede aumentar la competitividad de las energías renovables. [46]

Energía solar y eólica

La central solar Andasol de 150 MW es una planta termosolar comercial de colectores cilindroparabólicos ubicada en España . La planta Andasol utiliza tanques de sal fundida para almacenar energía solar de modo que pueda seguir generando electricidad durante 7,5 horas después de que el sol haya dejado de brillar. [47]

El viento y el sol pueden proporcionar grandes cantidades de energía baja en carbono a costos de producción competitivos. [48] El IPCC estima que estas dos opciones de mitigación tienen el mayor potencial para reducir las emisiones antes de 2030 a bajo costo. [6] : 43  La energía solar fotovoltaica (PV) se ha convertido en la forma más barata de generar electricidad en muchas regiones del mundo. [49] El crecimiento de la energía fotovoltaica ha sido casi exponencial. Se ha duplicado aproximadamente cada tres años desde la década de 1990. [50] [51] Una tecnología diferente es la energía solar concentrada (CSP). Esta utiliza espejos o lentes para concentrar una gran área de luz solar en un receptor. Con CSP, la energía se puede almacenar durante unas horas. Esto proporciona suministro por la noche. El calentamiento solar de agua se duplicó entre 2010 y 2019. [52]

El parque eólico Shepherds Flat es un parque eólico con una capacidad nominal de 845 megavatios (MW) situado en el estado de Oregón ( Estados Unidos ). Cada turbina es un generador de electricidad con una capacidad nominal de 2 o 2,5 MW.

Las regiones situadas en las latitudes más altas del norte y del sur tienen el mayor potencial para la energía eólica. [53] Los parques eólicos marinos son más caros, pero las unidades marinas proporcionan más energía por capacidad instalada con menos fluctuaciones. [54] En la mayoría de las regiones, la generación de energía eólica es mayor en invierno, cuando la producción fotovoltaica es baja. Por este motivo, las combinaciones de energía eólica y solar dan lugar a sistemas mejor equilibrados. [55]

Otras energías renovables

La presa de las Tres Gargantas, de 22.500 MW de capacidad nominal, en la República Popular China , es la central hidroeléctrica más grande del mundo

Otras formas de energía renovable bien establecidas incluyen la energía hidroeléctrica, la bioenergía y la energía geotérmica.

Integración de energía renovable variable

La producción de energía eólica y solar no siempre se corresponde con la demanda. [64] [65] Para suministrar electricidad confiable a partir de fuentes de energía renovables variables como la eólica y la solar, los sistemas de energía eléctrica deben ser flexibles. [66] La mayoría de las redes eléctricas se construyeron para fuentes de energía no intermitentes, como las centrales eléctricas a carbón. [67] La ​​integración de mayores cantidades de energía solar y eólica en la red requiere un cambio del sistema energético; esto es necesario para garantizar que el suministro de electricidad se corresponda con la demanda. [68]

Existen diversas maneras de hacer más flexible el sistema eléctrico. En muchos lugares, la generación eólica y solar son complementarias a escala diaria y estacional. Hay más viento durante la noche y en invierno, cuando la producción de energía solar es baja. [68] La conexión de diferentes regiones geográficas mediante líneas de transmisión de larga distancia también permite reducir la variabilidad. [69] Es posible desplazar la demanda de energía en el tiempo. La gestión de la demanda de energía y el uso de redes inteligentes permiten ajustarse a los momentos en que la producción de energía variable es más alta. [68] El acoplamiento sectorial puede proporcionar una mayor flexibilidad. Esto implica acoplar el sector eléctrico al sector de la calefacción y la movilidad mediante sistemas de conversión de energía en calor y vehículos eléctricos. [70]

Fotografía con un conjunto de contenedores blancos.
Instalación de almacenamiento de baterías

El almacenamiento de energía ayuda a superar las barreras a la energía renovable intermitente. [71] El método de almacenamiento más comúnmente utilizado y disponible es la hidroelectricidad de almacenamiento por bombeo . Esto requiere ubicaciones con grandes diferencias de altura y acceso al agua. [71] Las baterías también se utilizan ampliamente. [72] Por lo general, almacenan electricidad durante períodos cortos. [73] Las baterías tienen una baja densidad energética . Esto y su costo las hacen poco prácticas para el gran almacenamiento de energía necesario para equilibrar las variaciones interestacionales en la producción de energía. [74] Algunas ubicaciones han implementado el almacenamiento hidroeléctrico por bombeo con capacidad para uso de varios meses. [75]

Energía nuclear

La energía nuclear podría complementar las energías renovables para la generación de electricidad. [76] Por otra parte, los riesgos ambientales y de seguridad podrían superar los beneficios. [77] [78] [79]

La construcción de nuevos reactores nucleares actualmente lleva unos 10 años, mucho más tiempo que ampliar el despliegue de la energía eólica y solar. [80] : 335  Y este tiempo da lugar a riesgos crediticios. [81] Sin embargo, la energía nuclear puede ser mucho más barata en China, donde se está construyendo un número significativo de nuevas centrales eléctricas. [81] A partir de 2019, el costo de extender la vida útil de las centrales nucleares es competitivo con otras tecnologías de generación de electricidad [82] si se excluyen del cálculo los costos a largo plazo de la eliminación de desechos nucleares. Tampoco existe un seguro financiero suficiente para accidentes nucleares. [83]

Sustitución del carbón por gas natural

El cambio del carbón al gas natural tiene ventajas en términos de sostenibilidad. Por cada unidad de energía producida, las emisiones de gases de efecto invernadero durante el ciclo de vida del gas natural son alrededor de 40 veces las emisiones de la energía eólica o nuclear, pero son mucho menores que las del carbón. La quema de gas natural produce alrededor de la mitad de las emisiones del carbón cuando se utiliza para generar electricidad y alrededor de dos tercios de las emisiones del carbón cuando se utiliza para producir calor. [84] La combustión de gas natural también produce menos contaminación del aire que el carbón. [85] Sin embargo, el gas natural es un potente gas de efecto invernadero en sí mismo, y las fugas durante la extracción y el transporte pueden anular las ventajas de dejar de utilizar carbón. [86] La tecnología para frenar las fugas de metano está ampliamente disponible, pero no siempre se utiliza. [86]

El cambio del carbón al gas natural reduce las emisiones a corto plazo y, por lo tanto, contribuye a la mitigación del cambio climático. Sin embargo, a largo plazo no ofrece una vía para lograr emisiones netas cero . El desarrollo de infraestructura de gas natural corre el riesgo de generar activos bloqueados y de quedarse estancados en el carbono , en cuyo caso la nueva infraestructura fósil se compromete a décadas de emisiones de carbono o tiene que amortizarse antes de que genere ganancias. [87] [88]

Reducción de la demanda

Reducir la demanda de productos y servicios que generan emisiones de gases de efecto invernadero puede ayudar a mitigar el cambio climático. Una de ellas es reducir la demanda mediante cambios culturales y de comportamiento , por ejemplo, modificando la dieta, especialmente la decisión de reducir el consumo de carne, [89] una medida eficaz que toman las personas para luchar contra el cambio climático . Otra es reducir la demanda mediante la mejora de la infraestructura, por ejemplo, construyendo una buena red de transporte público. Por último, los cambios en la tecnología de uso final pueden reducir la demanda de energía. Por ejemplo, una casa bien aislada emite menos que una casa mal aislada. [90] : 119 

Las opciones de mitigación que reducen la demanda de productos o servicios ayudan a las personas a tomar decisiones personales para reducir su huella de carbono . Esto podría ser en su elección de transporte o alimentos. [91] : 5–3  Por lo tanto, estas opciones de mitigación tienen muchos aspectos sociales que se centran en la reducción de la demanda; por lo tanto, son acciones de mitigación del lado de la demanda . Por ejemplo, las personas con un alto estatus socioeconómico a menudo causan más emisiones de gases de efecto invernadero que las de un estatus inferior. Si reducen sus emisiones y promueven políticas verdes, estas personas podrían convertirse en modelos a seguir de estilo de vida bajo en carbono. [91] : 5–4  Sin embargo, hay muchas variables psicológicas que influyen en los consumidores. Estas incluyen la conciencia y el riesgo percibido.

Las políticas gubernamentales pueden apoyar u obstaculizar las opciones de mitigación de la demanda. Por ejemplo, las políticas públicas pueden promover conceptos de economía circular que apoyarían la mitigación del cambio climático. [91] : 5–6  La reducción de las emisiones de gases de efecto invernadero está vinculada a la economía colaborativa .

Existe un debate sobre la correlación entre el crecimiento económico y las emisiones. Parece que el crecimiento económico ya no significa necesariamente mayores emisiones. [92] [93]

Conservación y eficiencia energética

En 2018, la demanda mundial de energía primaria superó los 161.000 teravatios hora (TWh). [94] Esto se refiere a la electricidad, el transporte y la calefacción, incluidas todas las pérdidas. En el transporte y la producción de electricidad, el uso de combustibles fósiles tiene una eficiencia baja, inferior al 50%. Se desperdician grandes cantidades de calor en las centrales eléctricas y en los motores de los vehículos. La cantidad real de energía consumida es significativamente menor: 116.000 TWh. [95]

La conservación de la energía es el esfuerzo que se hace para reducir el consumo de energía mediante un menor uso de un servicio energético. Una forma de hacerlo es utilizar la energía de manera más eficiente , es decir, utilizar menos energía que antes para producir el mismo servicio. Otra forma de hacerlo es reducir la cantidad de servicio utilizado, como por ejemplo conducir menos. La conservación de la energía se encuentra en la cima de la jerarquía de la energía sostenible . [96] Cuando los consumidores reducen el desperdicio y las pérdidas, pueden conservar energía. La modernización de la tecnología, así como las mejoras en las operaciones y el mantenimiento, pueden dar lugar a mejoras generales en la eficiencia.

El uso eficiente de la energía (o eficiencia energética ) es el proceso de reducir la cantidad de energía necesaria para proporcionar productos y servicios. Una mejor eficiencia energética en los edificios ("edificios verdes"), los procesos industriales y el transporte podrían reducir las necesidades energéticas mundiales en 2050 en un tercio. Esto ayudaría a reducir las emisiones globales de gases de efecto invernadero. [97] Por ejemplo, aislar un edificio le permite utilizar menos energía de calefacción y refrigeración para lograr y mantener el confort térmico. Las mejoras en la eficiencia energética generalmente se logran adoptando una tecnología o un proceso de producción más eficiente. [98] Otra forma es utilizar métodos comúnmente aceptados para reducir las pérdidas de energía.

Cambios en el estilo de vida

Las acciones individuales para combatir el cambio climático pueden incluir decisiones personales en muchas áreas, como la dieta, los viajes, el uso de energía en el hogar, el consumo de bienes y servicios y el tamaño de la familia. Las personas que desean reducir su huella de carbono pueden tomar medidas de alto impacto, como evitar los viajes frecuentes y los automóviles a gasolina, seguir una dieta basada principalmente en plantas , tener menos hijos, [101] [102] usar ropa y productos eléctricos durante más tiempo, [103] y electrificar los hogares. [104] [105] Estos enfoques son más prácticos para las personas en países de altos ingresos con estilos de vida de alto consumo. Naturalmente, es más difícil para quienes tienen niveles de ingresos más bajos hacer estos cambios, ya que es posible que no haya opciones disponibles, como los automóviles eléctricos. El consumo excesivo es más responsable del cambio climático que el aumento de la población. [106] Los estilos de vida de alto consumo tienen un mayor impacto ambiental, ya que el 10% más rico de las personas emite aproximadamente la mitad de las emisiones totales de su estilo de vida. [107] [108]

Cambio de dieta

Algunos científicos afirman que evitar la carne y los productos lácteos es la principal forma de reducir el impacto ambiental. [109] La adopción generalizada de una dieta vegetariana podría reducir las emisiones de gases de efecto invernadero relacionadas con los alimentos en un 63% para 2050. [110] China introdujo nuevas directrices dietéticas en 2016 que apuntan a reducir el consumo de carne en un 50% y, por lo tanto, reducir las emisiones de gases de efecto invernadero en 1  Gt por año para 2030. [111] En general, los alimentos representan la mayor parte de las emisiones de gases de efecto invernadero basadas en el consumo. Son responsables de casi el 20% de la huella de carbono global. Casi el 15% de todas las emisiones antropogénicas de gases de efecto invernadero se han atribuido al sector ganadero. [105]

Un cambio hacia dietas basadas en plantas ayudaría a mitigar el cambio climático. [112] En particular, reducir el consumo de carne ayudaría a reducir las emisiones de metano. [113] Si las naciones de altos ingresos cambiaran a una dieta basada en plantas, grandes cantidades de tierra usada para la agricultura animal podrían volver a su estado natural . Esto a su vez tiene el potencial de secuestrar 100 mil millones de toneladas de CO2 para fines de siglo. [114] [115] Un análisis exhaustivo encontró que las dietas basadas en plantas reducen las emisiones, la contaminación del agua y el uso de la tierra significativamente (en un 75%), al tiempo que reducen la destrucción de la vida silvestre y el uso del agua. [116]

Huella ambiental de 55.504 ciudadanos del Reino Unido por grupo de dieta ( Nat Food 4, 565–574, 2023).

Tamaño de la familia

Desde 1950, la población mundial se ha triplicado. [117]

El crecimiento demográfico ha dado lugar a mayores emisiones de gases de efecto invernadero en la mayoría de las regiones, en particular en África. [40] : 6–11  Sin embargo, el crecimiento económico tiene un efecto mayor que el crecimiento demográfico. [91] : 6–622  El aumento de los ingresos, los cambios en los patrones de consumo y dietéticos, así como el crecimiento demográfico, ejercen presión sobre la tierra y otros recursos naturales. Esto conduce a más emisiones de gases de efecto invernadero y menos sumideros de carbono. [118] : 117  Algunos académicos han argumentado que las políticas humanas para frenar el crecimiento demográfico deberían ser parte de una amplia respuesta climática junto con políticas que pongan fin al uso de combustibles fósiles y fomenten el consumo sostenible. [119] Los avances en la educación femenina y la salud reproductiva , especialmente la planificación familiar voluntaria , pueden contribuir a reducir el crecimiento demográfico. [91] : 5–35 

Preservación y mejora de los sumideros de carbono

Aproximadamente el 58% de las emisiones de CO2 han sido absorbidas por sumideros de carbono , incluido el crecimiento de las plantas, la absorción del suelo y la absorción de los océanos ( Presupuesto Global de Carbono 2020 ).

Una medida de mitigación importante es la "preservación y mejora de los sumideros de carbono ". [6] Esto se refiere a la gestión de los sumideros de carbono naturales de la Tierra de una manera que preserve o aumente su capacidad para eliminar CO2 de la atmósfera y almacenarlo de forma duradera. Los científicos también denominan a este proceso secuestro de carbono . En el contexto de la mitigación del cambio climático, el IPCC define un sumidero como "Cualquier proceso, actividad o mecanismo que elimina un gas de efecto invernadero, un aerosol o un precursor de un gas de efecto invernadero de la atmósfera". [12] : 2249  A nivel mundial, los dos sumideros de carbono más importantes son la vegetación y el océano . [120]

Para mejorar la capacidad de los ecosistemas de secuestrar carbono, son necesarios cambios en la agricultura y la silvicultura. [121] Algunos ejemplos son la prevención de la deforestación y la restauración de los ecosistemas naturales mediante la reforestación . [122] : 266  Los escenarios que limitan el calentamiento global a 1,5 °C suelen proyectar el uso a gran escala de métodos de eliminación de dióxido de carbono durante el siglo XXI. [123] : 1068  [124] : 17  Existen preocupaciones sobre la excesiva dependencia de estas tecnologías y sus impactos ambientales. [124] : 17  [125] : 34  Pero la restauración de los ecosistemas y la reducción de la conversión se encuentran entre las herramientas de mitigación que pueden producir las mayores reducciones de emisiones antes de 2030. [6] : 43 

En el informe de 2022 del IPCC sobre mitigación, las opciones de mitigación basadas en la tierra se denominan "opciones de mitigación AFOLU". La abreviatura significa "agricultura, silvicultura y otros usos de la tierra" [6] : 37  El informe describe el potencial de mitigación económica de las actividades pertinentes en torno a los bosques y los ecosistemas de la siguiente manera: "la conservación, la gestión mejorada y la restauración de los bosques y otros ecosistemas (humedales costeros, turberas , sabanas y pastizales)". Se encuentra un alto potencial de mitigación para reducir la deforestación en las regiones tropicales. Se ha estimado que el potencial económico de estas actividades es de 4,2 a 7,4 gigatoneladas de dióxido de carbono equivalente (GtCO 2 -eq) por año. [6] : 37 

Bosques

Conservación

Se argumenta que la transferencia de derechos sobre la tierra a los habitantes indígenas permitiría conservar eficazmente los bosques.

En 2007, el Informe Stern sobre la economía del cambio climático afirmó que frenar la deforestación era una forma muy rentable de reducir las emisiones de gases de efecto invernadero. [126] Alrededor del 95% de la deforestación se produce en los trópicos, donde la tala de tierras para la agricultura es una de las principales causas. [127] Una estrategia de conservación forestal es transferir los derechos sobre la tierra de la propiedad pública a sus habitantes indígenas. [128] Las concesiones de tierras a menudo van a manos de poderosas empresas extractivas. [128] Las estrategias de conservación que excluyen e incluso desalojan a los humanos, llamadas conservación fortaleza , a menudo conducen a una mayor explotación de la tierra. Esto se debe a que los habitantes nativos recurren a trabajar para las empresas extractivas para sobrevivir. [129]

La proforestación consiste en promover que los bosques aprovechen todo su potencial ecológico. [130] Se trata de una estrategia de mitigación, ya que se ha descubierto que los bosques secundarios que han vuelto a crecer en tierras agrícolas abandonadas tienen menos biodiversidad que los bosques primarios originales . Los bosques originales almacenan un 60% más de carbono que estos bosques nuevos. [131] Las estrategias incluyen la reintroducción de la vida silvestre y el establecimiento de corredores de vida silvestre . [132] [133]

Forestación y reforestación

La forestación es el establecimiento de árboles donde antes no había cobertura arbórea. Los escenarios para nuevas plantaciones que cubran hasta 4000 millones de hectáreas (Mha) (6300 x 6300 km) sugieren un almacenamiento acumulado de carbono de más de 900 GtC (2300 GtCO 2 ) hasta 2100. [134] Pero no son una alternativa viable a la reducción agresiva de emisiones. [135] Esto se debe a que las plantaciones tendrían que ser tan grandes que eliminarían la mayoría de los ecosistemas naturales o reducirían la producción de alimentos. [136] Un ejemplo es la Campaña del Billón de Árboles . [137] [138] Sin embargo, preservar la biodiversidad también es importante y, por ejemplo, no todos los pastizales son adecuados para la conversión en bosques. [139] Los pastizales pueden incluso pasar de sumideros de carbono a fuentes de carbono .

Se sostiene que ayudar a que las raíces y los tocones de los árboles existentes vuelvan a crecer incluso en zonas deforestadas desde hace mucho tiempo es más eficiente que plantar árboles. La falta de propiedad legal de los árboles por parte de los lugareños es el mayor obstáculo que impide el rebrote. [140] [141]

La reforestación es la repoblación de bosques ya deforestados o de lugares donde recientemente había bosques. La reforestación podría ahorrar al menos 1  GtCO2 por año, a un costo estimado de 5 a 15 dólares por tonelada de dióxido de carbono (tCO2 ) . [142] Restaurar todos los bosques degradados en todo el mundo podría capturar alrededor de 205 GtC (750 GtCO2 ) . [143] Con el aumento de la agricultura intensiva y la urbanización , hay un aumento en la cantidad de tierras agrícolas abandonadas. Según algunas estimaciones, por cada acre de bosque primario original talado, crecen más de 50 acres de nuevos bosques secundarios . [131] [144] En algunos países, promover la regeneración de tierras agrícolas abandonadas podría compensar años de emisiones. [145]

Plantar árboles nuevos puede ser una inversión costosa y riesgosa. Por ejemplo, alrededor del 80 por ciento de los árboles plantados en el Sahel mueren en dos años. [140] La reforestación tiene un mayor potencial de almacenamiento de carbono que la forestación. Incluso las áreas deforestadas durante mucho tiempo todavía contienen un "bosque subterráneo" de raíces vivas y tocones de árboles. Ayudar a las especies nativas a brotar de forma natural es más barato que plantar árboles nuevos y tienen más probabilidades de sobrevivir. Esto podría incluir la poda y el desbroce para acelerar el crecimiento. Esto también proporciona combustible de madera, que de otro modo es una fuente importante de deforestación. Estas prácticas, llamadas regeneración natural gestionada por los agricultores , tienen siglos de antigüedad, pero el mayor obstáculo para su implementación es la propiedad de los árboles por parte del Estado. El Estado a menudo vende los derechos de la madera a las empresas, lo que lleva a los lugareños a arrancar las plántulas porque las ven como una carga. La asistencia jurídica para los locales [146] [147] y los cambios en la ley de propiedad como en Malí y Níger han llevado a cambios significativos. Los científicos los describen como la mayor transformación ambiental positiva en África. Es posible distinguir desde el espacio la frontera entre Níger y las tierras más áridas de Nigeria, donde la ley no ha cambiado. [140] [141]

Suelos

Existen muchas medidas para aumentar el carbono del suelo. [148] Esto hace que sea complejo [149] y difícil de medir y contabilizar. [150] Una ventaja es que hay menos compensaciones para estas medidas que para BECCS o la forestación, por ejemplo. [ cita requerida ]

A nivel mundial, la protección de los suelos sanos y la restauración de la esponja de carbono del suelo podrían eliminar 7.600 millones de toneladas de dióxido de carbono de la atmósfera anualmente. Esto es más que las emisiones anuales de los EE. UU. [151] [152] Los árboles capturan CO2 mientras crecen sobre el suelo y exudan mayores cantidades de carbono bajo tierra. Los árboles contribuyen a la construcción de una esponja de carbono del suelo . El carbono formado sobre el suelo se libera como CO2 inmediatamente cuando se quema madera. Si la madera muerta permanece intacta, solo una parte del carbono regresa a la atmósfera a medida que avanza la descomposición. [151]

La agricultura puede agotar el carbono del suelo y hacer que el suelo sea incapaz de sustentar la vida. Sin embargo, la agricultura de conservación puede proteger el carbono en los suelos y reparar el daño con el tiempo. [153] La práctica agrícola de cultivos de cobertura es una forma de agricultura de carbono . [154] Los métodos que mejoran el secuestro de carbono en el suelo incluyen la agricultura sin labranza , el acolchado de residuos y la rotación de cultivos . Los científicos han descrito las mejores prácticas de gestión para los suelos europeos para aumentar el carbono orgánico del suelo. Estas son la conversión de tierras cultivables en pastizales, la incorporación de paja, la labranza reducida, la incorporación de paja combinada con labranza reducida, el sistema de cultivo en praderas y los cultivos de cobertura. [155]

Otra opción de mitigación es la producción de biocarbón y su almacenamiento en suelos. Este es el material sólido que queda después de la pirólisis de la biomasa . La producción de biocarbón libera la mitad del carbono de la biomasa, ya sea liberado a la atmósfera o capturado con CCS, y retiene la otra mitad en el biocarbón estable. [156] Puede perdurar en el suelo durante miles de años. [157] El biocarbón puede aumentar la fertilidad del suelo de los suelos ácidos y aumentar la productividad agrícola . Durante la producción de biocarbón, se libera calor que puede usarse como bioenergía . [156]

Humedales

La restauración de humedales es una medida de mitigación importante. Tiene un potencial de mitigación moderado a grande en una superficie de tierra limitada con bajas compensaciones y costos. [ cita requerida ] Los humedales cumplen dos funciones importantes en relación con el cambio climático. Pueden secuestrar carbono , convirtiendo el dióxido de carbono en material vegetal sólido a través de la fotosíntesis . También almacenan y regulan el agua. [158] [159] Los humedales almacenan alrededor de 45 millones de toneladas de carbono por año a nivel mundial. [160]

Algunos humedales son una fuente importante de emisiones de metano . [161] Algunos también emiten óxido nitroso . [162] [163] Las turberas cubren globalmente solo el 3% de la superficie terrestre. [164] Pero almacenan hasta 550 gigatoneladas (Gt) de carbono. Esto representa el 42% de todo el carbono del suelo y supera el carbono almacenado en todos los demás tipos de vegetación, incluidos los bosques del mundo. [165] La amenaza a las turberas incluye el drenaje de las áreas para la agricultura. Otra amenaza es la tala de árboles para madera, ya que los árboles ayudan a sostener y fijar la turbera. [166] [167] Además, la turba a menudo se vende para compost. [168] Es posible restaurar las turberas degradadas bloqueando los canales de drenaje en la turbera y permitiendo que la vegetación natural se recupere. [132] [169]

Los manglares , las marismas y las praderas marinas constituyen la mayoría de los hábitats con vegetación del océano. Sólo representan el 0,05% de la biomasa vegetal terrestre, pero almacenan carbono 40 veces más rápido que los bosques tropicales. [132] La pesca de arrastre de fondo , el dragado para el desarrollo costero y la escorrentía de fertilizantes han dañado los hábitats costeros. Cabe destacar que el 85% de los arrecifes de ostras a nivel mundial han sido eliminados en los últimos dos siglos. Los arrecifes de ostras limpian el agua y ayudan a que otras especies prosperen, lo que aumenta la biomasa en esa zona. Además, los arrecifes de ostras mitigan los efectos del cambio climático al reducir la fuerza de las olas de los huracanes. También reducen la erosión causada por el aumento del nivel del mar. [170] Se cree que la restauración de los humedales costeros es más rentable que la restauración de los humedales continentales. [171]

Océano profundo

Estas opciones se centran en el carbono que pueden almacenar los reservorios oceánicos. Incluyen la fertilización oceánica , la mejora de la alcalinidad oceánica o la mejora de la meteorización . [172] : 12–36  El IPCC encontró en 2022 que las opciones de mitigación basadas en el océano actualmente tienen un potencial de implementación limitado. Pero evaluó que su potencial de mitigación futuro es grande. [172] : 12–4  Encontró que en total, los métodos basados ​​en el océano podrían eliminar entre 1 y 100 Gt de CO 2 por año. [90] : TS-94  Sus costos son del orden de US$40–500 por tonelada de CO 2 . La mayoría de estas opciones también podrían ayudar a reducir la acidificación de los océanos . Esta es la caída del valor del pH causada por el aumento de las concentraciones atmosféricas de CO 2. [173]

La gestión del carbono azul es otro tipo de eliminación biológica de dióxido de carbono (CDR) basada en el océano . Puede implicar medidas tanto terrestres como oceánicas. [172] : 12–51  [174] : 764  El término generalmente se refiere al papel que las marismas , los manglares y las praderas marinas pueden desempeñar en el secuestro de carbono. [12] : 2220  Algunos de estos esfuerzos también pueden tener lugar en aguas oceánicas profundas. Aquí es donde se encuentra la gran mayoría del carbono oceánico. Estos ecosistemas pueden contribuir a la mitigación del cambio climático y también a la adaptación basada en ecosistemas . Por el contrario, cuando los ecosistemas de carbono azul se degradan o se pierden, liberan carbono a la atmósfera. [12] : 2220  Existe un creciente interés en desarrollar el potencial de carbono azul. [175] Los científicos han descubierto que en algunos casos estos tipos de ecosistemas eliminan mucho más carbono por área que los bosques terrestres. Sin embargo, la eficacia a largo plazo del carbono azul como solución de eliminación de dióxido de carbono sigue siendo objeto de debate. [176] [175] [177]

Intemperismo mejorado

La meteorización mejorada podría eliminar entre 2 y 4 Gt de CO2 al año. Este proceso tiene como objetivo acelerar la meteorización natural al esparcir rocas de silicato finamente molidas , como el basalto , sobre las superficies. Esto acelera las reacciones químicas entre las rocas, el agua y el aire. Elimina el dióxido de carbono de la atmósfera, almacenándolo permanentemente en minerales de carbonato sólido o en la alcalinidad del océano . [178] Las estimaciones de costos están en el rango de 50 a 200 dólares estadounidenses por tonelada de CO2 . [ 90] : TS-94 

Otros métodos para capturar y almacenar CO2

Esquema que muestra el secuestro terrestre y geológico de las emisiones de dióxido de carbono de una gran fuente puntual, por ejemplo, la quema de gas natural.

Además de los métodos tradicionales terrestres para eliminar el dióxido de carbono (CO2 ) del aire, se están desarrollando otras tecnologías que podrían reducir las emisiones de CO2 y disminuir los niveles actuales de CO2 en la atmósfera . La captura y almacenamiento de carbono (CCS) es un método para mitigar el cambio climático que captura el CO2 de grandes fuentes puntuales , como fábricas de cemento o plantas de energía de biomasa , para luego almacenarlo de forma segura en lugar de liberarlo a la atmósfera. El IPCC estima que los costos de detener el calentamiento global se duplicarían sin la CCS. [179]

La bioenergía con captura y almacenamiento de carbono (BECCS) amplía el potencial de la CCS y tiene como objetivo reducir los niveles de CO2 atmosférico. Este proceso utiliza biomasa cultivada para bioenergía . La biomasa produce energía en formas útiles como electricidad, calor, biocombustibles, etc. mediante el consumo de la biomasa mediante combustión, fermentación o pirólisis. El proceso captura el CO2 que se extrajo de la atmósfera cuando creció. Luego lo almacena bajo tierra o mediante la aplicación en la tierra como biocarbón . Esto lo elimina eficazmente de la atmósfera . [180] Esto hace que la BECCS sea una tecnología de emisiones negativas (NET). [181]

Los científicos estimaron que el rango potencial de emisiones negativas de BECCS en 2018 era de 0 a 22 Gt por año. [182] A partir de 2022 , BECCS estaba capturando aproximadamente 2 millones de toneladas por año de CO 2 anualmente. [183] ​​El costo y la disponibilidad de biomasa limitan el amplio despliegue de BECCS. [184] [185] : 10  BECCS actualmente forma una gran parte del logro de los objetivos climáticos más allá de 2050 en la modelización, como por ejemplo los Modelos de Evaluación Integrada (IAM) asociados con el proceso del IPCC. Pero muchos científicos son escépticos debido al riesgo de pérdida de biodiversidad. [186]

La captura directa de aire es un proceso de captura de CO2 directamente del aire ambiente. Esto contrasta con la captura y almacenamiento de carbono, que captura carbono de fuentes puntuales. Genera una corriente concentrada de CO2 para su secuestro , utilización o producción de combustible neutro en carbono y gas eólico . [187] Los procesos artificiales varían y existen preocupaciones sobre los efectos a largo plazo de algunos de estos procesos. [188] [ fuente obsoleta ]

Mitigación por sectores

Edificios

El sector de la construcción representa el 23% de las emisiones globales de CO 2 relacionadas con la energía . [13] : 141  Aproximadamente la mitad de la energía se utiliza para calentar espacios y agua . [190] El aislamiento de los edificios puede reducir significativamente la demanda de energía primaria. Las cargas de las bombas de calor también pueden proporcionar un recurso flexible que puede participar en la respuesta a la demanda para integrar recursos renovables variables en la red. [191] El calentamiento solar del agua utiliza energía térmica directamente. Las medidas de suficiencia incluyen mudarse a casas más pequeñas cuando cambian las necesidades de los hogares, el uso mixto de espacios y el uso colectivo de dispositivos. [90] : 71  Los planificadores e ingenieros civiles pueden construir nuevos edificios utilizando técnicas de diseño de edificios solares pasivos , edificios de bajo consumo energético o edificios de energía cero . Además, es posible diseñar edificios que sean más eficientes energéticamente para enfriar mediante el uso de materiales de colores más claros y más reflectantes en el desarrollo de áreas urbanas.

Las bombas de calor calientan los edificios de manera eficiente y los enfrían mediante el aire acondicionado . Una bomba de calor moderna suele transportar entre tres y cinco veces más energía térmica que la energía eléctrica consumida. La cantidad depende del coeficiente de rendimiento y de la temperatura exterior. [192]

La refrigeración y el aire acondicionado son responsables de aproximadamente el 10% de las emisiones globales de CO2 causadas por la producción de energía basada en combustibles fósiles y el uso de gases fluorados. Los sistemas de refrigeración alternativos, como el diseño pasivo de edificios con refrigeración y superficies de refrigeración radiativa pasiva durante el día , pueden reducir el uso del aire acondicionado. Los suburbios y las ciudades en climas cálidos y áridos pueden reducir significativamente el consumo de energía mediante la refrigeración con refrigeración radiativa diurna. [193]

El consumo de energía para refrigeración probablemente aumentará significativamente debido al aumento del calor y la disponibilidad de dispositivos en los países más pobres. De los 2.800 millones de personas que viven en las partes más cálidas del mundo, solo el 8% tiene actualmente acondicionadores de aire, en comparación con el 90% de las personas en los EE. UU. y Japón. [194] La adopción de acondicionadores de aire generalmente aumenta en las áreas más cálidas con ingresos familiares anuales superiores a los 10.000 dólares. [195] Al combinar las mejoras de eficiencia energética y la descarbonización de la electricidad para el aire acondicionado con la transición hacia el abandono de los refrigerantes supercontaminantes, el mundo podría evitar emisiones acumuladas de gases de efecto invernadero de hasta 210–460 GtCO 2 -eq en las próximas cuatro décadas. [196] Un cambio a la energía renovable en el sector de la refrigeración tiene dos ventajas: la producción de energía solar con picos de mediodía se corresponde con la carga necesaria para la refrigeración y, además, la refrigeración tiene un gran potencial para la gestión de la carga en la red eléctrica. [196]

Planificación urbana

Las bicicletas prácticamente no tienen huella de carbono . [197]

En 2020, las ciudades emitieron 28 GtCO2-eq de emisiones combinadas de CO2 y CH4 . [ 90 ] : TS -61  Esto se debió a la producción y el consumo de bienes y servicios. [90] : TS-61  La planificación urbana climáticamente inteligente tiene como objetivo reducir la expansión urbana para reducir la distancia recorrida. Esto reduce las emisiones del transporte. Reemplazar los automóviles mejorando la infraestructura para peatones y ciclistas es beneficioso para la economía de un país en su conjunto. [198]

La forestación urbana , los lagos y otras infraestructuras azules y verdes pueden reducir las emisiones de manera directa e indirecta al reducir la demanda de energía para refrigeración. [90] : TS-66  Las emisiones de metano de los residuos sólidos urbanos se pueden reducir mediante la segregación, el compostaje y el reciclaje. [199]

Transporte

Las ventas de vehículos eléctricos (VE) indican una tendencia a abandonar los vehículos propulsados ​​por gasolina que generan gases de efecto invernadero. [200]

El transporte representa el 15% de las emisiones a nivel mundial. [201] Aumentar el uso del transporte público, el transporte de mercancías con bajas emisiones de carbono y la bicicleta son componentes importantes de la descarbonización del transporte. [202] [203]

Los vehículos eléctricos y los ferrocarriles respetuosos con el medio ambiente ayudan a reducir el consumo de combustibles fósiles. En la mayoría de los casos, los trenes eléctricos son más eficientes que el transporte aéreo y el transporte por camión. [204] Otros medios de eficiencia incluyen un mejor transporte público, la movilidad inteligente , el uso compartido de automóviles y los híbridos eléctricos . Los combustibles fósiles para automóviles de pasajeros pueden incluirse en el comercio de emisiones. [205] Además, es importante alejarse de un sistema de transporte dominado por los automóviles hacia un sistema de transporte público avanzado con bajas emisiones de carbono. [206]

Los vehículos personales grandes y pesados ​​(como los automóviles) requieren mucha energía para moverse y ocupan mucho espacio urbano. [207] [208] Existen varios modos de transporte alternativos para reemplazarlos. La Unión Europea ha hecho de la movilidad inteligente parte de su Pacto Verde Europeo . [209] En las ciudades inteligentes , la movilidad inteligente también es importante. [210]

Autobús eléctrico a batería en Montreal

El Banco Mundial está ayudando a los países de bajos ingresos a comprar autobuses eléctricos. Su precio de compra es más alto que el de los autobuses diésel, pero los menores costos de funcionamiento y las mejoras en la salud gracias a un aire más limpio pueden compensar este precio más alto. [211]

Se prevé que entre una cuarta parte y tres cuartas partes de los automóviles en circulación en 2050 serán vehículos eléctricos. [212] El hidrógeno puede ser una solución para los camiones de carga pesada de larga distancia, si las baterías por sí solas son demasiado pesadas. [213]

Envío

En la industria naviera, el uso de gas natural licuado (GNL) como combustible para buques está impulsado por las regulaciones de emisiones. Los operadores de barcos deben cambiar del fueloil pesado a combustibles a base de petróleo más caros, implementar costosas tecnologías de tratamiento de gases de combustión o cambiar a motores de GNL . [214] El escape de metano, cuando el gas se filtra sin quemar a través del motor, reduce las ventajas del GNL. Maersk , la mayor línea naviera de contenedores y operador de buques del mundo, advierte sobre activos varados al invertir en combustibles de transición como el GNL. [215] La compañía incluye al amoníaco verde como uno de los tipos de combustible preferidos del futuro. Ha anunciado el primer buque carbono neutral en el agua para 2023, que funcionará con metanol carbono neutral . [216] Los operadores de cruceros están probando barcos parcialmente propulsados ​​por hidrógeno . [217]

Los transbordadores híbridos y totalmente eléctricos son adecuados para distancias cortas. El objetivo de Noruega es contar con una flota totalmente eléctrica para 2025. [218]

Transporte aéreo

Entre 1940 y 2018, las emisiones de CO2 de la aviación aumentaron del 0,7% al 2,65% de todas las emisiones de CO2 . [ 219]

Los aviones de pasajeros contribuyen al cambio climático al emitir dióxido de carbono, óxidos de nitrógeno , estelas de condensación y partículas. Se estima que su forzamiento radiativo es entre 1,3 y 1,4 veces el del CO2 solo , sin contar los cirros inducidos . En 2018, las operaciones comerciales mundiales generaron el 2,4 % de todas las emisiones de CO2 . [ 220]

La industria de la aviación se ha vuelto más eficiente en el uso del combustible, pero las emisiones totales han aumentado a medida que ha aumentado el volumen de viajes aéreos. En 2020, las emisiones de la aviación eran un 70% más altas que en 2005 y podrían aumentar un 300% para 2050. [221]

Es posible reducir la huella ambiental de la aviación mediante un mejor ahorro de combustible en las aeronaves . La optimización de las rutas de vuelo para reducir los efectos no relacionados con el CO2 sobre el clima de los óxidos de nitrógeno, las partículas o las estelas de condensación también puede ayudar. El biocombustible de aviación , el comercio de emisiones de carbono y la compensación de carbono , parte del Plan de compensación y reducción de carbono para la aviación internacional (CORSIA) de la OACI, que cuenta con 191 naciones, pueden reducir las emisiones de CO2 . Las prohibiciones de vuelos de corta distancia , las conexiones ferroviarias, las opciones personales y los impuestos sobre los vuelos pueden dar lugar a menos vuelos. Los aviones eléctricos híbridos y los aviones eléctricos o los aviones propulsados ​​por hidrógeno pueden reemplazar a los aviones propulsados ​​por combustibles fósiles.

Los expertos esperan que las emisiones de la aviación aumenten en la mayoría de las proyecciones, al menos hasta 2040. Actualmente ascienden a 180 Mt de CO2 o el 11% de las emisiones del transporte. El biocombustible de aviación y el hidrógeno solo pueden cubrir una pequeña proporción de los vuelos en los próximos años. Los expertos esperan que las aeronaves híbridas comiencen a realizar vuelos comerciales regionales programados después de 2030. Es probable que las aeronaves impulsadas por baterías ingresen al mercado después de 2035. [222] En virtud del CORSIA, los operadores de vuelos pueden comprar compensaciones de carbono para cubrir sus emisiones por encima de los niveles de 2019. CORSIA será obligatorio a partir de 2027.

Agricultura, silvicultura y uso de la tierra

Emisiones de gases de efecto invernadero a lo largo de la cadena de suministro de diferentes alimentos, que muestran qué tipo de alimentos se deben fomentar y cuáles se deben desalentar desde una perspectiva de mitigación

Casi el 20% de las emisiones de gases de efecto invernadero provienen del sector agrícola y forestal. [223] Para reducir significativamente estas emisiones, las inversiones anuales en el sector agrícola deben aumentar a 260 mil millones de dólares para 2030. Los beneficios potenciales de estas inversiones se estiman en alrededor de 4,3 billones de dólares para 2030, lo que ofrece un rendimiento económico sustancial de 16 a 1. [224] : 7–8 

Las medidas de mitigación en el sistema alimentario pueden dividirse en cuatro categorías: cambios en la demanda, protección de los ecosistemas, mitigación en las explotaciones agrícolas y mitigación en las cadenas de suministro . En cuanto a la demanda, limitar el desperdicio de alimentos es una forma eficaz de reducir las emisiones de los alimentos. Los cambios hacia una dieta menos dependiente de productos animales, como las dietas basadas en plantas, también son eficaces. [9] : XXV 

Con el 21% de las emisiones globales de metano, el ganado es uno de los principales impulsores del calentamiento global. [225] : 6  Cuando se talan las selvas tropicales y la tierra se convierte en pastoreo, el impacto es aún mayor. En Brasil, producir 1 kg de carne de res puede resultar en la emisión de hasta 335 kg de CO 2 -eq. [226] Otros tipos de ganado, el manejo del estiércol y el cultivo de arroz también emiten gases de efecto invernadero, además de la quema de combustibles fósiles en la agricultura.

Las opciones de mitigación importantes para reducir las emisiones de gases de efecto invernadero de la ganadería incluyen la selección genética, [227] [228] la introducción de bacterias metanotróficas en el rumen, [229] [230] las vacunas, los piensos, [231] la modificación de la dieta y el manejo del pastoreo. [232] [233] [234] Otras opciones son los cambios en la dieta hacia alternativas libres de rumiantes , como sustitutos de la leche y análogos de la carne . El ganado no rumiante, como las aves de corral, emite muchos menos GEI. [235]

Es posible reducir las emisiones de metano en el cultivo de arroz mediante una mejor gestión del agua, combinando la siembra en seco y una extracción del agua, o ejecutando una secuencia de humedecimiento y secado. Esto da como resultado reducciones de emisiones de hasta el 90% en comparación con la inundación total e incluso mayores rendimientos. [236]

Industria

Emisiones globales de dióxido de carbono por país en 2023:

  China (31,8%)
  Estados Unidos (14,4%)
  Unión Europea (4,9%)
  India (9,5%)
  Rusia (5,8%)
  Japón (3,5%)
  Otros (30,1%)

La industria es el mayor emisor de gases de efecto invernadero si se incluyen las emisiones directas e indirectas. La electrificación puede reducir las emisiones de la industria. El hidrógeno verde puede desempeñar un papel importante en las industrias de alto consumo energético para las que la electricidad no es una opción. Otras opciones de mitigación incluyen la industria del acero y el cemento, que pueden cambiar a un proceso de producción menos contaminante. Los productos se pueden fabricar con menos material para reducir la intensidad de las emisiones y los procesos industriales se pueden hacer más eficientes. Por último, las medidas de economía circular reducen la necesidad de nuevos materiales. Esto también ahorra en emisiones que se habrían liberado de la minería o la recolección de esos materiales. [9] : 43 

La descarbonización de la producción de cemento requiere nuevas tecnologías y, por lo tanto, inversión en innovación. [237] El biohormigón es una posibilidad para reducir las emisiones. [238] Pero aún no hay ninguna tecnología de mitigación madura, por lo que la captura y el almacenamiento de carbono serán necesarios al menos en el corto plazo. [239]

Otro sector con una importante huella de carbono es el del acero, responsable de aproximadamente el 7% de las emisiones globales. [240] Las emisiones se pueden reducir utilizando hornos de arco eléctrico para fundir y reciclar chatarra de acero. Para producir acero virgen sin emisiones, los altos hornos podrían reemplazarse por hierro de reducción directa con hidrógeno y hornos de arco eléctrico . Alternativamente, se pueden utilizar soluciones de captura y almacenamiento de carbono. [240]

La producción de carbón, gas y petróleo suele conllevar importantes fugas de metano. [241] A principios de la década de 2020, algunos gobiernos reconocieron la magnitud del problema e introdujeron regulaciones. [242] Las fugas de metano en los pozos de petróleo y gas y en las plantas de procesamiento son rentables de solucionar en países que pueden comercializar gas fácilmente a nivel internacional. [241] Hay fugas en países donde el gas es barato, como Irán, [243] Rusia, [244] y Turkmenistán. [245] Casi todas estas pueden detenerse reemplazando los componentes viejos y evitando la quema rutinaria. [241] El metano de los yacimientos de carbón puede seguir filtrándose incluso después de que se haya cerrado la mina, pero puede ser capturado por sistemas de drenaje y/o ventilación. [246] Las empresas de combustibles fósiles no siempre tienen incentivos financieros para abordar las fugas de metano. [247]

Cobeneficios

Los cobeneficios de la mitigación del cambio climático, también denominados a menudo beneficios auxiliares , fueron dominados inicialmente en la literatura científica por estudios que describen cómo las menores emisiones de GEI conducen a una mejor calidad del aire y, en consecuencia, impactan positivamente en la salud humana. [248] [249] El alcance de la investigación sobre cobeneficios se expandió a sus implicaciones económicas, sociales, ecológicas y políticas.

Los efectos secundarios positivos que resultan de las medidas de mitigación y adaptación al cambio climático se han mencionado en las investigaciones desde los años 1990. [250] [251] El IPCC mencionó por primera vez el papel de los cobeneficios en 2001, seguido por su cuarto y quinto ciclo de evaluación, que destacaron la mejora del entorno de trabajo, la reducción de los residuos, los beneficios para la salud y la reducción de los gastos de capital. [252] A principios de los años 2000, la OCDE siguió impulsando sus esfuerzos para promover los beneficios auxiliares. [253]

En 2007, el IPCC señaló que "los beneficios colaterales de la mitigación de los GEI pueden ser un criterio de decisión importante en los análisis que realizan los responsables de las políticas, pero a menudo se los descuida" y añadió que "las empresas y los responsables de las políticas no cuantifican, monetizan o incluso no identifican los beneficios colaterales". [254] La consideración adecuada de los beneficios colaterales puede influir en gran medida "en las decisiones políticas relativas al momento y el nivel de las medidas de mitigación", y puede haber "ventajas significativas para la economía nacional y la innovación técnica". [254]

Un análisis de la acción climática en el Reino Unido concluyó que los beneficios para la salud pública son un componente importante de los beneficios totales derivados de la acción climática. [255]

Empleo y desarrollo económico

Los beneficios colaterales pueden tener un impacto positivo en el empleo, el desarrollo industrial, la independencia energética de los estados y el autoconsumo energético. El despliegue de energías renovables puede fomentar las oportunidades de empleo. Dependiendo del país y del escenario de despliegue, la sustitución de las centrales eléctricas de carbón por energía renovable puede más que duplicar el número de empleos por capacidad media de MW. [256] Las inversiones en energías renovables, especialmente en energía solar y eólica, pueden aumentar el valor de la producción. [257] Los países que dependen de las importaciones de energía pueden mejorar su independencia energética y garantizar la seguridad del suministro mediante el despliegue de energías renovables. La generación nacional de energía a partir de energías renovables reduce la demanda de importaciones de combustibles fósiles, lo que aumenta el ahorro económico anual. [258]

La Comisión Europea prevé una escasez de 180.000 trabajadores cualificados en la producción de hidrógeno y de 66.000 en energía solar fotovoltaica para 2030. [259]

Seguridad energética

Una mayor proporción de energías renovables puede conducir además a una mayor seguridad energética . [260] Se han analizado los beneficios socioeconómicos colaterales, como el acceso a la energía en las zonas rurales y la mejora de los medios de vida rurales. [261] [262] Las zonas rurales que no están totalmente electrificadas pueden beneficiarse de la implantación de energías renovables . Las minirredes alimentadas con energía solar pueden seguir siendo económicamente viables, competitivas en cuanto a costes y reducir el número de cortes de electricidad. La fiabilidad energética tiene implicaciones sociales adicionales: la electricidad estable mejora la calidad de la educación. [263]

La Agencia Internacional de Energía ( AIE ) explicó el "enfoque de beneficios múltiples" de la eficiencia energética , mientras que la Agencia Internacional de Energías Renovables ( IRENA ) hizo operativa la lista de cobeneficios del sector de las energías renovables. [264] [265]

Salud y bienestar

Los beneficios para la salud derivados de la mitigación del cambio climático son significativos. Las medidas potenciales no solo pueden mitigar los impactos futuros del cambio climático en la salud, sino también mejorar la salud directamente. [266] [267] La ​​mitigación del cambio climático está interconectada con varios cobeneficios para la salud, como los derivados de la reducción de la contaminación del aire . [267] La ​​contaminación del aire generada por la combustión de combustibles fósiles es a la vez un importante impulsor del calentamiento global y la causa de un gran número de muertes anuales. Algunas estimaciones llegan a 8,7 millones de muertes en exceso durante 2018. [268] [269] Un estudio de 2023 estimó que los combustibles fósiles matan a más de 5 millones de personas cada año, a partir de 2019, [270] al causar enfermedades como ataques cardíacos , accidentes cerebrovasculares y enfermedades pulmonares obstructivas crónicas . [271] La contaminación del aire por partículas mata con diferencia a la mayor cantidad, seguida del ozono troposférico . [272]

Las políticas de mitigación también pueden promover dietas más saludables, como menos carne roja, estilos de vida más activos y una mayor exposición a espacios verdes urbanos. [273] [274] El acceso a los espacios verdes urbanos también brinda beneficios para la salud mental. [273] : 18  El mayor uso de infraestructura verde y azul puede reducir el efecto de isla de calor urbana . Esto reduce el estrés térmico en las personas. [90] : TS-66 

Adaptación al cambio climático

Algunas medidas de mitigación tienen beneficios colaterales en el área de adaptación al cambio climático . [275] : 8–63  Este es, por ejemplo, el caso de muchas soluciones basadas en la naturaleza . [276] : 4–94  [277] : 6  Algunos ejemplos en el contexto urbano incluyen la infraestructura verde y azul urbana que proporciona beneficios de mitigación y adaptación. Esto puede adoptar la forma de bosques urbanos y árboles en las calles, techos y paredes verdes , agricultura urbana , etc. La mitigación se logra mediante la conservación y expansión de los sumideros de carbono y la reducción del uso de energía de los edificios. Los beneficios de adaptación se obtienen, por ejemplo, mediante la reducción del estrés térmico y del riesgo de inundaciones. [275] : 8–64 

Impuestos al carbono y comercio de emisiones en todo el mundo
El comercio de emisiones y los impuestos al carbono en el mundo (2019) [278]
  Comercio de emisiones de carbono implementado o programado
  Impuesto al carbono implementado o programado

Efectos secundarios negativos

Las medidas de mitigación también pueden tener efectos secundarios y riesgos negativos. [90] : TS-133  En la agricultura y la silvicultura, las medidas de mitigación pueden afectar la biodiversidad y el funcionamiento de los ecosistemas. [90] : TS-87  En la energía renovable, la minería de metales y minerales puede aumentar las amenazas a las áreas de conservación. [279] Hay algunas investigaciones sobre formas de reciclar paneles solares y desechos electrónicos. Esto crearía una fuente de materiales, por lo que no habría necesidad de extraerlos. [280] [281]

Los investigadores han descubierto que las discusiones sobre los riesgos y los efectos secundarios negativos de las medidas de mitigación pueden llevar a un punto muerto o a la sensación de que existen barreras insuperables para adoptar medidas. [281]

Costos y financiación

Varios factores afectan las estimaciones de los costos de mitigación. Uno de ellos es la línea de base, que es un escenario de referencia con el que se compara el escenario de mitigación alternativo. Otros son la forma en que se modelan los costos y los supuestos sobre las políticas gubernamentales futuras. [282] : 622  Las estimaciones de los costos de mitigación para regiones específicas dependen de la cantidad de emisiones permitidas para esa región en el futuro, así como del momento de las intervenciones. [283] : 90 

Los costos de mitigación variarán según cómo y cuándo se reduzcan las emisiones. Una acción temprana y bien planificada minimizará los costos. [142] A nivel mundial, los beneficios de mantener el calentamiento por debajo de los 2 °C superan los costos. [284]

Los economistas estiman que el costo de la mitigación del cambio climático oscila entre el 1% y el 2% del PIB . [285] [286] Si bien se trata de una suma importante, sigue siendo mucho menor que los subsidios que los gobiernos proporcionan a la industria de los combustibles fósiles, que se encuentra en crisis. El Fondo Monetario Internacional los estimó en más de 5 billones de dólares por año. [287] [41]

Otra estimación indica que los flujos financieros para la mitigación y adaptación al cambio climático superarán los 800.000 millones de dólares al año. Se prevé que estas necesidades financieras superen los 4 billones de dólares al año para 2030. [288] [289]

A nivel mundial, limitar el calentamiento a 2 °C puede generar mayores beneficios económicos que costos económicos. [290] : 300  Las repercusiones económicas de la mitigación varían ampliamente entre regiones y hogares, dependiendo del diseño de políticas y el nivel de cooperación internacional. La demora en la cooperación mundial aumenta los costos de las políticas en las distintas regiones, especialmente en aquellas que actualmente son relativamente intensivas en carbono. Las trayectorias con valores de carbono uniformes muestran costos de mitigación más altos en las regiones con mayor intensidad de carbono, en las regiones exportadoras de combustibles fósiles y en las regiones más pobres. Las cuantificaciones agregadas expresadas en términos de PIB o monetarios subestiman los efectos económicos en los hogares de los países más pobres. Los efectos reales en el bienestar y el bienestar son comparativamente mayores. [291]

El análisis costo-beneficio puede no ser adecuado para analizar la mitigación del cambio climático en su conjunto, pero aún así es útil para analizar la diferencia entre un objetivo de 1,5 °C y uno de 2 °C. [285] Una forma de estimar el costo de reducir las emisiones es considerando los costos probables de los posibles cambios tecnológicos y de producción. Los responsables de las políticas pueden comparar los costos marginales de reducción de las emisiones de los distintos métodos para evaluar el costo y la cantidad de la posible reducción a lo largo del tiempo. Los costos marginales de reducción de las distintas medidas variarán según el país, el sector y el tiempo. [142]

Costos evitados de los efectos del cambio climático

Es posible evitar algunos de los costos de los efectos del cambio climático si se limita el cambio climático. Según el Informe Stern , la inacción puede llegar a equivaler a perder al menos el 5% del producto interno bruto (PIB) mundial cada año, ahora y para siempre. Esto puede llegar al 20% del PIB o más si se incluye una gama más amplia de riesgos e impactos. Pero mitigar el cambio climático sólo costará alrededor del 2% del PIB. Además, puede que no sea una buena idea desde una perspectiva financiera retrasar reducciones significativas de las emisiones de gases de efecto invernadero. [292] [293]

Las soluciones de mitigación suelen evaluarse en términos de costos y potencial de reducción de gases de efecto invernadero, sin tener en cuenta los efectos directos sobre el bienestar humano. [294]

Distribución de los costos de reducción de emisiones

La mitigación a la velocidad y escala necesarias para limitar el calentamiento a 2 °C o menos implica cambios económicos y estructurales profundos, que plantean múltiples tipos de problemas distributivos entre regiones, clases de ingresos y sectores. [291]

Se han presentado diferentes propuestas sobre cómo asignar la responsabilidad de reducir las emisiones. [295] : 103  Estas incluyen el igualitarismo , las necesidades básicas según un nivel mínimo de consumo, la proporcionalidad y el principio de que quien contamina paga . Una propuesta específica es la de "derechos iguales per cápita". [295] : 106  Este enfoque tiene dos categorías. En la primera categoría, las emisiones se asignan según la población nacional. En la segunda categoría, las emisiones se asignan de una manera que intenta dar cuenta de las emisiones históricas o acumuladas.

Fondos

Para conciliar el desarrollo económico con la mitigación de las emisiones de carbono, los países en desarrollo necesitan un apoyo especial, tanto financiero como técnico. El IPCC concluyó que un apoyo acelerado también abordaría las desigualdades en la vulnerabilidad financiera y económica al cambio climático. [296] Una forma de lograrlo es el Mecanismo de Desarrollo Limpio (MDL) del Protocolo de Kyoto.

Políticas

Políticas nacionales

Aunque China es el principal productor de emisiones de CO2 del mundo, detrás de Estados Unidos, el nivel per cápita de este último país supera a China por un margen considerable (datos de 2017).

Las políticas de mitigación del cambio climático pueden tener un impacto amplio y complejo en la situación socioeconómica de las personas y los países. Esto puede ser tanto positivo como negativo. [297] Es importante diseñar bien las políticas y hacerlas inclusivas. De lo contrario, las medidas de mitigación del cambio climático pueden imponer costos financieros más elevados a los hogares pobres. [298]

An evaluation was conducted on 1,500 climate policy interventions made between 1998 and 2022.[299] The interventions took place in 41 countries and across 6 continents, which together contributed 81% of the world's total emissions as of 2019. The evaluation found 63 successful interventions that resulted in significant emission reductions; the total CO2 release averted by these interventions was between 0.6 and 1.8 billion metric tonnes. The study focused on interventions with at least 4.5% emission reductions, but the researchers noted that meeting the reductions required by the Paris Agreement would require 23 billion metric tonnes per year. Generally, carbon pricing was found to be most effective in developed countries, while regulation was most effective in the developing countries. Complementary policy mixes benefited from synergies, and were mostly found to be more effective interventions than the implementation of isolated policies.[300][301][302]

The OECD recognise 48 distinct climate mitigation policies suitable for implementation at national level. Broadly, these can be categorised into three types: market based instruments, non market based instruments and other policies. [303][299]

Emissions taxes These often require domestic emitters to pay a fixed fee or tax for every tonne of CO2 emissions they release into the atmosphere.[304]: 4123  Methane emissions from fossil fuel extraction are also occasionally taxed.[305] But methane and nitrous oxide from agriculture are typically not subject to tax.[306]
Removing unhelpful subsidies: Many countries provide subsidies for activities that affect emissions. For example, significant fossil fuel subsidies are present in many countries.[307] Phasing-out fossil fuel subsidies is crucial to address the climate crisis.[308] It must however be done carefully to avoid protests[309] and making poor people poorer.[310]
Creating helpful subsidies: Creating subsidies and financial incentives.[311] One example is energy subsidies to support clean generation which is not yet commercially viable such as tidal power.[312]
Tradable permits: A permit system can limit emissions.[304]: 415 

Carbon pricing

Carbon emission trade – allowance prices from 2008

Imposing additional costs on greenhouse gas emissions can make fossil fuels less competitive and accelerate investments into low-carbon sources of energy. A growing number of countries raise a fixed carbon tax or participate in dynamic carbon emission trading (ETS) systems. In 2021, more than 21% of global greenhouse gas emissions were covered by a carbon price. This was a big increase from earlier due to the introduction of the Chinese national carbon trading scheme.[313]: 23 

Trading schemes offer the possibility to limit emission allowances to certain reduction targets. However, an oversupply of allowances keeps most ETS at low price levels around $10 with a low impact. This includes the Chinese ETS which started with $7/tCO2 in 2021.[314] One exception is the European Union Emission Trading Scheme where prices began to rise in 2018. They reached about €80/tCO2 in 2022.[315] This results in additional costs of about €0.04/KWh for coal and €0.02/KWh for gas combustion for electricity, depending on the emission intensity.[citation needed] Industries which have high energy requirements and high emissions often pay only very low energy taxes, or even none at all.[316]: 11–80 

While this is often part of national schemes, carbon offsets and credits can be part of a voluntary market as well such as on the international market. Notably, the company Blue Carbon of the UAE has bought ownership over an area equivalent to the United Kingdom to be preserved in return for carbon credits.[317]

International agreements

Almost all countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC).[318][319] The ultimate objective of the UNFCCC is to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the climate system.[320]

Although not designed for this purpose, the Montreal Protocol has benefited climate change mitigation efforts.[321] The Montreal Protocol is an international treaty that has successfully reduced emissions of ozone-depleting substances such as CFCs. These are also greenhouse gases.

Paris Agreement

Signatories (yellow) and parties (blue) to the Paris Agreement
The Paris Agreement (also called the Paris Accords or Paris Climate Accords) is an international treaty on climate change that was signed in 2016.[322] The treaty covers climate change mitigation, adaptation, and finance. The Paris Agreement was negotiated by 196 parties at the 2015 United Nations Climate Change Conference near Paris, France. As of February 2023, 195 members of the United Nations Framework Convention on Climate Change (UNFCCC) are parties to the agreement. Of the three UNFCCC member states which have not ratified the agreement, the only major emitter is Iran. The United States withdrew from the agreement in 2020,[323] but rejoined in 2021.[324]

History

Historically efforts to deal with climate change have taken place at a multinational level. They involve attempts to reach a consensus decision at the United Nations, under the United Nations Framework Convention on Climate Change (UNFCCC).[325] This is the dominant approach historically of engaging as many international governments as possible in taking action on a worldwide public issue. The Montreal Protocol in 1987 is a precedent that this approach can work. But some critics say the top-down framework of only utilizing the UNFCCC consensus approach is ineffective. They put forward counter-proposals of bottom-up governance. At this same time this would lessen the emphasis on the UNFCCC.[326][327][328]

The Kyoto Protocol to the UNFCCC adopted in 1997 set out legally binding emission reduction commitments for the "Annex 1" countries.[329]: 817  The Protocol defined three international policy instruments ("Flexibility Mechanisms") which could be used by the Annex 1 countries to meet their emission reduction commitments. According to Bashmakov, use of these instruments could significantly reduce the costs for Annex 1 countries in meeting their emission reduction commitments.[330]: 402 [needs update]

The Paris Agreement reached in 2015 succeeded the Kyoto Protocol which expired in 2020. Countries that ratified the Kyoto protocol committed to reduce their emissions of carbon dioxide and five other greenhouse gases, or engage in carbon emissions trading if they maintain or increase emissions of these gases.

In 2015, the UNFCCC's "structured expert dialogue" came to the conclusion that, "in some regions and vulnerable ecosystems, high risks are projected even for warming above 1.5 °C".[331] Together with the strong diplomatic voice of the poorest countries and the island nations in the Pacific, this expert finding was the driving force leading to the decision of the 2015 Paris Climate Conference to lay down this 1.5 °C long-term target on top of the existing 2 °C goal.[332]

Society and culture

Commitments to divest

More firms plan to invest in climate change mitigation, specifically focusing on low-carbon sectors.[333]

More than 1000 organizations with investments worth US$8 trillion have made commitments to fossil fuel divestment.[334] Socially responsible investing funds allow investors to invest in funds that meet high environmental, social and corporate governance (ESG) standards.[335]

Barriers

A typology of discourses aimed at delaying climate change mitigation[281]
Distribution of committed CO2 emissions from developed fossil fuel reserves

There are individual, institutional and market barriers to achieving climate change mitigation.[91]: 5–71  They differ for all the different mitigation options, regions and societies.

Difficulties with accounting for carbon dioxide removal can act as economic barriers. This would apply to BECCS (bioenergy with carbon capture and storage).[40]: 6–42  The strategies that companies follow can act as a barrier. But they can also accelerate decarbonisation.[91]: 5–84 

In order to decarbonise societies the state needs to play a predominant role. This is because it requires a massive coordination effort.[336]: 213  This strong government role can only work well if there is social cohesion, political stability and trust.[336]: 213 

For land-based mitigation options, finance is a major barrier. Other barriers are cultural values, governance, accountability and institutional capacity.[118]: 7–5 

Developing countries face further barriers to mitigation.[337]

One study estimates that only 0.12% of all funding for climate-related research goes on the social science of climate change mitigation.[340] Vastly more funding goes on natural science studies of climate change. Considerable sums also go on studies of the impact of climate change and adaptation to it.[340]

Impacts of the COVID-19 pandemic

The COVID-19 pandemic led some governments to shift their focus away from climate action, at least temporarily.[341] This obstacle to environmental policy efforts may have contributed to slowed investment in green energy technologies. The economic slowdown resulting from COVID-19 added to this effect.[342][343]

In 2020, carbon dioxide emissions fell by 6.4% or 2.3 billion tonnes globally.[344] Greenhouse gas emissions rebounded later in the pandemic as many countries began lifting restrictions. The direct impact of pandemic policies had a negligible long-term impact on climate change.[344][345]

Examples by country

United States

The United States government has held shifting attitudes toward addressing greenhouse gas emissions. The George W. Bush administration opted not to sign the Kyoto Protocol,[347] but the Obama administration entered the Paris Agreement.[348] The Trump administration withdrew from the Paris Agreement while increasing the export of crude oil and gas, making the United States the largest producer.[349]

In 2021, the Biden administration committed to reducing emissions to half of 2005 levels by 2030.[350] In 2022, President Biden signed the Inflation Reduction Act into law, which is estimated to provide around $375 billion over 10 years to fight climate change.[351] As of 2022 the social cost of carbon is 51 dollars a tonne whereas academics say it should be more than three times higher.[352]

China

China has committed to peak emissions by 2030 and reach net zero by 2060.[353] Warming cannot be limited to 1.5 °C if any coal plants in China (without carbon capture) operate after 2045.[354] The Chinese national carbon trading scheme started in 2021.

European Union

The European Commission estimates that an additional €477 million in annual investment is needed for the European Union to meet its Fit-for-55 decarbonization goals.[355][356]

In the European Union, government-driven policies and the European Green Deal have helped position greentech (as an example) as a vital area for venture capital investment. By 2023, venture capital in the EU's greentech sector equaled that of the United States, reflecting a concerted effort to drive innovation and mitigate climate change through targeted financial support.[357][358] The European Green Deal has fostered policies that contributed to a 30% rise in venture capital for greentech companies in the EU from 2021 to 2023, despite a downturn in other sectors during the same period.[359]

While overall venture capital investment in the EU remains about six times lower than in the United States, the greentech sector has closed this gap significantly, attracting substantial funding. Key areas benefitting from increased investments are energy storage, circular economy initiatives, and agricultural technology. This is supported by the EU's ambitious goal to reduce greenhouse gas emissions by at least 55% by 2030.[359]

See also

References

  1. ^ Fawzy, Samer; Osman, Ahmed I.; Doran, John; Rooney, David W. (2020). "Strategies for mitigation of climate change: a review". Environmental Chemistry Letters. 18 (6): 2069–2094. doi:10.1007/s10311-020-01059-w.
  2. ^ Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data. Retrieved 27 August 2022.
  3. ^ Rogelj, J.; Shindell, D.; Jiang, K.; Fifta, S.; et al. (2018). "Chapter 2: Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development" (PDF). Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (PDF).
  4. ^ Harvey, Fiona (26 November 2019). "UN calls for push to cut greenhouse gas levels to avoid climate chaos". The Guardian. Retrieved 27 November 2019.
  5. ^ "Cut Global Emissions by 7.6 Percent Every Year for Next Decade to Meet 1.5°C Paris Target – UN Report". United Nations Framework Convention on Climate Change. United Nations. Retrieved 27 November 2019.
  6. ^ a b c d e f IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  7. ^ Ram M., Bogdanov D., Aghahosseini A., Gulagi A., Oyewo A.S., Child M., Caldera U., Sadovskaia K., Farfan J., Barbosa LSNS., Fasihi M., Khalili S., Dalheimer B., Gruber G., Traber T., De Caluwe F., Fell H.-J., Breyer C. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors Archived 2021-04-01 at the Wayback Machine. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin, March 2019.
  8. ^ "Cement – Analysis". IEA. Retrieved 24 November 2022.
  9. ^ a b c d e United Nations Environment Programme (2022). Emissions Gap Report 2022: The Closing Window — Climate crisis calls for rapid transformation of societies. Nairobi.
  10. ^ "Climate Change Performance Index" (PDF). November 2022. Retrieved 16 November 2022.
  11. ^ a b IPCC (2022) Chapter 1: Introduction and Framing in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  12. ^ a b c d e f IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  13. ^ a b Rogelj, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M.V.Vilariño, 2018: Chapter 2: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, US, pp. 93-174. https://doi.org/10.1017/9781009157940.004.
  14. ^ a b c IPCC (2022) Chapter 14: International cooperation in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States]
  15. ^ National Academies of Sciences, Engineering (25 March 2021). Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. doi:10.17226/25762. ISBN 978-0-309-67605-2. S2CID 234327299.
  16. ^ Olivier J.G.J. (2022), Trends in global CO2 and total greenhouse gas emissions: 2021 summary report Archived 2023-03-08 at the Wayback Machine. PBL Netherlands, Environmental Assessment Agency, The Hague.
  17. ^ Friedlingstein, Pierre; O'Sullivan, Michael; Jones, Matthew W.; Andrew, Robbie M.; Hauck, Judith; Olsen, Are; Peters, Glen P.; Peters, Wouter; Pongratz, Julia; Sitch, Stephen; Le Quéré, Corinne; Canadell, Josep G.; Ciais, Philippe; Jackson, Robert B.; Alin, Simone (2020). "Global Carbon Budget 2020". Earth System Science Data. 12 (4): 3269–3340. Bibcode:2020ESSD...12.3269F. doi:10.5194/essd-12-3269-2020. hdl:10871/126892. ISSN 1866-3516.
  18. ^ "Chapter 2: Emissions trends and drivers" (PDF). Ipcc_Ar6_Wgiii. 2022. Archived from the original (PDF) on 2022-04-12. Retrieved 2022-11-21.
  19. ^ a b "Sector by sector: where do global greenhouse gas emissions come from?". Our World in Data. Retrieved 16 November 2022.
  20. ^ "It's critical to tackle coal emissions". blogs.worldbank.org. 8 October 2021. Retrieved 25 November 2022. Coal power plants produce a fifth of global greenhouse gas emissions – more than any other single source.
  21. ^ Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data.
  22. ^ "Biden signs international climate deal on refrigerants". AP NEWS. 27 October 2022. Retrieved 26 November 2022.
  23. ^ "Methane vs. Carbon Dioxide: A Greenhouse Gas Showdown". One Green Planet. 30 September 2014. Retrieved 13 February 2020.
  24. ^ Pérez-Domínguez, Ignacio; del Prado, Agustin; Mittenzwei, Klaus; Hristov, Jordan; Frank, Stefan; Tabeau, Andrzej; Witzke, Peter; Havlik, Petr; van Meijl, Hans; Lynch, John; Stehfest, Elke (December 2021). "Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets". Nature Food. 2 (12): 970–980. doi:10.1038/s43016-021-00385-8. ISSN 2662-1355. PMC 7612339. PMID 35146439.
  25. ^ Franziska Funke; Linus Mattauch; Inge van den Bijgaart; H. Charles J. Godfray; Cameron Hepburn; David Klenert; Marco Springmann; Nicolas Treich (19 July 2022). "Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?". Review of Environmental Economics and Policy. 16 (2): 000. doi:10.1086/721078. S2CID 250721559. animal-based agriculture and feed crop production account for approximately 83 percent of agricultural land globally and are responsible for approximately 67 percent of deforestation (Poore and Nemecek 2018). This makes livestock farming the single largest driver of greenhouse gas (GHG) emissions, nutrient pollution, and ecosystem loss in the agricultural sector. A failure to mitigate GHG emissions from the food system, especially animal-based agriculture, could prevent the world from meeting the climate objective of limiting global warming to 1.5°C, as set forth in the Paris Climate Agreement, and complicate the path to limiting climate change to well below 2°C of warming (Clark et al. 2020).
  26. ^ IGSD (2013). "Short-Lived Climate Pollutants (SLCPs)". Institute of Governance and Sustainable Development (IGSD). Retrieved 29 November 2019.
  27. ^ "How satellites could help hold countries to emissions promises made at COP26 summit". Washington Post. Retrieved 1 December 2021.
  28. ^ "Satellites offer new ways to study ecosystems—and maybe even save them". www.science.org. Retrieved 21 December 2021.
  29. ^ "It's over for fossil fuels: IPCC spells out what's needed to avert climate disaster". The Guardian. 4 April 2022. Retrieved 4 April 2022.
  30. ^ "The evidence is clear: the time for action is now. We can halve emissions by 2030". IPCC. 4 April 2022. Retrieved 4 April 2022.
  31. ^ "Ambitious Action Key to Resolving Triple Planetary Crisis of Climate Disruption, Nature Loss, Pollution, Secretary-General Says in Message for International Mother Earth Day | Meetings Coverage and Press Releases". www.un.org. Retrieved 10 June 2022.
  32. ^ "Glasgow's 2030 credibility gap: net zero's lip service to climate action". climateactiontracker.org. Archived from the original on 9 November 2021. Retrieved 9 November 2021.
  33. ^ "Global Data Community Commits to Track Climate Action". UNFCCC. Retrieved 15 December 2019.
  34. ^ Nations, United. "Sustainable Development Goals Report 2020". United Nations. Retrieved 20 December 2021.
  35. ^ "World fails to meet a single target to stop destruction of nature – UN report". The Guardian. 15 September 2020. Retrieved 20 December 2021.
  36. ^ "Glasgow's 2030 credibility gap: net zero's lip service to climate action". climateactiontracker.org. Retrieved 9 November 2021.
  37. ^ Mason, Jeff; Alper, Alexandra (18 September 2021). "Biden asks world leaders to cut methane in climate fight". Reuters. Retrieved 8 October 2021.
  38. ^ Bassist, Rina (6 October 2021). "At OECD, Israel joins global battle against climate change". Al – Monitor.
  39. ^ Friedlingstein, Pierre; Jones, Matthew W.; O'Sullivan, Michael; Andrew, Robbie M.; Hauck, Judith; Peters, Glen P.; Peters, Wouter; Pongratz, Julia; Sitch, Stephen; Le Quéré, Corinne; Bakker, Dorothee C. E. (2019). "Global Carbon Budget 2019". Earth System Science Data. 11 (4): 1783–1838. Bibcode:2019ESSD...11.1783F. doi:10.5194/essd-11-1783-2019. hdl:20.500.11850/385668. ISSN 1866-3508. Archived from the original on 6 May 2021. Retrieved 15 February 2021.
  40. ^ a b c d e IPCC (2022) Chapter 6: Energy systems in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  41. ^ a b Teske, Sven, ed. (2 August 2019). Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C. Springer Science+Business Media. doi:10.1007/978-3-030-05843-2. ISBN 978-3030058425. S2CID 198078901 – via www.springer.com.
  42. ^ "Global Energy Transformation: A Roadmap to 2050 (2019 edition)" (PDF). International Renewable Energy Agency. Retrieved 29 January 2020.
  43. ^ "Share of cumulative power capacity by technology, 2010-2027". IEA.org. International Energy Agency (IEA). 5 December 2022. Archived from the original on 4 February 2023. Source states "Fossil fuel capacity from IEA (2022), World Energy Outlook 2022. IEA. Licence: CC BY 4.0."
  44. ^ "Scale-up of Solar and Wind Puts Existing Coal, Gas at Risk". BloombergNEF. 28 April 2020.
  45. ^ Emilio, Maurizio Di Paolo (2022-09-15). "The Cost of Energy, Key to Sustainability". Power Electronics News. Retrieved 2023-01-05.
  46. ^ Liebensteiner, Mario; Naumann, Fabian (2022-11-01). "Can carbon pricing counteract renewable energies' cannibalization problem?". Energy Economics. 115: 106345. Bibcode:2022EneEc.11506345L. doi:10.1016/j.eneco.2022.106345. ISSN 0140-9883. S2CID 252958388.
  47. ^ Cartlidge, Edwin (18 November 2011). "Saving for a rainy day". Science. 334 (6058): 922–24. Bibcode:2011Sci...334..922C. doi:10.1126/science.334.6058.922. PMID 22096185.
  48. ^ "Renewable power's growth is being turbocharged as countries seek to strengthen energy security". IEA. 6 December 2022. Retrieved 8 December 2022. Utility-scale solar PV and onshore wind are the cheapest options for new electricity generation in a significant majority of countries worldwide.
  49. ^ "Solar - Fuels & Technologies". IEA. Retrieved 22 December 2022. utility-scale solar PV is the least costly option for new electricity generation in a significant majority of countries worldwide
  50. ^ Jaeger, Joel (20 September 2021). "Explaining the Exponential Growth of Renewable Energy".
  51. ^ Wanner, Brent (6 February 2019). "Is exponential growth of solar PV the obvious conclusion?". IEA. Retrieved 30 December 2022.
  52. ^ "Renewables 2021 Global Status Report" (PDF). REN21. pp. 137–138. Retrieved 22 July 2021.
  53. ^ "Global Wind Atlas". DTU Technical University of Denmark. Archived from the original on 24 February 2020. Retrieved 28 March 2020.
  54. ^ "Onshore vs offshore wind energy: what's the difference? | National Grid Group". www.nationalgrid.com. Retrieved 9 December 2022.
  55. ^ Nyenah, Emmanuel; Sterl, Sebastian; Thiery, Wim (1 May 2022). "Pieces of a puzzle: solar-wind power synergies on seasonal and diurnal timescales tend to be excellent worldwide". Environmental Research Communications. 4 (5): 055011. Bibcode:2022ERCom...4e5011N. doi:10.1088/2515-7620/ac71fb. ISSN 2515-7620. S2CID 249227821.
  56. ^ "BP Statistical Review 2019" (PDF). Retrieved 28 March 2020.
  57. ^ "Large hydropower dams not sustainable in the developing world". BBC News. 5 November 2018. Retrieved 27 March 2020.
  58. ^ "From baseload to peak" (PDF). IRENA. Retrieved 27 March 2020.
  59. ^ "Biomass – Carbon sink or carbon sinner" (PDF). UK environment agency. Archived from the original (PDF) on 28 March 2020. Retrieved 27 March 2020.
  60. ^ "Virgin Atlantic purchases 10 million gallons of SAF from Gevo". Biofuels International Magazine. 7 December 2022. Retrieved 22 December 2022.
  61. ^ Geothermal Energy Association. Geothermal Energy: International Market Update May 2010, p. 4-6.
  62. ^ Bassam, Nasir El; Maegaard, Preben; Schlichting, Marcia (2013). Distributed Renewable Energies for Off-Grid Communities: Strategies and Technologies Toward Achieving Sustainability in Energy Generation and Supply. Newnes. p. 187. ISBN 978-0-12-397178-4.
  63. ^ Moomaw, W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, A. Verbruggen, 2011: Annex II: Methodology. In IPCC: Special Report on Renewable Energy Sources and Climate Change Mitigation (ref. page 10)
  64. ^ Ruggles, Tyler H.; Caldeira, Ken (1 January 2022). "Wind and solar generation may reduce the inter-annual variability of peak residual load in certain electricity systems". Applied Energy. 305: 117773. Bibcode:2022ApEn..30517773R. doi:10.1016/j.apenergy.2021.117773. ISSN 0306-2619. S2CID 239113921.
  65. ^ "You've heard of water droughts. Could 'energy' droughts be next?". ScienceDaily. Retrieved 8 December 2022.
  66. ^ United Nations Environment Programme (2019). Emissions Gap Report 2019 (PDF). United Nations Environment Programme. p. 47. ISBN 978-92-807-3766-0. Archived (PDF) from the original on 7 May 2021.
  67. ^ "Introduction to System Integration of Renewables". IEA. Archived from the original on 15 May 2020. Retrieved 30 May 2020.
  68. ^ a b c Blanco, Herib; Faaij, André (2018). "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage". Renewable and Sustainable Energy Reviews. 81: 1049–1086. Bibcode:2018RSERv..81.1049B. doi:10.1016/j.rser.2017.07.062. ISSN 1364-0321.
  69. ^ REN21 (2020). Renewables 2020: Global Status Report (PDF). REN21 Secretariat. p. 177. ISBN 978-3-948393-00-7. Archived (PDF) from the original on 23 September 2020.{{cite book}}: CS1 maint: numeric names: authors list (link)
  70. ^ Bloess, Andreas; Schill, Wolf-Peter; Zerrahn, Alexander (2018). "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials". Applied Energy. 212: 1611–1626. Bibcode:2018ApEn..212.1611B. doi:10.1016/j.apenergy.2017.12.073. hdl:10419/200120. S2CID 116132198.
  71. ^ a b Koohi-Fayegh, S.; Rosen, M.A. (2020). "A review of energy storage types, applications and recent developments". Journal of Energy Storage. 27: 101047. Bibcode:2020JEnSt..2701047K. doi:10.1016/j.est.2019.101047. ISSN 2352-152X. S2CID 210616155. Archived from the original on 17 July 2021. Retrieved 28 November 2020.
  72. ^ Katz, Cheryl (17 December 2020). "The batteries that could make fossil fuels obsolete". BBC. Archived from the original on 11 January 2021. Retrieved 10 January 2021.
  73. ^ Herib, Blanco; André, Faaij (2018). "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage". Renewable and Sustainable Energy Reviews. 81: 1049–1086. Bibcode:2018RSERv..81.1049B. doi:10.1016/j.rser.2017.07.062. ISSN 1364-0321.
  74. ^ "Climate change and batteries: the search for future power storage solutions" (PDF). Climate change: science and solutions. The Royal Society. 19 May 2021. Archived from the original on 16 October 2021. Retrieved 15 October 2021.
  75. ^ Hunt, Julian D.; Byers, Edward; Wada, Yoshihide; Parkinson, Simon; et al. (2020). "Global resource potential of seasonal pumped hydropower storage for energy and water storage". Nature Communications. 11 (1): 947. Bibcode:2020NatCo..11..947H. doi:10.1038/s41467-020-14555-y. ISSN 2041-1723. PMC 7031375. PMID 32075965.
  76. ^ "Climate Change and Nuclear Power 2022". www.iaea.org. 19 August 2020. Retrieved 1 January 2023.
  77. ^ "World Nuclear Waste Report". Retrieved 25 October 2021.
  78. ^ Smith, Brice. "Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change – Institute for Energy and Environmental Research". Retrieved 24 November 2021.
  79. ^ Prăvălie, Remus; Bandoc, Georgeta (2018). "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications". Journal of Environmental Management. 209: 81–92. Bibcode:2018JEnvM.209...81P. doi:10.1016/j.jenvman.2017.12.043. PMID 29287177.
  80. ^ Schneider, Mycle; Froggatt, Antony. World Nuclear Industry Status Report 2021 (PDF) (Report). Retrieved 1 January 2023.
  81. ^ a b "Nuclear Power Is Declining in the West and Growing in Developing Countries". BRINK – Conversations and Insights on Global Business. Retrieved 1 January 2023.
  82. ^ "May: Steep decline in nuclear power would threaten energy security and climate goals". www.iea.org. Retrieved 8 July 2019.
  83. ^ "Factoring the Costs of Severe Nuclear Accidents into Backfit Decisions". Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants (Appendix L - Factoring the Costs of Severe Nuclear Accidents into Backfit Decisions). National Research Council. 2014. Retrieved 29 December 2023.
  84. ^ "The Role of Gas: Key Findings". IEA. July 2019. Archived from the original on 1 September 2019. Retrieved 4 October 2019.
  85. ^ "Natural gas and the environment". US Energy Information Administration. Archived from the original on 2 April 2021. Retrieved 28 March 2021.
  86. ^ a b Storrow, Benjamin. "Methane Leaks Erase Some of the Climate Benefits of Natural Gas". Scientific American. Retrieved 31 May 2023.
  87. ^ Plumer, Brad (26 June 2019). "As Coal Fades in the U.S., Natural Gas Becomes the Climate Battleground". The New York Times. Archived from the original on 23 September 2019. Retrieved 4 October 2019.
  88. ^ Gürsan, C.; de Gooyert, V. (2021). "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?". Renewable and Sustainable Energy Reviews. 138: 110552. doi:10.1016/j.rser.2020.110552. hdl:2066/228782. ISSN 1364-0321. S2CID 228885573.
  89. ^ Carman, Jennifer; Goldberg, Matthew; Marlon, Jennifer; Wang, Xinran; Lacroix, Karine; Neyens, Liz; Leiserowitz, Anthony; Maibach, Edward; Rosenthal, Seth; Kotcher, John (Aug 3, 2021). "Americans' Actions to Limit and Prepare For Global Warming". Americans' Actions to Limit and Prepare for Global Warming, March 2021. March 2021.
  90. ^ a b c d e f g h i j IPCC (2022) Technical Summary. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  91. ^ a b c d e f g h Patrick Devine-Wright, Julio Diaz-José, Frank Geels, Arnulf Grubler, Nadia Maïzi, Eric Masanet, Yacob Mulugetta, Chioma Daisy Onyige-Ebeniro, Patricia E. Perkins, Alessandro Sanches Pereira, Elke Ursula Weber (2022) Chapter 5: Demand, services and social aspects of mitigation in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  92. ^ "Economic growth no longer means higher carbon emissions". The Economist. ISSN 0013-0613. Retrieved 28 December 2022.
  93. ^ "2021-2022 EIB Climate Survey, part 3 of 3: The economic and social impact of the green transition". EIB.org. Retrieved 4 April 2022.
  94. ^ IEA (2019), Global Energy & CO2 Status Report 2019, IEA, Paris, License: CC BY 4.0
  95. ^ Key World Energy Statistics 2020 (Report). IEA. 2020.
  96. ^ "A guide for effective energy saving". Renewable Energy World. 9 April 2015. Archived from the original on 11 June 2016. Retrieved 14 June 2016.
  97. ^ "The value of urgent action on energy efficiency – Analysis". IEA. 8 June 2022. Retrieved 23 November 2022.
  98. ^ Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.
  99. ^ a b "Emissions Gap Report 2020 / Executive Summary" (PDF). UNEP.org. United Nations Environment Programme. 2021. p. XV Fig. ES.8. Archived (PDF) from the original on 31 July 2021.
  100. ^ Climate Equality: a Climate for the 99% (PDF). Oxfam International. November 2023. Archived (PDF) from the original on 23 November 2023. Fig. ES.2, Fig. ES.3, Box 1.2.
  101. ^ Wolf, C.; Ripple, W.J.; Crist, E. (2021). "Human population, social justice, and climate policy". Sustainability Science. 16 (5): 1753–1756. Bibcode:2021SuSc...16.1753W. doi:10.1007/s11625-021-00951-w. S2CID 233404010.
  102. ^ Crist, Eileen; Ripple, William J.; Ehrlich, Paul R.; Rees, William E.; Wolf, Christopher (2022). "Scientists' warning on population" (PDF). Science of the Total Environment. 845: 157166. Bibcode:2022ScTEn.84557166C. doi:10.1016/j.scitotenv.2022.157166. PMID 35803428. S2CID 250387801. Our first action call is a direct, global appeal to all women and men to choose none or at most one child. Individuals, especially if they aspire to large families, may pursue adoption, which is a desirable and compassionate choice for children who are here and need to be cared for.
  103. ^ "Six key lifestyle changes can help avert the climate crisis, study finds". the Guardian. 7 March 2022. Retrieved 7 March 2022.
  104. ^ Adcock, Bronwyn (2022). "Electric Monaros and hotted-up skateboards : the 'genius' who wants to electrify our world". the Guardian. Retrieved 6 February 2022.
  105. ^ a b Ripple, William J.; Smith, Pete; et al. (2013). "Ruminants, climate change and climate policy" (PDF). Nature Climate Change. 4 (1): 2–5. Bibcode:2014NatCC...4....2R. doi:10.1038/nclimate2081.
  106. ^ "COP26: How can an average family afford an electric car? And more questions". BBC News. 11 November 2021. Retrieved 12 November 2021.
  107. ^ "Emissions inequality—a gulf between global rich and poor – Nicholas Beuret". Social Europe. 10 April 2019. Archived from the original on 26 October 2019. Retrieved 26 October 2019.
  108. ^ Westlake, Steve (11 April 2019). "Climate change: yes, your individual action does make a difference". The Conversation. Archived from the original on 18 December 2019. Retrieved 9 December 2019.
  109. ^ "Avoiding meat and dairy is 'single biggest way' to reduce your impact on Earth". the Guardian. 31 May 2018. Retrieved 25 April 2021.
  110. ^ Harvey, Fiona (21 March 2016). "Eat less meat to avoid dangerous global warming, scientists say". The Guardian. Retrieved 20 June 2016.
  111. ^ Milman, Oliver (20 June 2016). "China's plan to cut meat consumption by 50% cheered by climate campaigners". The Guardian. Retrieved 20 June 2016.
  112. ^ Schiermeier, Quirin (8 August 2019). "Eat less meat: UN climate-change report calls for change to human diet". Nature. 572 (7769): 291–292. Bibcode:2019Natur.572..291S. doi:10.1038/d41586-019-02409-7. PMID 31409926.
  113. ^ Harvey, Fiona (4 April 2022). "Final warning: what does the IPCC's third report instalment say?". The Guardian. Retrieved 5 April 2022.
  114. ^ "How plant-based diets not only reduce our carbon footprint, but also increase carbon capture". Leiden University. Retrieved 15 February 2022.
  115. ^ Sun, Zhongxiao; Scherer, Laura; Tukker, Arnold; Spawn-Lee, Seth A.; Bruckner, Martin; Gibbs, Holly K.; Behrens, Paul (January 2022). "Dietary change in high-income nations alone can lead to substantial double climate dividend". Nature Food. 3 (1): 29–37. doi:10.1038/s43016-021-00431-5. ISSN 2662-1355. PMID 37118487. S2CID 245867412.
  116. ^ Carrington, Damian (21 July 2023). "Vegan diet massively cuts environmental damage, study shows". The Guardian. Retrieved 20 July 2023.
  117. ^ "World Population Prospects". UN.
  118. ^ a b IPCC (2022) Chapter 7: Agriculture, Forestry, and Other Land Uses (AFOLU) in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  119. ^ Dodson, Jenna C.; Dérer, Patrícia; Cafaro, Philip; Götmark, Frank (2020). "Population growth and climate change: Addressing the overlooked threat multiplier". Science of the Total Environment. 748: 141346. Bibcode:2020ScTEn.74841346D. doi:10.1016/j.scitotenv.2020.141346. PMID 33113687. S2CID 225035992.
  120. ^ "Carbon Sources and Sinks". National Geographic Society. 2020-03-26. Archived from the original on 14 December 2020. Retrieved 2021-06-18.
  121. ^ Levin, Kelly (8 August 2019). "How Effective Is Land At Removing Carbon Pollution? The IPCC Weighs In". World Resources Institute.
  122. ^ Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Chapter 3: Impacts of 1.5°C Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, US, pp. 175-312. https://doi.org/10.1017/9781009157940.005.
  123. ^ Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel (2018). "Carbon capture and storage (CCS): the way forward". Energy & Environmental Science. 11 (5): 1062–1176. doi:10.1039/C7EE02342A. hdl:10044/1/55714. ISSN 1754-5692.
  124. ^ a b IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, US, pp. 3-24. https://doi.org/10.1017/9781009157940.001.
  125. ^ IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.
  126. ^ Stern, Nicholas Herbert (2007). The economics of climate change: the Stern review. Cambridge, UK: Cambridge University Press. p. xxv. ISBN 978-0-521-70080-1. Archived from the original on 2006-11-14. Retrieved 2009-12-28.
  127. ^ Ritchie, Hannah; Roser, Max (9 February 2021). "Forests and Deforestation". Our World in Data.
  128. ^ a b "India should follow China to find a way out of the woods on saving forest people". The Guardian. 22 July 2016. Retrieved 2 November 2016.
  129. ^ "How Conservation Became Colonialism". Foreign Policy. 16 July 2018. Retrieved 30 July 2018.
  130. ^ Moomaw, William R.; Masino, Susan A.; Faison, Edward K. (2019). "Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good". Frontiers in Forests and Global Change. 2: 27. Bibcode:2019FrFGC...2...27M. doi:10.3389/ffgc.2019.00027.
  131. ^ a b "New Jungles Prompt a Debate on Rain Forests". New York Times. 29 January 2009. Retrieved 18 July 2016.
  132. ^ a b c "The natural world can help save us from climate catastrophe | George Monbiot". The Guardian. 3 April 2019.
  133. ^ Wilmers, Christopher C.; Schmitz, Oswald J. (19 October 2016). "Effects of gray wolf-induced trophic cascades on ecosystem carbon cycling". Ecosphere. 7 (10). Bibcode:2016Ecosp...7E1501W. doi:10.1002/ecs2.1501.
  134. ^ van Minnen, Jelle G; Strengers, Bart J; Eickhout, Bas; Swart, Rob J; Leemans, Rik (2008). "Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model". Carbon Balance and Management. 3 (1): 3. Bibcode:2008CarBM...3....3V. doi:10.1186/1750-0680-3-3. ISSN 1750-0680. PMC 2359746. PMID 18412946.
  135. ^ Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim (17 May 2017). "The limits to global-warming mitigation by terrestrial carbon removal". Earth's Future. 5 (5): 463–474. Bibcode:2017EaFut...5..463B. doi:10.1002/2016EF000469. hdl:10871/31046. S2CID 53062923.
  136. ^ Yoder, Kate (12 May 2022). "Does planting trees actually help the climate? Here's what we know". Rewilding. Grist. Retrieved 15 May 2022.
  137. ^ "One trillion trees - uniting the world to save forests and climate". World Economic Forum. 22 January 2020. Retrieved 8 October 2020.
  138. ^ Gabbatiss, Josh (16 February 2019). "Massive restoration of world's forests would cancel out a decade of CO2 emissions, analysis suggests". Independent. Retrieved 26 July 2021.
  139. ^ Hasler, Natalia; Williams, Christopher A.; Denney, Vanessa Carrasco; Ellis, Peter W.; Shrestha, Surendra; Terasaki Hart, Drew E.; Wolff, Nicholas H.; Yeo, Samantha; Crowther, Thomas W.; Werden, Leland K.; Cook-Patton, Susan C. (2024-03-26). "Accounting for albedo change to identify climate-positive tree cover restoration". Nature Communications. 15 (1): 2275. Bibcode:2024NatCo..15.2275H. doi:10.1038/s41467-024-46577-1. ISSN 2041-1723. PMC 10965905. PMID 38531896.
  140. ^ a b c "The Great Green Wall: African Farmers Beat Back Drought and Climate Change with Trees". Scientific America. 28 January 2011. Retrieved 12 September 2021.
  141. ^ a b "In semi-arid Africa, farmers are transforming the "underground forest" into life-giving trees". University of Minnesote. 28 January 2011. Retrieved 11 February 2020.
  142. ^ a b c Stern, N. (2006). Stern Review on the Economics of Climate Change: Part III: The Economics of Stabilisation. HM Treasury, London: http://hm-treasury.gov.uk/sternreview_index.htm
  143. ^ Chazdon, Robin; Brancalion, Pedro (5 July 2019). "Restoring forests as a means to many ends". Science. 365 (6448): 24–25. Bibcode:2019Sci...365...24C. doi:10.1126/science.aax9539. ISSN 0036-8075. PMID 31273109. S2CID 195804244.
  144. ^ Young, E. (2008). IPCC Wrong On Logging Threat to Climate. New Scientist, 5 August 2008. Retrieved on 18 August 2008, from https://www.newscientist.com/article/dn14466-ipcc-wrong-on-logging-threat-toclimate.html
  145. ^ "In Latin America, Forests May Rise to Challenge of Carbon Dioxide". New York Times. 16 May 2016. Retrieved 18 July 2016.
  146. ^ Securing Rights, Combating Climate Change. World Resources Institute. ISBN 978-1569738290. Retrieved 2 June 2022.
  147. ^ "Community forestry can work, but plans in the Democratic Republic of Congo show what's missing". The Conversation. 29 June 2020. Retrieved 2 June 2022.
  148. ^ "What to consider when increasing soil carbon stocks". Farmers Weekly. 14 February 2022. Retrieved 2 December 2022. many factors can affect how easy it is for micro-organisms to access carbon
  149. ^ Terrer, C.; Phillips, R. P.; Hungate, B. A.; Rosende, J.; Pett-Ridge, J.; Craig, M. E.; van Groenigen, K. J.; Keenan, T. F.; Sulman, B. N.; Stocker, B. D.; Reich, P. B.; Pellegrini, A. F. A.; Pendall, E.; Zhang, H.; Evans, R. D. (March 2021). "A trade-off between plant and soil carbon storage under elevated CO2". Nature. 591 (7851): 599–603. Bibcode:2021Natur.591..599T. doi:10.1038/s41586-021-03306-8. hdl:10871/124574. ISSN 1476-4687. PMID 33762765. S2CID 232355402. Although plant biomass often increases in elevated CO2 (eCO2) experiments SOC has been observed to increase, remain unchanged or even decline. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections
  150. ^ "Carbon farming explained: the pros, the cons and the EU's plans". Clean Energy Wire. 17 March 2022. Retrieved 2 December 2022. But many German researchers and the country's agriculture ministry warn that soil carbon sequestration is easily reversible, hard to measure, and could lead to greenwashing. Existing frameworks for carbon farming certificates deploy a wide variety of approaches to quantifying the amount of carbon removals, the European Commission says.
  151. ^ a b Harris, Nancy; Gibbs, David (21 January 2021). "Forests Absorb Twice As Much Carbon As They Emit Each Year".
  152. ^ Rosane, Olivia (18 March 2020). "Protecting and Restoring Soils Could Remove 5.5 Billion Tonnes of CO2 a Year". Ecowatch. Retrieved 19 March 2020.
  153. ^ Papanicolaou, A. N. (Thanos); Wacha, Kenneth M.; Abban, Benjamin K.; Wilson, Christopher G.; Hatfield, Jerry L.; Stanier, Charles O.; Filley, Timothy R. (2015). "Conservation Farming Shown to Protect Carbon in Soil". Journal of Geophysical Research: Biogeosciences. 120 (11): 2375–2401. Bibcode:2015JGRG..120.2375P. doi:10.1002/2015JG003078.
  154. ^ "Cover Crops, a Farming Revolution With Deep Roots in the Past". The New York Times. 2016.
  155. ^ Lugato, Emanuele; Bampa, Francesca; Panagos, Panos; Montanarella, Luca; Jones, Arwyn (1 November 2014). "Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices". Global Change Biology. 20 (11): 3557–3567. Bibcode:2014GCBio..20.3557L. doi:10.1111/gcb.12551. ISSN 1365-2486. PMID 24789378.
  156. ^ a b Lehmann, Johannes; Cowie, Annette; Masiello, Caroline A.; Kammann, Claudia; Woolf, Dominic; Amonette, James E.; Cayuela, Maria L.; Camps-Arbestain, Marta; Whitman, Thea (2021). "Biochar in climate change mitigation". Nature Geoscience. 14 (12): 883–892. Bibcode:2021NatGe..14..883L. doi:10.1038/s41561-021-00852-8. ISSN 1752-0908. S2CID 85463771.
  157. ^ Dominic Woolf; James E. Amonette; F. Alayne Street-Perrott; Johannes Lehmann; Stephen Joseph (August 2010). "Sustainable biochar to mitigate global climate change". Nature Communications. 1 (5): 56. Bibcode:2010NatCo...1...56W. doi:10.1038/ncomms1053. ISSN 2041-1723. PMC 2964457. PMID 20975722.
  158. ^ Synthesis of Adaptation Options for Coastal Areas. Climate Ready Estuaries Program, EPA 430-F-08-024. Washington, DC: US Environmental Protection Agency. 2009.
  159. ^ "Coastal Wetland Protection". Project Drawdown. 6 February 2020. Retrieved 13 September 2020.
  160. ^ Chmura, G. L. (2003). "Global carbon sequestration in tidal, saline wetland soils". Global Biogeochemical Cycles. 17 (4): Abstract. Bibcode:2003GBioC..17.1111C. doi:10.1029/2002GB001917. S2CID 36119878.
  161. ^ Tiwari, Shashank; Singh, Chhatarpal; Singh, Jay Shankar (2020). "Wetlands: A Major Natural Source Responsible for Methane Emission". In Upadhyay, Atul Kumar; Singh, Ranjan; Singh, D. P. (eds.). Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Singapore: Springer. pp. 59–74. doi:10.1007/978-981-13-7665-8_5. ISBN 978-981-13-7665-8. S2CID 198421761.
  162. ^ Bange, Hermann W. (2006). "Nitrous oxide and methane in European coastal waters". Estuarine, Coastal and Shelf Science. 70 (3): 361–374. Bibcode:2006ECSS...70..361B. doi:10.1016/j.ecss.2006.05.042.
  163. ^ Thompson, A. J.; Giannopoulos, G.; Pretty, J.; Baggs, E. M.; Richardson, D. J. (2012). "Biological sources and sinks of nitrous oxide and strategies to mitigate emissions". Philosophical Transactions of the Royal Society B. 367 (1593): 1157–1168. doi:10.1098/rstb.2011.0415. PMC 3306631. PMID 22451101.
  164. ^ "Climate change and deforestation threaten world's largest tropical peatland". Carbon Brief. 25 January 2018.
  165. ^ "Peatlands and climate change". IUCN. 6 November 2017.
  166. ^ Maclean, Ruth (22 February 2022). "What Do the Protectors of Congo's Peatlands Get in Return?". The New York Times. ISSN 0362-4331. Retrieved 30 May 2022.
  167. ^ "Peatlands and climate change". IUCN. 6 November 2017. Retrieved 30 May 2022.
  168. ^ "Climate change: National Trust joins international call for peat product ban". BBC News. 7 November 2021. Retrieved 12 June 2022.
  169. ^ Harenda K.M., Lamentowicz M., Samson M., Chojnicki B.H. (2018) The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In: Zielinski T., Sagan I., Surosz W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_12
  170. ^ "How oysters can stop a flood". Vox. 31 August 2021. Retrieved 2 June 2022.
  171. ^ Taillardat, Pierre; Thompson, Benjamin S.; Garneau, Michelle; Trottier, Karelle; Friess, Daniel A. (6 October 2020). "Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration". Interface Focus. 10 (5): 20190129. doi:10.1098/rsfs.2019.0129. PMC 7435041. PMID 32832065. Analysis of wetland restoration costs relative to the amount of carbon they can sequester revealed that restoration is more cost-effective in coastal wetlands such as mangroves (US$1800 ton C−1) compared with inland wetlands (US$4200–49 200 ton C−1). We advise that for inland wetlands, priority should be given to conservation rather than restoration; while for coastal wetlands, both conservation and restoration may be effective techniques for climate change mitigation.
  172. ^ a b c IPCC (2022) Chapter 12: Cross sectoral perspectives in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  173. ^ Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (2020). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019. ISSN 1543-5938. S2CID 225741986.
  174. ^ Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld, 2021: Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816, doi: 10.1017/9781009157896.007.
  175. ^ a b Ricart, Aurora M.; Krause-Jensen, Dorte; Hancke, Kasper; Price, Nichole N.; Masqué, Pere; Duarte, Carlos M. (2022). "Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics". Environmental Research Letters. 17 (8): 081003. Bibcode:2022ERL....17h1003R. doi:10.1088/1748-9326/ac82ff. hdl:10754/679874. S2CID 250973225.
  176. ^ Hurd, Catriona L.; Law, Cliff S.; Bach, Lennart T.; Britton, Damon; Hovenden, Mark; Paine, Ellie R.; Raven, John A.; Tamsitt, Veronica; Boyd, Philip W. (2022). "Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration". Journal of Phycology. 58 (3): 347–363. Bibcode:2022JPcgy..58..347H. doi:10.1111/jpy.13249. PMID 35286717. S2CID 247453370.
  177. ^ Boyd, Philip W.; Bach, Lennart T.; Hurd, Catriona L.; Paine, Ellie; Raven, John A.; Tamsitt, Veronica (2022). "Potential negative effects of ocean afforestation on offshore ecosystems". Nature Ecology & Evolution. 6 (6): 675–683. Bibcode:2022NatEE...6..675B. doi:10.1038/s41559-022-01722-1. PMID 35449458. S2CID 248322820.
  178. ^ "Guest post: How 'enhanced weathering' could slow climate change and boost crop yields". Carbon Brief. 19 February 2018. Archived from the original on 8 September 2021. Retrieved 3 November 2021.
  179. ^ "CO2 turned into stone in Iceland in climate change breakthrough". The Guardian. 9 June 2016. Retrieved 2 September 2017.
  180. ^ Obersteiner, M. (2001). "Managing Climate Risk". Science. 294 (5543): 786–7. doi:10.1126/science.294.5543.786b. PMID 11681318. S2CID 34722068.
  181. ^ National Academies of Sciences, Engineering (24 October 2018). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. doi:10.17226/25259. ISBN 978-0-309-48452-7. PMID 31120708. S2CID 134196575. Archived from the original on 25 May 2020. Retrieved 22 February 2020.
  182. ^ Smith, Pete; Porter, John R. (July 2018). "Bioenergy in the IPCC Assessments". GCB Bioenergy. 10 (7): 428–431. Bibcode:2018GCBBi..10..428S. doi:10.1111/gcbb.12514. hdl:2164/10480.
  183. ^ "Bioenergy with Carbon Capture and Storage – Analysis". IEA. Retrieved 2 December 2022.
  184. ^ Rhodes, James S.; Keith, David W. (2008). "Biomass with capture: Negative emissions within social and environmental constraints: An editorial comment". Climatic Change. 87 (3–4): 321–8. Bibcode:2008ClCh...87..321R. doi:10.1007/s10584-007-9387-4.
  185. ^ Fajardy, M., Köberle, A., Mac Dowell, N., Fantuzzi, A. (2019) BECCS deployment: a reality check. Imperial College London.
  186. ^ "Rishi Sunak lambasted by scientists for UK's 'disturbing' energy source". Sky News. Retrieved 3 December 2022.
  187. ^ "Direct Air Capture – Analysis". IEA. Retrieved 24 December 2021.
  188. ^ The Royal Society, (2009) "Geoengineering the climate: science, governance and uncertainty". Retrieved 12 September 2009.
  189. ^ "Global Greenhouse Gas Emissions by Sector". EarthCharts. 6 March 2020. Retrieved 15 March 2020.
  190. ^ International Energy Agency (2017). Energy technology perspectives 2017 : catalysing energy technology transformations. Paris: Organisation for Economic Co-operation and Development. ISBN 978-92-64-27597-3. OCLC 1144453104.
  191. ^ Thomas, Nathalie (2022-11-30). "Now is the time for all consumers to come to the aid of their grid". Financial Times. Retrieved 2023-05-17.
  192. ^ "Heat Pumps – Analysis". IEA. 2022. Retrieved 25 November 2022.
  193. ^ Zhou, Kai; Miljkovic, Nenad; Cai, Lili (March 2021). "Performance analysis on system-level integration and operation of daytime radiative cooling technology for air-conditioning in buildings". Energy and Buildings. 235: 110749. Bibcode:2021EneBu.23510749Z. doi:10.1016/j.enbuild.2021.110749. S2CID 234180182 – via Elsevier Science Direct.
  194. ^ Radhika, Lalik (2019). "How India is solving its cooling challenge". World Economic Forum. Retrieved 20 July 2021.
  195. ^ Davis, L., Gertler, P., Jarvis, S., & Wolfram, C. (2021). Air conditioning and global inequality. Global Environmental Change, 69, 102299.
  196. ^ a b "Cooling Emissions and Policy Synthesis Report". IEA/UNEP. 2020. Retrieved 20 July 2020.
  197. ^ "The Future of the Canals" (PDF). London Canal Museum. Archived from the original (PDF) on 3 March 2016. Retrieved 8 September 2013.
  198. ^ UKCCC (2020). "The Sixth Carbon Budget Surface Transport" (PDF). UKCCC. there is zero net cost to the economy of switching from cars to walking and cycling
  199. ^ "This is how cities can reduce emissions with waste-reduction solutions". World Economic Forum. 7 November 2022. Retrieved 6 December 2022.
  200. ^ Data from McKerracher, Colin (12 January 2023). "Electric Vehicles Look Poised for Slower Sales Growth This Year". BloombergNEF. Archived from the original on 12 January 2023.
  201. ^ Ge, Mengpin; Friedrich, Johannes; Vigna, Leandro (6 February 2020). "4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors". World Resources Institute. Retrieved 30 December 2020.
  202. ^ Jochem, Patrick; Rothengatter, Werner; Schade, Wolfgang (2016). "Climate change and transport".
  203. ^ Kwan, Soo Chen; Hashim, Jamal Hisham (1 April 2016). "A review on co-benefits of mass public transportation in climate change mitigation". Sustainable Cities and Society. 22: 11–18. Bibcode:2016SusCS..22...11K. doi:10.1016/j.scs.2016.01.004. ISSN 2210-6707.
  204. ^ Lowe, Marcia D. (April 1994). "Back on Track: The Global Rail Revival". Archived from the original on 4 December 2006. Retrieved 15 February 2007.
  205. ^ Keating, Dave (21 December 2022). "EU's end-of-year energy breakthroughs will have big climate implications". Energy Monitor. Retrieved 30 December 2022.
  206. ^ Mattioli, Giulio; Roberts, Cameron; Steinberger, Julia K.; Brown, Andrew (1 August 2020). "The political economy of car dependence: A systems of provision approach". Energy Research & Social Science. 66: 101486. Bibcode:2020ERSS...6601486M. doi:10.1016/j.erss.2020.101486. ISSN 2214-6296. S2CID 216186279.
  207. ^ Venkat Sumantran; Charles Fine; David Gonsalvez (16 October 2017). "Our cities need fewer cars, not cleaner cars". The Guardian.
  208. ^ Casson, Richard (25 January 2018). "We don't just need electric cars, we need fewer cars". Greenpeace. Retrieved 17 September 2020.
  209. ^ "The essentials of the "Green Deal" of the European Commission". Green Facts. 7 January 2020. Retrieved 3 April 2020.
  210. ^ "Smart Mobility in Smart Cities". ResearchGate.
  211. ^ "How electric vehicles can help the developing world". World Economic Forum. 5 December 2022. Retrieved 9 December 2022.
  212. ^ "How green are electric cars?". The Guardian.
  213. ^ Collins, Leigh (13 May 2022). "Hydrogen v battery trucks | UK launches $240m competition to find out which is best for zero-emissions haulage | Recharge". Recharge news. Retrieved 9 December 2022.
  214. ^ "LNG projected to gain significant market share in transport fuels by 2035". Gas Processing News/Bloomberg. 28 September 2014.
  215. ^ Chambers, Sam (26 February 2021). "'Transitional fuels are capturing the regulatory agenda and incentives': Maersk". splash247. Retrieved 27 February 2021.
  216. ^ "Maersk backs plan to build Europe's largest green ammonia facility" (Press release). Maersk. 23 February 2021. Retrieved 27 February 2021.
  217. ^ Bahtić, Fatima (10 November 2022). "Viking's new cruise ship equipped with hydrogen fuel cells delivered". Offshore Energy. Retrieved 9 December 2022.
  218. ^ Parker, Selwyn (8 September 2020). "Norway moves closer to its ambition of an all-electric ferry fleet". Rivera.
  219. ^ D. S. Lee; et al. (2021), "The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018", Atmospheric Environment, 244: 117834, Bibcode:2021AtmEn.24417834L, doi:10.1016/j.atmosenv.2020.117834, PMC 7468346, PMID 32895604
  220. ^ Brandon Graver; Kevin Zhang; Dan Rutherford (September 2019). "CO2 emissions from commercial aviation, 2018" (PDF). International Council on Clean Transportation.
  221. ^ "Reducing emissions from aviation". Climate Action. European Commission. 23 November 2016.
  222. ^ "The aviation network – Decarbonisation issues". Eurocontrol. 4 September 2019.
  223. ^ Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data. Retrieved 21 December 2022.
  224. ^ Sutton, William R.; Lotsch, Alexander; Prasann, Ashesh (2024-05-06). "Recipe for a Livable Planet: Achieving Net Zero Emissions in the Agrifood System". World Bank.
  225. ^ Olivier J.G.J. and Peters J.A.H.W. (2020), Trends in global CO2 and total greenhouse gas emissions: 2020 report. PBL Netherlands Environmental Assessment Agency, The Hague.
  226. ^ Schmidinger, Kurt; Stehfest, Elke (2012). "Including CO2 implications of land occupation in LCAs – method and example for livestock products" (PDF). Int J Life Cycle Assess. 17 (8): 967. Bibcode:2012IJLCA..17..962S. doi:10.1007/s11367-012-0434-7. S2CID 73625760. Archived from the original (PDF) on 2021-06-09. Retrieved 2021-06-09.
  227. ^ "Bovine Genomics | Genome Canada". www.genomecanada.ca. Archived from the original on 10 August 2019. Retrieved 2 August 2019.
  228. ^ Airhart, Ellen. "Canada Is Using Genetics to Make Cows Less Gassy". Wired – via www.wired.com.
  229. ^ "The use of direct-fed microbials for mitigation of ruminant methane emissions: a review".
  230. ^ Parmar, N.R.; Nirmal Kumar, J.I.; Joshi, C.G. (2015). "Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach". Frontiers in Life Science. 8 (4): 371–378. doi:10.1080/21553769.2015.1063550. S2CID 89217740.
  231. ^ "Kowbucha, seaweed, vaccines: the race to reduce cows' methane emissions". The Guardian. 30 September 2021. Retrieved 1 December 2021.
  232. ^ Boadi, D (2004). "Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review". Can. J. Anim. Sci. 84 (3): 319–335. doi:10.4141/a03-109.
  233. ^ Martin, C. et al. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4 : pp 351-365.
  234. ^ Eckard, R. J.; et al. (2010). "Options for the abatement of methane and nitrous oxide from ruminant production: A review". Livestock Science. 130 (1–3): 47–56. doi:10.1016/j.livsci.2010.02.010.
  235. ^ "The carbon footprint of foods: are differences explained by the impacts of methane?". Our World in Data. Retrieved 2023-04-14.
  236. ^ Searchinger, Tim; Adhya, Tapan K. (2014). "Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production". WRI.
  237. ^ "Cement – Analysis". IEA. Retrieved 1 January 2023.
  238. ^ "Adding bacteria can make concrete greener". The Economist. ISSN 0013-0613. Retrieved 26 November 2022.
  239. ^ "The role of CCUS in decarbonizing the cement industry: A German case study". Oxford Institute for Energy Studies. Retrieved 25 November 2022.
  240. ^ a b Renewable Reads (16 November 2023). "How to decarbonize the steel sector". Renewable Reads. Retrieved 4 February 2024.
  241. ^ a b c Krane, Jim (17 November 2022). "Why fixing methane leaks from the oil and gas industry can be a climate game-changer – one that pays for itself". The Conversation. Retrieved 27 November 2022.
  242. ^ Cocks, Tim (29 September 2022). "Explainer: How methane leaks accelerate global warming". Reuters. Retrieved 27 November 2022.
  243. ^ Heyman, Taylor (26 October 2022). "Iran and Turkmenistan among methane 'super emitters' spotted by Nasa from space". The National. Retrieved 27 November 2022.
  244. ^ "CO2 Emissions: Multiple Countries - Fossil fuel operations - 2021 - Climate TRACE". climatetrace.org. Retrieved 28 November 2022.
  245. ^ Combier, Etienne (10 March 2022). "Turkmenistan, the unknown mega-polluter". Novastan English. Retrieved 27 November 2022.
  246. ^ US EPA, OAR (8 December 2015). "About Coal Mine Methane". www.epa.gov. Retrieved 28 November 2022.
  247. ^ "Driving Down Methane Leaks from the Oil and Gas Industry – Analysis". IEA. 18 January 2021. Retrieved 28 November 2022.
  248. ^ Burtraw, Dallas; Krupnick, Alan; Palmer, Karen; Paul, Anthony; Toman, Michael; Bloyd, Cary (May 2003). "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector". Journal of Environmental Economics and Management. 45 (3): 650–673. Bibcode:2003JEEM...45..650B. doi:10.1016/s0095-0696(02)00022-0. ISSN 0095-0696. S2CID 17391774.
  249. ^ Thambiran, Tirusha; Diab, Roseanne D. (May 2011). "Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa". Atmospheric Environment. 45 (16): 2683–2689. Bibcode:2011AtmEn..45.2683T. doi:10.1016/j.atmosenv.2011.02.059. ISSN 1352-2310.
  250. ^ Ayres, Robert U.; Walter, Jörg (1991). "The greenhouse effect: Damages, costs and abatement". Environmental & Resource Economics. 1 (3): 237–270. doi:10.1007/bf00367920. ISSN 0924-6460. S2CID 41324083.
  251. ^ Pearce, David William (1992). The secondary benefits of greenhouse gas control. Centre for Social and Economic Research on the Global Environment. OCLC 232159680.
  252. ^ Metz, Bert (2001). Climate change 2001 : mitigation : contribution of Working Group III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80769-7. OCLC 46640845.
  253. ^ Ancillary Benefits and Costs of Greenhouse Gas Mitigation. 2000-10-25. doi:10.1787/9789264188129-en. ISBN 9789264185425.
  254. ^ a b IPCC. "Co-benefits of climate change mitigation". Intergovernmental Panel of Climate Change. IPCC. Archived from the original on 2016-05-25. Retrieved 2016-02-18.
  255. ^ Sudmant, Andrew; Boyle, Dom; Higgins‐Lavery, Ruaidhri; Gouldson, Andy; Boyle, Andy; Fulker, James; Brogan, Jamie (2024-07-05). "Climate policy as social policy? A comprehensive assessment of the economic impact of climate action in the UK". Journal of Environmental Studies and Sciences. doi:10.1007/s13412-024-00955-9. ISSN 2190-6491.
  256. ^ IASS/Green ID (2019). "Future skills and job creation through renewable energy in Vietnam. Assessing the co-benefits of decarbonising the power sector" (PDF). Archived (PDF) from the original on 2021-04-20.
  257. ^ IASS/IPC (2019). "Industrial development, trade opportunities and innovation with renewable energy in Turkey. Assessing the co-benefits of decarbonising the power sector" (PDF). Archived (PDF) from the original on 2021-04-20.
  258. ^ IASS/IPC (2020). "Securing Turkey's energy supply and balancing the current account deficit through renewable energy. Assessing the co-benefits of decarbonising the power sector" (PDF). Archived (PDF) from the original on 2021-03-05.
  259. ^ "The scale-up gap: Financial market constraints holding back innovative firms in the European Union". European Investment Bank. Retrieved 2024-07-30.
  260. ^ Mondal, Md. Alam Hossain; Denich, Manfred; Vlek, Paul L.G. (December 2010). "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector". Energy. 35 (12): 4902–4909. Bibcode:2010Ene....35.4902M. doi:10.1016/j.energy.2010.08.037. ISSN 0360-5442.
  261. ^ IASS/TERI (2019). "Secure and reliable electricity access with renewable energy mini-grids in rural India. Assessing the co-benefits of decarbonising the power sector" (PDF). Archived (PDF) from the original on 2020-10-21.
  262. ^ Chhatre, Ashwini; Lakhanpal, Shikha; Larson, Anne M; Nelson, Fred; Ojha, Hemant; Rao, Jagdeesh (December 2012). "Social safeguards and co-benefits in REDD+: a review of the adjacent possible". Current Opinion in Environmental Sustainability. 4 (6): 654–660. Bibcode:2012COES....4..654C. doi:10.1016/j.cosust.2012.08.006. ISSN 1877-3435.
  263. ^ IASS/TERI (2019). "Secure and reliable electricity access with renewable energy mini-grids in rural India. Assessing the co-benefits of decarbonising the power sector" (PDF). Archived (PDF) from the original on 2020-10-21.
  264. ^ IRENA (2016). "Renewable Energy Benefits: Measuring the Economics". Archived from the original on 2017-12-01.
  265. ^ IEA (2015). "Capturing the Multiple Benefits of Energy Efficiency". Archived from the original on 2019-07-01.
  266. ^ Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John (April 2018). "The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda". International Journal of Environmental Research and Public Health. 15 (4): 674. doi:10.3390/ijerph15040674. PMC 5923716. PMID 29617317.
  267. ^ a b Molar, Roberto. "Reducing Emissions to Lessen Climate Change Could Yield Dramatic Health Benefits by 2030". Climate Change: Vital Signs of the Planet. Retrieved 1 December 2021.
  268. ^ Green, Matthew (9 February 2021). "Fossil fuel pollution causes one in five premature deaths globally: study". Reuters. Archived from the original on 25 February 2021. Retrieved 5 March 2021.
  269. ^ Vohra, Karn; Vodonos, Alina; Schwartz, Joel; Marais, Eloise A.; Sulprizio, Melissa P.; Mickley, Loretta J. (April 2021). "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem". Environmental Research. 195: 110754. Bibcode:2021ER....19510754V. doi:10.1016/j.envres.2021.110754. PMID 33577774. S2CID 231909881.
  270. ^ Gregory, Andrew (2023-11-29). "Air pollution from fossil fuels 'kills 5 million people a year'". The Guardian. ISSN 0261-3077.
  271. ^ "Phasing out fossil fuels could save millions of lives". www.mpic.de. Retrieved 2024-04-19.
  272. ^ Roser, Max (2024-03-18). "Data review: how many people die from air pollution?". Our World in Data.
  273. ^ a b Romanello, Marina; McGushin, Alice; Di Napoli, Claudia; Drummond, Paul; et al. (October 2021). "The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future" (PDF). The Lancet. 398 (10311): 1619–1662. doi:10.1016/S0140-6736(21)01787-6. hdl:10278/3746207. PMID 34687662. S2CID 239046862.
  274. ^ Shrestha, Pallavi; Nukala, Sai Keerthana; Islam, Fariha; Badgery-Parker, Tim; Foo, Fiona (2024). "The co-benefits of climate change mitigation strategies on cardiovascular health: a systematic review". The Lancet Regional Health - Western Pacific. 48: 101098. doi:10.1016/j.lanwpc.2024.101098.
  275. ^ a b IPCC (2022) Chapter 8: Urban systems and other settlements[permanent dead link] in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  276. ^ IPCC (2022) Chapter 4: Mitigation and development pathways in the near- to mid-term[permanent dead link] in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  277. ^ Ingemarsson, M. L., Weinberg, J., Rudebeck, T., Erlandsson, L. W. (2022) Key messages and executive summary, The essential drop to Net-Zero: Unpacking freshwater's role in climate change mitigation, SIWI, Stockholm, Sweden
  278. ^ State and Trends of Carbon Pricing 2019. World Bank Group. 6 June 2019. doi:10.1596/978-1-4648-1435-8. ISBN 978-1-4648-1435-8. S2CID 197582819.
  279. ^ Sonter, Laura J.; Dade, Marie C.; Watson, James E. M.; Valenta, Rick K. (1 September 2020). "Renewable energy production will exacerbate mining threats to biodiversity". Nature Communications. 11 (1): 4174. Bibcode:2020NatCo..11.4174S. doi:10.1038/s41467-020-17928-5. ISSN 2041-1723. PMC 7463236. PMID 32873789. S2CID 221467922.
  280. ^ "Solar panels are a pain to recycle. These companies are trying to fix that". Archived from the original on 8 November 2021. Retrieved 8 November 2021.
  281. ^ a b c Lamb, William F.; Mattioli, Giulio; Levi, Sebastian; Roberts, J. Timmons; Capstick, Stuart; Creutzig, Felix; Minx, Jan C.; Müller-Hansen, Finn; Culhane, Trevor; Steinberger, Julia K. (2020). "Discourses of climate delay". Global Sustainability. 3. Bibcode:2020GlSus...3E..17L. doi:10.1017/sus.2020.13. ISSN 2059-4798. S2CID 222245720.
  282. ^ Barker, T.; et al. (2007). "Mitigation from a cross-sectoral perspective.". In B. Metz; et al. (eds.). In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, N.Y., U.S.A. Archived from the original on 8 June 2011. Retrieved 20 May 2009.
  283. ^ IPCC, 2007: Technical Summary - Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2009-12-11 at the Wayback Machine [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States., XXX pp.
  284. ^ Sampedro, Jon; Smith, Steven J.; Arto, Iñaki; González-Eguino, Mikel; Markandya, Anil; Mulvaney, Kathleen M.; Pizarro-Irizar, Cristina; Van Dingenen, Rita (2020). "Health co-benefits and mitigation costs as per the Paris Agreement under different technological pathways for energy supply". Environment International. 136: 105513. Bibcode:2020EnInt.13605513S. doi:10.1016/j.envint.2020.105513. hdl:10810/44202. PMID 32006762. S2CID 211004787.
  285. ^ a b "Can cost benefit analysis grasp the climate change nettle? And can we..." Oxford Martin School. Retrieved 11 November 2019.
  286. ^ Kotz, Mazimilian.; Levermann, Anders; Wenz, Leonie (2024-04-17). "The economic commitment of climate change". Nature. 628 (8008): 551–557. Bibcode:2024Natur.628..551K. doi:10.1038/s41586-024-07219-0. PMC 11023931. PMID 38632481.
  287. ^ "Below 1.5°C: a breakthrough roadmap to solve the climate crisis". One Earth. Retrieved 21 November 2022.
  288. ^ "The crucial intersection between gender and climate". European Investment Bank. Retrieved 2023-12-29.
  289. ^ Nations, United. "Finance & Justice". United Nations. Retrieved 2023-12-29.
  290. ^ IPCC (2022). Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; et al. (eds.). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. p. 300.: The global benefits of pathways limiting warming to 2°C (>67%) outweigh global mitigation costs over the 21st century, if aggregated economic impacts of climate change are at the moderate to high end of the assessed range, and a weight consistent with economic theory is given to economic impacts over the long term. This holds true even without accounting for benefits in other sustainable development dimensions or nonmarket damages from climate change (medium confidence).
  291. ^ a b IPCC (2022) Chapter 3: Mitigation pathways compatible with long-term goals in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  292. ^ Dyke, James (18 July 2017). "Inaction on climate change risks leaving future generations $530 trillion in debt". The Conversation.
  293. ^ Hansen, James; Sato, Makiko; Kharecha, Pushker; von Schuckmann, Karina; Beerling, David J.; Cao, Junji; Marcott, Shaun; Masson-Delmotte, Valerie; Prather, Michael J.; Rohling, Eelco J.; Shakun, Jeremy; Smith, Pete; Lacis, Andrew; Russell, Gary; Ruedy, Reto (18 July 2017). "Young people's burden: requirement of negative CO2 emissions". Earth System Dynamics. 8 (3): 577–616. arXiv:1609.05878. Bibcode:2017ESD.....8..577H. doi:10.5194/esd-8-577-2017. S2CID 54600172 – via esd.copernicus.org.
  294. ^ Creutzig, Felix; Niamir, Leila; Bai, Xuemei; Callaghan, Max; Cullen, Jonathan; Díaz-José, Julio; Figueroa, Maria; Grubler, Arnulf; Lamb, William F.; Leip, Adrian; Masanet, Eric (25 November 2021). "Demand-side solutions to climate change mitigation consistent with high levels of well-being". Nature Climate Change. 12 (1): 36–46. Bibcode:2022NatCC..12...36C. doi:10.1038/s41558-021-01219-y. ISSN 1758-6798. S2CID 244657251.
  295. ^ a b Banuri, T.; et al. (1996). Equity and Social Considerations. In: Climate Change 1995: Economic and Social Dimensions of Climate Change. Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change (J. P. Bruce et al. eds.). Cambridge and New York: Cambridge University Press. ISBN 978-0521568548. PDF version: IPCC website.
  296. ^ "Synthesis Report of The IPCC Sixth Assessment Report" (PDF). p. 82.
  297. ^ Markkanen, Sanna; Anger-Kraavi, Annela (9 August 2019). "Social impacts of climate change mitigation policies and their implications for inequality". Climate Policy. 19 (7): 827–844. Bibcode:2019CliPo..19..827M. doi:10.1080/14693062.2019.1596873. ISSN 1469-3062. S2CID 159114098.
  298. ^ "Social Dimensions of Climate Change". World Bank. Retrieved 20 May 2021.
  299. ^ a b c Stechemesser, Annika; Koch, Nicolas; Mark, Ebba; Dilger, Elina; Klösel, Patrick; Menicacci, Laura; Nachtigall, Daniel; Pretis, Felix; Ritter, Nolan; Schwarz, Moritz; Vossen, Helena; Wenzel, Anna (2024). "Climate policies that achieved major emission reductions: Global evidence from two decades". Science. 385 (6711). American Association for the Advancement of Science: 884–892. doi:10.1126/science.adl6547.
  300. ^ "Effectiveness of 1,500 global climate policies ranked for first time". University of Oxford. 24 August 2024. Retrieved 13 September 2024.
  301. ^ Niiler, Eric (August 22, 2024). "Most Climate Policies Don't Work. Here's What Science Says Does Reduce Emissions". The Wall Street Journal. News Corp. Retrieved September 12, 2024.
  302. ^ Jacoby, Jeff (September 4, 2024). "Most climate policies have something in common: They don't work". The Boston Globe. Retrieved September 12, 2024.
  303. ^ a b "Climate actions and policies measurement framework". OECD. Retrieved 13 September 2024.
  304. ^ a b c Bashmakov, I.; et al. (2001). "Policies, Measures, and Instruments". In B. Metz; et al. (eds.). Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Archived from the original on 5 March 2016. Retrieved 20 May 2009.
  305. ^ Pham, Alexander (7 June 2022). "Can We Widely Adopt A Methane Tax to Cut the Greenhouse Gas?". Earth.Org. Retrieved 26 November 2022.
  306. ^ "New Zealand Outlines Plans to Tax Livestock Gas". VOA. 12 October 2022. Retrieved 26 November 2022.
  307. ^ Browning, Noah; Kelly, Stephanie (8 March 2022). "Analysis: Ukraine crisis could boost ballooning fossil fuel subsidies". Reuters. Retrieved 2 April 2022.
  308. ^ "Breaking up with fossil fuels". UNDP. Archived from the original on 3 June 2023. Retrieved 24 November 2022.
  309. ^ Gencsu, Ipek; Walls, Ginette; Picciariello, Angela; Alasia, Ibifuro Joy (2 November 2022). "Nigeria's energy transition: reforming fossil fuel subsidies and other financing opportunities". ODI: Think change. Retrieved 24 November 2022.
  310. ^ "How Reforming Fossil Fuel Subsidies Can Go Wrong: A lesson from Ecuador". IISD. Retrieved 11 November 2019.
  311. ^ Hittinger, Eric; Williams, Eric; Miao, Qing; Tibebu, Tiruwork B. (21 November 2022). "How to design clean energy subsidies that work – without wasting money on free riders". The Conversation. Retrieved 24 November 2022.
  312. ^ "How tide has turned on UK tidal stream energy as costs ebb and reliability flows". the Guardian. 23 November 2022. Retrieved 24 November 2022.
  313. ^ State and Trends of Carbon Pricing 2021. The World Bank. 2021. doi:10.1596/978-1-4648-1728-1. ISBN 978-1-4648-1728-1.
  314. ^ Shepherd, Christian (16 July 2021). "China's carbon market scheme too limited, say analysts". Financial Times. Archived from the original on 11 December 2022. Retrieved 16 July 2021.
  315. ^ "Carbon Price Viewer". EMBER. Retrieved 10 October 2021.
  316. ^ IPCC (2022) "Chapter 11: Industry" in "Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States.
  317. ^ Patrick Greenfield (30 November 2023). "The new 'scramble for Africa': how a UAE sheikh quietly made carbon deals for forests bigger than UK". The Guardian. Retrieved 25 August 2024.
  318. ^ "UN Framework Convention on Climate Change – UNFCCC". IISD Earth Negotiations Bulletin. Retrieved 2 November 2022.
  319. ^ "United Nations Framework Convention on Climate Change | United Nations Secretary-General". www.un.org. Retrieved 2 November 2022.
  320. ^ UNFCCC (2002). "Full Text of the Convention, Article 2: Objectives". UNFCCC.
  321. ^ Velders, G.J.M.; et al. (20 March 2007). "The importance of the Montreal Protocol in protecting climate". PNAS. 104 (12): 4814–19. Bibcode:2007PNAS..104.4814V. doi:10.1073/pnas.0610328104. PMC 1817831. PMID 17360370.
  322. ^ "Paris Agreement, FCCC/CP/2015/L.9/Rev.1" (PDF). UNFCCC secretariat. Archived (PDF) from the original on 12 December 2015. Retrieved 12 December 2015.
  323. ^ "Reference: C.N.464.2017.TREATIES-XXVII.7.d (Depositary Notification)" (PDF). United Nations. 8 August 2017. Archived (PDF) from the original on 15 August 2017. Retrieved 14 August 2017.
  324. ^ "US makes official return to Paris climate pact". Associated Press. 19 February 2021. Archived from the original on 19 February 2021. Retrieved 19 February 2021 – via The Guardian.
  325. ^ "History of the Convention | UNFCCC". unfccc.int. Retrieved 2 December 2019.
  326. ^ Cole, Daniel H. (28 January 2015). "Advantages of a polycentric approach to climate change policy". Nature Climate Change. 5 (2): 114–118. Bibcode:2015NatCC...5..114C. doi:10.1038/nclimate2490. ISSN 1758-6798.
  327. ^ Sabel, Charles F.; Victor, David G. (1 September 2017). "Governing global problems under uncertainty: making bottom-up climate policy work". Climatic Change. 144 (1): 15–27. Bibcode:2017ClCh..144...15S. doi:10.1007/s10584-015-1507-y. ISSN 1573-1480. S2CID 153561849.
  328. ^ Zefferman, Matthew R. (1 January 2018). "Cultural multilevel selection suggests neither large or small cooperative agreements are likely to solve climate change without changing the game". Sustainability Science. 13 (1): 109–118. Bibcode:2018SuSc...13..109Z. doi:10.1007/s11625-017-0488-3. ISSN 1862-4057. S2CID 158187220.
  329. ^ Verbruggen, A. (2007). "Annex I. Glossary" (PDF). In Metz, B.; et al. (eds.). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Cambridge, UK, and New York, N.Y.: Cambridge University Press. pp. 809–822. ISBN 978-0-521-88011-4. Retrieved 19 January 2022.
  330. ^ Bashmakov, Igor; Jepma, Catrinus (2001). "6. Policies, Measures, and Instruments". In Metz, B.; Davidson, O; Swart, R.; Pan, J. (eds.). Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Cambridge: Cambridge University Press. Retrieved 20 January 2020.
  331. ^ "Report on the structured expert dialogue on the 2013–2015 review" (PDF). UNFCCC, Subsidiary Body for Scientific and Technological Advice & Subsidiary Body for Implementation. 4 April 2015. Retrieved 21 June 2016.
  332. ^ "1.5°C temperature limit – key facts". Climate Analytics. Archived from the original on 30 June 2016. Retrieved 21 June 2016.
  333. ^ European Investment Bank. (2022). EIB Investment Report 2021/2022: Recovery as a springboard for change. European Investment Bank. doi:10.2867/82061. ISBN 978-9286151552.
  334. ^ "Major milestone: 1000+ divestment commitments". 350.org. December 13, 2018. Retrieved 17 December 2018.
  335. ^ "5 Mutual Funds for Socially Responsible Investors". Kiplinger. May 2012. Archived from the original on 22 February 2019. Retrieved 30 December 2015.
  336. ^ a b Berg, Christian (2020). Sustainable action : overcoming the barriers. Abingdon, Oxon: Routledge. ISBN 978-0-429-57873-1. OCLC 1124780147.
  337. ^ Sathaye, J.; et al. (2001). "Barriers, Opportunities, and Market Potential of Technologies and Practices. In: Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (B. Metz, et al., Eds.)". Cambridge University Press. Archived from the original on 5 October 2018. Retrieved 20 May 2009.
  338. ^ Loe, Catherine (1 December 2022). "Energy transition will move slowly over the next decade". Economist Intelligence Unit. Retrieved 2 December 2022.
  339. ^ "The cost of capital in clean energy transitions – Analysis". IEA. 17 December 2021. Retrieved 26 November 2022.
  340. ^ a b Overland, Indra; Sovacool, Benjamin K. (1 April 2020). "The misallocation of climate research funding". Energy Research & Social Science. 62: 101349. Bibcode:2020ERSS...6201349O. doi:10.1016/j.erss.2019.101349. hdl:11250/2647605. ISSN 2214-6296.
  341. ^ Filho, Walter Leal; Hickmann, Thomas; Nagy, Gustavo J.; Pinho, Patricia; Sharifi, Ayyoob; Minhas, Aprajita; Islam, M Rezaul; Djalanti, Riyanti; García Vinuesa, Antonio; Abubakar, Ismaila Rimi (2022). "The Influence of the Corona Virus Pandemic on Sustainable Development Goal 13 and United Nations Framework Convention on Climate Change Processes". Frontiers in Environmental Science. 10: 784466. doi:10.3389/fenvs.2022.784466. hdl:10347/29848. ISSN 2296-665X.
  342. ^ "Cop26 climate talks postponed to 2021 amid coronavirus pandemic". Climate Home News. 1 April 2020. Archived from the original on 4 April 2020. Retrieved 2 April 2020.
  343. ^ Newburger E (13 March 2020). "Coronavirus could weaken climate change action and hit clean energy investment, researchers warn". CNBC. Archived from the original on 15 March 2020. Retrieved 16 March 2020.
  344. ^ a b Tollefson J (January 2021). "COVID curbed carbon emissions in 2020 - but not by much". Nature. 589 (7842): 343. Bibcode:2021Natur.589..343T. doi:10.1038/d41586-021-00090-3. PMID 33452515. S2CID 231622354.
  345. ^ Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, et al. (7 August 2020). "Current and future global climate impacts resulting from COVID-19". Nature Climate Change. 10 (10): 913–919. Bibcode:2020NatCC..10..913F. doi:10.1038/s41558-020-0883-0. ISSN 1758-6798.
  346. ^ Stevens, Harry (1 March 2023). "The United States has caused the most global warming. When will China pass it?". The Washington Post. Archived from the original on 1 March 2023.
  347. ^ Dessai, S. (December 2001), Tyndall Centre Working Paper 12: The climate regime from The Hague to Marrakech: Saving or sinking the Kyoto Protocol?, Norwich, UK: Tyndall Centre, archived from the original on 31 October 2012. p. 5.
  348. ^ "President Obama: The United States Formally Enters the Paris Agreement". whitehouse.gov. 2016-09-03. Retrieved 2021-11-19.
  349. ^ "Effect of the US withdrawal from the Paris Agreement | Climate Action Tracker". climateactiontracker.org. Retrieved 2020-08-22.
  350. ^ Plumer, Brad; Popovich, Nadja (2021-04-22). "The U.S. Has a New Climate Goal. How Does It Stack Up Globally?". The New York Times. ISSN 0362-4331. Retrieved 2021-07-15.
  351. ^ "Biden signs massive climate and health care legislation". AP NEWS. 2022-08-16. Retrieved 2022-10-16.
  352. ^ Rennert, Kevin; Errickson, Frank; Prest, Brian C.; Rennels, Lisa; Newell, Richard G.; Pizer, William; Kingdon, Cora; Wingenroth, Jordan; Cooke, Roger; Parthum, Bryan; Smith, David; Cromar, Kevin; Diaz, Delavane; Moore, Frances C.; Müller, Ulrich K. (October 2022). "Comprehensive evidence implies a higher social cost of CO2". Nature. 610 (7933): 687–692. Bibcode:2022Natur.610..687R. doi:10.1038/s41586-022-05224-9. ISSN 1476-4687. PMC 9605864. PMID 36049503. S2CID 252010506.
  353. ^ Stanway, David (2022-11-21). "China's CO2 emissions fall but policies still not aligned with long-term goals". Reuters. Retrieved 2023-04-14.
  354. ^ China's New Growth Pathway: From the 14th Five-Year Plan to Carbon Neutrality (PDF) (Report). Energy Foundation China. December 2020. p. 24. Archived from the original (PDF) on 16 April 2021. Retrieved 20 July 2021.
  355. ^ "The scale-up gap: Financial market constraints holding back innovative firms in the European Union". European Investment Bank. Retrieved 2024-07-30.
  356. ^ Andersson, Malin; Nerlich, Carolin; Pasqua, Carlo; Rusinova, Desislava (2024-06-18). "Massive investment needs to meet EU green and digital targets". {{cite journal}}: Cite journal requires |journal= (help)
  357. ^ "The scale-up gap: Financial market constraints holding back innovative firms in the European Union". European Investment Bank. Retrieved 2024-07-30.
  358. ^ "Financing and commercialisation of cleantech innovation" (PDF).
  359. ^ a b "Cleantech Annual Briefing 2023". www.cleantechforeurope.com. Retrieved 2024-08-31.