stringtranslate.com

Partículas

Un gráfico de computadora que muestra cuántas partículas PM10 pueden envolver un cabello humano y cuántas partículas PM2.5 pueden envolver PM10.
PM 2,5 y PM 10 comparados con un cabello humano en un gráfico de la Agencia de Protección Ambiental

Las partículas o material particulado atmosférico (ver más abajo otros nombres) son partículas microscópicas de materia sólida o líquida suspendidas en el aire . El término aerosol se refiere comúnmente a la mezcla de partículas y aire , en contraposición a la materia particulada sola. [1] Las fuentes de material particulado pueden ser naturales o antropogénicas . [2] Tienen impactos en el clima y las precipitaciones que afectan negativamente a la salud humana , de maneras adicionales a la inhalación directa.

Los tipos de partículas atmosféricas incluyen materia particulada suspendida; partículas torácicas y respirables; [3] partículas gruesas inhalables, designadas PM 10 , que son partículas gruesas con un diámetro de 10 micrómetros (μm) o menos; partículas finas, designadas PM 2.5 , con un diámetro de 2,5 μm o menos; [4] partículas ultrafinas , con un diámetro de 100 nm o menos; y hollín .

Las partículas suspendidas en el aire son un carcinógeno del grupo 1. [5] Las partículas son la forma más dañina (aparte de las ultrafinas ) de contaminación del aire [6], ya que pueden penetrar profundamente en los pulmones y el cerebro desde el torrente sanguíneo, causando problemas de salud como enfermedades cardíacas , enfermedades pulmonares , cáncer y parto prematuro . [7] No existe un nivel seguro de partículas. En todo el mundo, la exposición a PM 2,5 contribuyó a 4,1 millones de muertes por enfermedades cardíacas, accidentes cerebrovasculares, cáncer de pulmón, enfermedades pulmonares crónicas e infecciones respiratorias en 2016. [8] En general, las partículas suspendidas en el ambiente son uno de los principales factores de riesgo de muerte prematura a nivel mundial. [9]

Fuentes

Emisión de partículas al utilizar herramientas eléctricas modernas durante la instalación de banda ancha en el hogar, Tai Po, Hong Kong
Excavadora (un tipo de equipo pesado que se utiliza habitualmente en sitios de construcción y obras viales) demoliendo los restos de la estación de tren postal 0880 de antes de la guerra (Dworzec Pocztowy) en la avenida Jerozolimskie, Polonia

Las actividades humanas generan cantidades significativas de partículas. Por ejemplo:

Algunos tipos de polvo, como las cenizas , el vidrio , el plástico y el polvo de ciertas fibras artificiales, que son frágiles y se rompen fácilmente (pueden “proliferar”), pueden suponer mayores amenazas e irritaciones para los seres humanos. Los que tienen bordes afilados pueden ser aún más problemáticos. La cantidad, las formas, la adherencia, etc. de las partículas también pueden verse alteradas por diferentes condiciones meteorológicas.

Los aerosoles creados por el hombre (antropogénicos) representan alrededor del 10 por ciento de la masa total de aerosoles en la atmósfera según se estimó en 2010. El 90 por ciento restante proviene de fuentes naturales como volcanes , tormentas de polvo , incendios de bosques y pastizales , vegetación viva y rocío marino , que emiten partículas como ceniza volcánica, polvo del desierto, hollín y sal marina. [52]

Combustión doméstica y humo de leña

En el Reino Unido, la combustión doméstica es la mayor fuente individual de PM 2,5 y PM 10 al año, y la quema de leña doméstica tanto en estufas cerradas como en fuegos abiertos fue responsable del 38 % de PM 2,5 en 2019. [53] [54] [55] Para abordar el problema, se introdujeron algunas leyes nuevas desde 2021. En algunas ciudades y pueblos de Nueva Gales del Sur, el humo de leña puede ser responsable del 60 % de la contaminación del aire por partículas finas en invierno. [56]

Hay algunas maneras de reducir el humo de la madera, por ejemplo, comprando la estufa de leña adecuada y manteniéndola bien [57] , eligiendo la leña adecuada [58] y quemándola de la manera correcta. [59] También hay regulaciones en algunos países por las cuales las personas pueden reportar la contaminación por humo al ayuntamiento local. [60]

Composición

Retrato global de aerosoles producido mediante una simulación GEOS-5 a una resolución de 10 km, agosto de 2006 - abril de 2007.
Rojo/naranja: polvo (mineral) del desierto
Azul: sal marina
Verde: humo
Blanco: partículas de sulfato [61] [62]

La composición y toxicidad de los aerosoles , incluidas las partículas, depende de su origen y de la química atmosférica y varía ampliamente. El polvo mineral arrastrado por el viento [63] tiende a estar formado por óxidos minerales y otros materiales arrastrados por la corteza terrestre ; estas partículas absorben la luz . [64] La sal marina [65] se considera el segundo mayor contribuyente al presupuesto global de aerosoles y se compone principalmente de cloruro de sodio originado por la espuma marina ; otros componentes de la sal marina atmosférica reflejan la composición del agua de mar y, por lo tanto, incluyen magnesio , sulfato , calcio , potasio y otros. Además, los aerosoles de la espuma marina pueden contener compuestos orgánicos como ácidos grasos y azúcares, que influyen en su química. [66]

Algunas partículas secundarias se derivan de la oxidación de gases primarios como los óxidos de azufre y nitrógeno en ácido sulfúrico (líquido) y ácido nítrico (gaseoso) o de emisiones biogénicas. Los precursores de estos aerosoles, es decir, los gases de los que se originan, pueden tener un origen antropogénico (de la combustión de biomasa y combustibles fósiles ) así como un origen biogénico natural . En presencia de amoniaco , los aerosoles secundarios a menudo toman la forma de sales de amonio ; es decir, sulfato de amonio y nitrato de amonio (ambos pueden estar secos o en solución acuosa ); en ausencia de amoniaco, los compuestos secundarios toman una forma ácida como ácido sulfúrico (gotitas de aerosol líquido) y ácido nítrico (gas atmosférico).

Los aerosoles secundarios de sulfato y nitrato son fuertes dispersores de luz . [67] Esto se debe principalmente a que la presencia de sulfato y nitrato hace que los aerosoles aumenten hasta un tamaño que dispersa la luz de manera efectiva.

La materia orgánica (MO) presente en los aerosoles puede ser primaria o secundaria, siendo esta última parte derivada de la oxidación de compuestos orgánicos volátiles (COV); la materia orgánica presente en la atmósfera puede ser biogénica o antropogénica . La materia orgánica influye en el campo de radiación atmosférica tanto por dispersión como por absorción. Se prevé que algunos aerosoles incluyan material que absorba fuertemente la luz y se cree que producen un gran forzamiento radiativo positivo . Algunos aerosoles orgánicos secundarios (AOS) resultantes de los productos de combustión de los motores de combustión interna se han identificado como un peligro para la salud. [68] Se ha descubierto que la toxicidad de las partículas varía según la región y la contribución de la fuente, lo que afecta a la composición química de las partículas.

La composición química del aerosol afecta directamente la forma en que interactúa con la radiación solar. Los componentes químicos del aerosol modifican el índice de refracción general . El índice de refracción determinará cuánta luz se dispersa y se absorbe.

La composición de las partículas que generalmente causan efectos visuales, la neblina , consiste en dióxido de azufre, óxidos de nitrógeno, monóxido de carbono, polvo mineral y materia orgánica. Las partículas son higroscópicas debido a la presencia de azufre, y el SO2 se convierte en sulfato cuando hay alta humedad y bajas temperaturas. Esto causa una visibilidad reducida y colores rojo-naranja-amarillo. [69]

Distribución de tamaño

Los mapas en falso color se basan en datos del espectrorradiómetro de imágenes de resolución moderada (MODIS) del satélite Terra de la NASA. Verde: columnas de aerosol dominadas por partículas de mayor tamaño. Rojo: columnas de aerosol dominadas por partículas pequeñas. Amarillo: columnas en las que se entremezclan partículas de aerosol grandes y pequeñas. Gris: el sensor no recopiló datos. [70]

Los aerosoles producidos por el hombre, como la contaminación por partículas, tienden a tener un radio menor que las partículas de aerosol de origen natural (como el polvo arrastrado por el viento). Los mapas en falso color del mapa de distribución de partículas de aerosol de la derecha muestran dónde hay aerosoles naturales, contaminación humana o una mezcla de ambos, mensualmente.

Aerosoles más pequeños en el Norte

La serie temporal de distribución de tamaño muestra que en las latitudes más meridionales del planeta, casi todos los aerosoles son grandes, pero en las latitudes altas del norte, los aerosoles más pequeños son muy abundantes. La mayor parte del hemisferio sur está cubierta por el océano, donde la mayor fuente de aerosoles es la sal marina natural proveniente de la espuma marina seca. Debido a que la tierra se concentra en el hemisferio norte, la cantidad de aerosoles pequeños provenientes de incendios y actividades humanas es mayor allí que en el hemisferio sur. En tierra, aparecen parches de aerosoles de gran radio sobre desiertos y regiones áridas, más prominentemente, el desierto del Sahara en el norte de África y la península Arábiga, donde las tormentas de polvo son comunes. Los lugares donde la actividad de incendios naturales o provocados por humanos es común (incendios para desbrozar tierras en el Amazonas de agosto a octubre, por ejemplo, o incendios provocados por rayos en los bosques del norte de Canadá en el verano del hemisferio norte) están dominados por aerosoles más pequeños. La contaminación producida por el hombre (combustibles fósiles) es en gran medida responsable de las áreas de pequeños aerosoles en áreas desarrolladas como el este de Estados Unidos y Europa, especialmente en verano. [70] [ se necesita una mejor fuente ]

Las mediciones satelitales de aerosoles, llamadas espesor óptico de aerosoles, se basan en el hecho de que las partículas cambian la forma en que la atmósfera refleja y absorbe la luz visible e infrarroja. Como se muestra en esta página, un espesor óptico de menos de 0,1 (amarillo pálido) indica un cielo despejado con máxima visibilidad, mientras que un valor de 1 (marrón rojizo) indica condiciones muy brumosas. [ se necesita una mejor fuente ]

Procesos de deposición

En general, cuanto más pequeña y ligera sea una partícula, más tiempo permanecerá en el aire. Las partículas más grandes (de más de 10 micrómetros de diámetro) tienden a depositarse en el suelo por gravedad en cuestión de horas. Las partículas más pequeñas (de menos de 1 micrómetro) pueden permanecer en la atmósfera durante semanas y en su mayoría son eliminadas por las precipitaciones . Hay evidencia de que los aerosoles pueden "viajar a través del océano". Por ejemplo, en septiembre de 2017, los incendios forestales que ardieron en el oeste de Estados Unidos y Canadá, y se descubrió que el humo había llegado al Reino Unido y al norte de Francia en tres días, como lo muestran las imágenes satelitales. [71] Las partículas de material particulado diésel son más altas cerca de la fuente de emisión. [72] Cualquier información sobre DPM y la atmósfera, la flora, la altura y la distancia de las principales fuentes es útil para determinar los efectos sobre la salud.

Control

Tecnologías

Filtros de tela efecto Hepa : sin (exterior) y con filtro (interior)

Las emisiones de partículas en suspensión están muy reguladas en la mayoría de los países industrializados. Debido a las preocupaciones medioambientales , la mayoría de las industrias deben utilizar algún tipo de sistema de recolección de polvo. [73] Estos sistemas incluyen colectores inerciales ( separadores ciclónicos ), colectores de filtros de tela (filtros de mangas) , filtros electrostáticos utilizados en mascarillas, [74] depuradores húmedos y precipitadores electrostáticos .

Los separadores ciclónicos son útiles para eliminar partículas grandes y gruesas y, a menudo, se emplean como primer paso o "prelimpiador" de otros colectores más eficientes. Los separadores ciclónicos bien diseñados pueden ser muy eficientes para eliminar incluso partículas finas [75] y pueden funcionar de forma continua sin necesidad de paradas frecuentes para realizar tareas de mantenimiento. [ cita requerida ]

Los filtros de tela o filtros de mangas son los más comúnmente empleados en la industria en general. [76] Funcionan al forzar el aire cargado de polvo a través de un filtro de tela en forma de bolsa, dejando que las partículas se acumulen en la superficie exterior de la bolsa y permitiendo que el aire ahora limpio pase a través de él para ser expulsado a la atmósfera o, en algunos casos, recirculado a la instalación. Los tejidos más comunes incluyen poliéster y fibra de vidrio, y los revestimientos de tela más comunes incluyen PTFE (comúnmente conocido como teflón). Luego, el exceso de acumulación de polvo se limpia de las bolsas y se retira del colector.

Una gran cantidad de polvo de construcción emitido y elevado desde un edificio en rehabilitación un sábado por la tarde, Treasure Garden, Tai Po, Hong Kong. El plan de rehabilitación está subvencionado por el gobierno [77] [78] [79] y un contrato como este puede valer hasta cien millones. [80] La gente vive dentro del edificio durante todo el período de las obras de renovación , que suelen durar más de un año, [81] [82] y se puede predecir que la exposición de los residentes al polvo de la construcción es incluso más grave que la exposición ocupacional de los trabajadores. La posible presencia de amianto y polvo de pintura con plomo también es preocupante. Este tipo de obras de rehabilitación son muy comunes (más de 3000 edificios en los primeros 6 años del plan [83] ), especialmente en algunos distritos antiguos. Con una cantidad tan grande de polvo emitido, era obvio que no se estaba rociando agua ni se estaba utilizando un dispositivo de extracción de polvo, lo que era una violación de la ley local. [84]

Los depuradores húmedos hacen pasar el aire sucio a través de una solución depuradora (normalmente una mezcla de agua y otros compuestos) que permite que las partículas se adhieran a las moléculas del líquido. [85] Los precipitadores electrostáticos cargan eléctricamente el aire sucio a medida que pasa a través de ellos. El aire ahora cargado pasa a través de grandes placas electrostáticas que atraen las partículas cargadas en la corriente de aire, las recogen y dejan que el aire ahora limpio sea expulsado o recirculado. [86]

Medidas

En el caso de la construcción de edificios en general, algunos lugares que han reconocido los posibles riesgos para la salud del polvo de la construcción durante décadas exigen legalmente que el contratista correspondiente adopte medidas eficaces de control del polvo, aunque las inspecciones, las multas y los encarcelamientos son poco frecuentes en los últimos años (por ejemplo, dos procesos judiciales con multas totales de 6000 dólares de Hong Kong en Hong Kong en el año 2021). [87] [88]

Algunas de las medidas obligatorias de control del polvo incluyen [89] [84] [90] [91] cargar, descargar, manipular, transferir, almacenar o desechar cemento o cenizas de combustible pulverizadas secas en un sistema o instalación completamente cerrado, y equipar cualquier ventilación o escape con un filtro de tela eficaz o un sistema o equipo de control de la contaminación del aire equivalente, encerrar el andamio del edificio con pantallas de polvo, utilizar láminas impermeables para encerrar tanto el elevador de material como el conducto de escombros, mojar los escombros con agua antes de arrojarlos a un conducto de escombros, rociar agua sobre la superficie de la fachada antes y durante el trabajo de pulido, utilizar una amoladora equipada con aspiradora para el trabajo de pulido de la fachada, rociar agua continuamente sobre la superficie para cualquier perforación, corte, pulido u otra operación de rotura mecánica neumática o eléctrica que cause emisión de polvo, a menos que exista el funcionamiento de un dispositivo eficaz de extracción y filtrado de polvo, proporcionar vallas de no menos de 2,4 m de altura a lo largo de toda la longitud del límite del sitio, tener pavimento duro en el área abierta y lavar todos los vehículos que salen de los sitios de construcción. Utilización de equipos de riego automático, equipos de lavado automático de vehículos e instalación de sistema de videovigilancia para las instalaciones de control de la contaminación y conservación de los videos durante un mes para futuras inspecciones.

Además de eliminar las partículas de la fuente de contaminación, también se pueden limpiar al aire libre (por ejemplo, torres de smog , paredes de musgo y camiones cisterna), [92] mientras que otras medidas de control emplean el uso de barreras. [93]

Medición

Las partículas se han medido de formas cada vez más sofisticadas desde que se estudió sistemáticamente por primera vez la contaminación del aire a principios del siglo XX. Los primeros métodos incluían gráficos de Ringelmann relativamente rudimentarios , que eran tarjetas sombreadas en gris con las que se podían comparar visualmente las emisiones de las chimeneas, y medidores de depósitos , que recogían el hollín depositado en una ubicación particular para poder pesarlo. Los métodos modernos y automatizados de medición de partículas incluyen fotodetectores ópticos , microbalanzas oscilantes de elementos cónicos y Aethalometers . [94] Además de medir la masa total de partículas por unidad de volumen de aire (concentración de masa de partículas), a veces es más útil medir el número total de partículas por unidad de volumen de aire (concentración de número de partículas). Esto se puede hacer utilizando un contador de partículas de condensación (CPC). [95] [96]

Para medir la composición atómica de muestras de partículas, se pueden utilizar técnicas como la espectrometría de rayos X. [97]

Efectos climáticos

Los aerosoles tienen un efecto de enfriamiento que es pequeño comparado con el forzamiento radiativo (efecto de calentamiento) de los gases de efecto invernadero. [98]

Los aerosoles atmosféricos afectan el clima de la Tierra al cambiar la cantidad de radiación solar entrante y la radiación terrestre de onda larga saliente retenida en el sistema terrestre. Esto ocurre a través de varios mecanismos distintos que se dividen en efectos directos, indirectos [99] [100] y semidirectos de los aerosoles. Los efectos climáticos de los aerosoles son la mayor fuente de incertidumbre en las predicciones climáticas futuras. [101] El Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) declaró en 2001: [102]

Si bien el forzamiento radiativo debido a los gases de efecto invernadero puede determinarse con un grado razonablemente alto de precisión... las incertidumbres relacionadas con los forzamientos radiativos de los aerosoles siguen siendo grandes y dependen en gran medida de las estimaciones de estudios de modelos globales que son difíciles de verificar en la actualidad.

Aerosol radiactivo

Espesor óptico global de los aerosoles . La escala de aerosoles (de amarillo a marrón rojizo oscuro) indica la cantidad relativa de partículas que absorben la luz solar.
Cantidades promedio mensuales de aerosoles en todo el mundo, observaciones del espectrorradiómetro de imágenes de resolución moderada (MODIS) en el satélite Terra de la NASA.

Directo

Partículas en el aire que provocan tonos naranja, amarillo, rosa y gris en Mumbai durante la puesta de sol
Ciudad italiana contaminada por partículas y detector óptico de aire (láser)

El efecto directo de los aerosoles consiste en cualquier interacción directa de la radiación con los aerosoles atmosféricos, como la absorción o la dispersión. Afecta tanto a la radiación de onda corta como a la de onda larga para producir un forzamiento radiativo negativo neto. [103] La magnitud del forzamiento radiativo resultante debido al efecto directo de un aerosol depende del albedo de la superficie subyacente, ya que este afecta a la cantidad neta de radiación absorbida o dispersada al espacio. Por ejemplo, si un aerosol con alta capacidad de dispersión está por encima de una superficie de bajo albedo, tiene un mayor forzamiento radiativo que si estuviera por encima de una superficie de alto albedo. Lo inverso es cierto en el caso de los aerosoles absorbentes, ya que el mayor forzamiento radiativo surge de un aerosol con alta capacidad de absorción sobre una superficie de alto albedo. [99] El efecto directo de los aerosoles es un efecto de primer orden y, por lo tanto, el IPCC lo clasifica como un forzamiento radiativo . [101] La interacción de un aerosol con la radiación se cuantifica mediante el albedo de dispersión simple (SSA), la relación entre la dispersión sola y la dispersión más la absorción ( extinción ) de la radiación por una partícula. El SSA tiende a la unidad si predomina la dispersión, con relativamente poca absorción, y disminuye a medida que aumenta la absorción, llegando a cero para una absorción infinita. Por ejemplo, el aerosol de sal marina tiene un SSA de 1, ya que una partícula de sal marina solo se dispersa, mientras que el hollín tiene un SSA de 0,23, lo que demuestra que es un importante absorbente de aerosoles atmosféricos. [ cita requerida ]

Indirecto

El efecto indirecto de los aerosoles consiste en cualquier cambio en el balance radiativo de la Tierra debido a la modificación de las nubes por los aerosoles atmosféricos y consta de varios efectos distintos. Las gotitas de las nubes se forman sobre partículas de aerosol preexistentes, conocidas como núcleos de condensación de nubes (CCN). Las gotitas que se condensan alrededor de aerosoles producidos por el hombre, como los que se encuentran en la contaminación por partículas, tienden a ser más pequeñas y más numerosas que las que se forman alrededor de partículas de aerosol de origen natural (como el polvo arrastrado por el viento ). [52]

En cualquier condición meteorológica dada, un aumento en el CCN conduce a un aumento en el número de gotitas en las nubes. Esto conduce a una mayor dispersión de la radiación de onda corta, es decir, un aumento en el albedo de la nube, conocido como el efecto albedo de la nube , primer efecto indirecto o efecto Twomey . [100] Se ha observado evidencia que respalda el efecto albedo de la nube a partir de los efectos de las columnas de escape de los barcos [104] y la quema de biomasa [105] en el albedo de las nubes en comparación con las nubes ambientales. El efecto de aerosol del albedo de la nube es un efecto de primer orden y, por lo tanto, está clasificado como un forzamiento radiativo por el IPCC . [101]

Un aumento en el número de gotitas en las nubes debido a la introducción de aerosoles actúa para reducir el tamaño de las gotitas en las nubes, ya que la misma cantidad de agua se divide en más gotitas. Esto tiene el efecto de suprimir la precipitación, aumentando la vida útil de las nubes, conocido como el efecto aerosol de la vida útil de las nubes, segundo efecto indirecto o efecto Albrecht. [101] Esto se ha observado como la supresión de la llovizna en las columnas de escape de los barcos en comparación con las nubes ambientales, [106] y la inhibición de la precipitación en las columnas de combustión de biomasa. [107] Este efecto de la vida útil de las nubes se clasifica como una retroalimentación climática (en lugar de un forzamiento radiativo) por el IPCC debido a la interdependencia entre este y el ciclo hidrológico. [101] Sin embargo, anteriormente se ha clasificado como un forzamiento radiativo negativo. [108]

Semidirecto

El efecto semidirecto se refiere a cualquier efecto radiativo causado por la absorción de aerosoles atmosféricos como el hollín, aparte de la dispersión y absorción directas, que se clasifica como efecto directo. Abarca muchos mecanismos individuales y, en general, está menos definido y comprendido que los efectos directos e indirectos de los aerosoles. Por ejemplo, si los aerosoles absorbentes están presentes en una capa superior de la atmósfera, pueden calentar el aire circundante, lo que inhibe la condensación del vapor de agua, lo que resulta en una menor formación de nubes. [109] Además, el calentamiento de una capa de la atmósfera en relación con la superficie da como resultado una atmósfera más estable debido a la inhibición de la convección atmosférica . Esto inhibe la elevación convectiva de la humedad, [110] lo que a su vez reduce la formación de nubes. El calentamiento de la atmósfera en altura también conduce a un enfriamiento de la superficie, lo que resulta en una menor evaporación del agua superficial. Todos los efectos descritos aquí conducen a una reducción de la cobertura de nubes, es decir, un aumento del albedo planetario. El efecto semidirecto clasificado como una retroalimentación climática por el IPCC debido a la interdependencia entre él y el ciclo hidrológico. [101] Sin embargo, anteriormente se ha clasificado como un forzamiento radiativo negativo. [108]

Funciones específicas de los aerosoles

Sulfato

Los aerosoles de sulfato son en su mayoría compuestos de azufre inorgánicos como (SO 4 2- ), HSO 4 - y H 2 SO 4 - , [111] que se producen principalmente cuando el dióxido de azufre reacciona con vapor de agua para formar ácido sulfúrico gaseoso y varias sales (a menudo a través de una reacción de oxidación en las nubes ), que luego se cree que experimentan crecimiento higroscópico y coagulación y luego se encogen por evaporación . [112] [113] Algunos de ellos son biogénicos (normalmente producidos a través de reacciones químicas atmosféricas con sulfuro de dimetilo de plancton principalmente marino [114] ) o geológicos a través de volcanes o impulsados ​​por el clima de incendios forestales y otros eventos de combustión natural, [113] pero en las últimas décadas, los aerosoles de sulfato antropogénicos producidos a través de la combustión de combustibles fósiles con un alto contenido de azufre, principalmente carbón y ciertos combustibles menos refinados, como el combustible de aviación y búnker , habían dominado. [115] En 1990, las emisiones globales de azufre a la atmósfera causadas por el hombre se volvieron "al menos tan grandes" como todas las emisiones naturales de compuestos que contienen azufre combinadas , y eran al menos 10 veces más numerosas que los aerosoles naturales en las regiones más contaminadas de Europa y América del Norte, [116] donde representaron el 25% o más de toda la contaminación del aire. [117] Esto condujo a la lluvia ácida , [118] [119] y también contribuyó a las enfermedades cardíacas y pulmonares [117] e incluso al riesgo de parto prematuro y bajo peso al nacer . [120] La contaminación por sulfato también tiene una relación compleja con la contaminación por NOx y el ozono, reduciendo el también dañino ozono troposférico , pero capaz de dañar también la capa de ozono estratosférico. [121]

Los sulfatos estratosféricos provenientes de emisiones volcánicas causan un enfriamiento transitorio; la línea violeta que muestra un enfriamiento sostenido se debe a la contaminación por sulfatos troposféricos.

Una vez que el problema se hizo evidente, los esfuerzos para eliminar esta contaminación mediante medidas de desulfuración de gases de combustión y otros controles de la contaminación tuvieron un gran éxito, [122] reduciendo su prevalencia en un 53% y provocando ahorros en atención sanitaria valorados en 50.000 millones de dólares anuales solo en los Estados Unidos. [123] [117] [124] Sin embargo, casi al mismo tiempo, la investigación había demostrado que los aerosoles de sulfato estaban afectando tanto a la luz visible recibida por la Tierra como a su temperatura superficial , [125] y, a medida que el llamado oscurecimiento global ) comenzó a revertirse en la década de 1990 en consonancia con la reducción de la contaminación por sulfatos antropogénicos, [126] [127] [128] el cambio climático se aceleró. [129] A partir de 2021, los modelos CMIP6 de última generación estiman que el enfriamiento total de los aerosoles actualmente presentes es de entre 0,1 °C (0,18 °F) y 0,7 °C (1,3 °F); [130] El Sexto Informe de Evaluación del IPCC utiliza la mejor estimación de 0,5 °C (0,90 °F), [131] con la incertidumbre causada principalmente por la investigación contradictoria sobre los impactos de los aerosoles de las nubes . [132] [133] [134] [135] [136] [137] Sin embargo, algunos están seguros de que enfrían el planeta, y esto llevó a propuestas de geoingeniería solar conocidas como inyección de aerosoles estratosféricos , que busca replicar y mejorar el enfriamiento de la contaminación por sulfato mientras minimiza los efectos negativos sobre la salud mediante el despliegue en la estratosfera , donde solo se necesitaría una fracción de la contaminación actual por azufre para evitar múltiples grados de calentamiento, [138] pero la evaluación de los costos y beneficios sigue siendo incompleta, [139] incluso con cientos de estudios sobre el tema completados a principios de la década de 2020. [140]

Carbono negro

El carbono negro (BC), o carbono negro de carbono, o carbono elemental (EC), a menudo llamado hollín, está compuesto de cúmulos de carbono puro, bolas de esqueleto y fulerenos , y es una de las especies de aerosol absorbentes más importantes en la atmósfera. Debe distinguirse del carbono orgánico (OC): moléculas orgánicas agrupadas o agregadas por sí solas o que permean una bola de EC. El IPCC estima en el Cuarto Informe de Evaluación del IPCC, 4AR, que el carbono negro de los combustibles fósiles contribuye a un forzamiento radiativo medio global de +0,2 W/m 2 (era +0,1 W/m 2 en el Segundo Informe de Evaluación del IPCC, SAR), con un rango de +0,1 a +0,4 W/m 2 . Sin embargo, un estudio publicado en 2013 afirma que "la mejor estimación para el forzamiento radiativo directo del carbono negro atmosférico en la era industrial (1750 a 2005) es de +0,71 W/m2 con límites de incertidumbre del 90% de (+0,08, +1,27) W/m2 " , y que "el forzamiento directo total de todas las fuentes de carbono negro, sin restar el fondo preindustrial, se estima en +0,88 (+0,17, +1,48) W/m2 " . [141]

Instancias

Reducción de la radiación solar debido a las erupciones volcánicas

Los volcanes son una gran fuente natural de aerosoles y se han vinculado a cambios en el clima de la Tierra, a menudo con consecuencias para la población humana. Las erupciones vinculadas a los cambios en el clima incluyen la erupción de Huaynaputina en 1600, que se relacionó con la hambruna rusa de 1601-1603 , [142] [143] [144] que provocó la muerte de dos millones de personas, y la erupción del monte Pinatubo en 1991 , que causó un enfriamiento global de aproximadamente 0,5 °C que duró varios años. [145] [146] Las investigaciones que rastrean el efecto de los aerosoles que dispersan la luz en la estratosfera durante 2000 y 2010 y comparan su patrón con la actividad volcánica muestran una correlación estrecha. Las simulaciones del efecto de las partículas antropogénicas mostraron poca influencia en los niveles actuales. [147] [148]

También se cree que los aerosoles afectan el tiempo y el clima a escala regional. La falta de monzón de la India se ha relacionado con la supresión de la evaporación del agua del océano Índico debido al efecto semidirecto del aerosol antropogénico. [149]

Estudios recientes sobre la sequía del Sahel [150] y los importantes aumentos desde 1967 en las precipitaciones en Australia sobre el Territorio del Norte , Kimberley , Pilbara y alrededor de la llanura de Nullarbor han llevado a algunos científicos a concluir que la neblina de aerosol sobre el sur y el este de Asia ha estado desplazando de manera constante las precipitaciones tropicales en ambos hemisferios hacia el sur. [149] [151]

Efectos sobre la salud

Estación de medición de la contaminación del aire en Emden , Alemania

El tamaño, la forma y la solubilidad son importantes

Tamaño

El tamaño de las partículas es el principal determinante de en qué parte del tracto respiratorio se asentarán cuando se inhalen. Las partículas más grandes generalmente se filtran en la nariz y la garganta a través de los cilios y la mucosidad, pero las partículas más pequeñas de unos 10 micrómetros pueden depositarse en los bronquios y los pulmones y causar problemas de salud. El tamaño de 10 micrómetros no representa un límite estricto entre partículas respirables y no respirables, pero la mayoría de las agencias reguladoras lo han acordado para el monitoreo de PM en el aire. Debido a su pequeño tamaño, las partículas del orden de 10 micrómetros o menos ( materia particulada gruesa , PM 10 ) pueden penetrar la parte más profunda de los pulmones, como los bronquiolos o los alvéolos . [152] Cuando los asmáticos se exponen a estas condiciones, puede desencadenar broncoconstricción. [153]

De manera similar, las partículas finas ( PM 2,5 ) tienden a penetrar en las regiones de intercambio de gases del pulmón (alvéolos), y las partículas muy pequeñas (partículas ultrafinas PM 0,1 ) pueden pasar a través de los pulmones y afectar a otros órganos. La penetración de las partículas no depende completamente de su tamaño; la forma y la composición química también influyen. Para evitar esta complicación, se utiliza una nomenclatura simple para indicar los diferentes grados de penetración relativa de una partícula PM en el sistema cardiovascular . Las partículas inhalables no penetran más allá de los bronquios , ya que son filtradas por los cilios . Las partículas torácicas pueden penetrar directamente en los bronquiolos terminales .

Por analogía, la fracción de polvo inhalable es la fracción de polvo que entra por la nariz y la boca y que puede depositarse en cualquier parte del tracto respiratorio. La fracción torácica es la fracción que entra en el tórax y se deposita en las vías respiratorias de los pulmones. La fracción respirable es la que se deposita en las regiones de intercambio de gases (alvéolos). [154]

Las partículas más pequeñas, las nanopartículas , que tienen un tamaño inferior a 180 nanómetros, pueden ser incluso más dañinas para el sistema cardiovascular. [155] [156] Las nanopartículas pueden atravesar las membranas celulares y migrar a otros órganos, incluido el cerebro. Las partículas emitidas por los motores diésel modernos (comúnmente denominadas partículas de diésel o DPM) suelen tener un tamaño de 100 nanómetros (0,1 micrómetros). Estas partículas de hollín también llevan carcinógenos como los benzopirenos adsorbidos en su superficie.

La masa de partículas no es una medida adecuada del riesgo para la salud. Una partícula de 10 μm de diámetro tiene aproximadamente la misma masa que 1 millón de partículas de 100 nm de diámetro, pero es mucho menos peligrosa, ya que es poco probable que entre en los alvéolos. Por lo tanto, los límites legislativos para las emisiones de los motores basados ​​en la masa no son protectores. Existen propuestas de nuevas regulaciones en algunos países, [¿ cuáles? ] con sugerencias de limitar la superficie de las partículas o el recuento de partículas (cantidad numérica) / concentración de número de partículas (PNC) en su lugar. [157] [158]

Solubilidad

El lugar y el grado de absorción de los gases y vapores inhalados están determinados por su solubilidad en agua. La absorción también depende de los caudales de aire y de la presión parcial de los gases en el aire inspirado. El destino de un contaminante específico depende de la forma en que se encuentre (aerosol o partículas). La inhalación también depende de la frecuencia respiratoria del sujeto. [159]

Forma

Otra complejidad que no está del todo documentada es cómo la forma de las partículas en suspensión puede afectar a la salud, a excepción de la forma en forma de aguja de las fibras de amianto que pueden alojarse en los pulmones. Las formas geométricamente angulares tienen más superficie que las formas más redondeadas, lo que a su vez afecta a la capacidad de unión de la partícula con otras sustancias posiblemente más peligrosas. [ cita requerida ] La siguiente tabla enumera los colores y formas de algunas partículas atmosféricas comunes: [160]

La composición, la cantidad y la duración son importantes.

Trabajador en una nube de polvo de hormigón

La composición de las partículas puede variar mucho según sus fuentes y cómo se producen. Por ejemplo, el polvo emitido por la quema de vegetación viva y muerta sería diferente del emitido por la quema de papel de incienso o desechos de construcción . Las partículas emitidas por la combustión de combustible no son las mismas que las emitidas por la combustión de desechos. La materia particulada generada por el incendio de un patio de reciclaje [161] o un barco lleno de chatarra [162] [163] puede contener más sustancias tóxicas que otros tipos de combustión.

Los diferentes tipos de actividades de remodelación de edificios también producen diferentes tipos de polvo. La composición de PM generada al cortar o mezclar hormigón hecho con cemento Portland sería diferente de la generada al cortar o mezclar hormigón hecho con diferentes tipos de escoria (por ejemplo , GGBFS , escoria de EAF [164] ), cenizas volantes o incluso polvo de EAF (EAFD), [165] mientras que el EFAD, la escoria y las cenizas volantes probablemente sean más tóxicas ya que contienen metales pesados . Además del cemento de escoria que se vende y se usa como un producto respetuoso con el medio ambiente, [166] [167] [168] el cemento falso (adulterado), donde se añaden diferentes tipos de escoria, cenizas volantes u otras sustancias desconocidas, también es muy común en algunos lugares [169] [170] debido al coste de producción mucho menor. [171] Para abordar los problemas de calidad [172] y toxicidad, algunos lugares están empezando a prohibir el uso de escoria de EAF en el cemento utilizado en edificios. [173] La composición de los humos de soldadura también varía mucho y depende de los metales en el material que se está soldando, la composición de los recubrimientos, electrodos, etc., y por lo tanto, muchos problemas de salud (por ejemplo, envenenamiento por plomo , fiebre por humos metálicos , cánceres, náuseas, irritación, daño renal y hepático, problemas del sistema nervioso central, asma, neumonía, etc.) pueden ser resultado de los diferentes tipos de emisiones tóxicas. [174]

Los estudios han demostrado que los niveles de plomo en la sangre de las personas en China están altamente correlacionados con la concentración ambiental de PM 2,5 , así como con el contenido de plomo en la capa superficial del suelo, lo que indica que el aire y el suelo (por ejemplo, por la inhalación de partículas de suelo resuspendidas, el consumo de cultivos o agua contaminados, etc.) son fuentes importantes de exposición al plomo. [175] [176]

Además de la composición, la cantidad y la duración de la exposición también son importantes, ya que afectarían al desencadenamiento y la gravedad de una enfermedad. Las partículas que ingresan al interior afectarían directamente la calidad del aire interior . La posible contaminación secundaria, similar al humo de tercera mano , también es motivo de preocupación. [177] [178]

En pocas palabras, si bien la concentración de fondo es importante, la mera "mejora de la calidad del aire" o la "disminución de la concentración ambiental de PM" no necesariamente significan una mejor salud. El impacto en la salud depende principalmente de la toxicidad (o fuente [179] ) de las partículas a las que está expuesta una persona, la cantidad a la que está expuesta y durante cuánto tiempo, y también del tamaño, la forma y la solubilidad de las PM.

Dado que los proyectos de construcción y remodelación son fuentes importantes de material particulado, esto implica que tales proyectos, que son muy comunes en algunos lugares, [180] [181] deben evitarse en los centros de salud que ya han comenzado y están en funcionamiento en la medida de lo posible. Para los proyectos inevitables, se deben introducir mejores planificaciones y medidas de mitigación con respecto a la emisión de PM. El uso de herramientas eléctricas, equipos pesados, combustibles diésel y materiales de construcción potencialmente tóxicos (por ejemplo, hormigón , metales, soldadura , pintura, etc.) debe controlarse estrictamente para garantizar que los pacientes que están allí buscando tratamientos para enfermedades o posibilidades de sobrevivir no se vean afectados negativamente.

Problemas de salud

Muertes por contaminación del aire en comparación con otras causas comunes
Información sobre la calidad del aire en PM 10 mostrada en Katowice , Polonia

Los efectos de la inhalación de material particulado que se han estudiado ampliamente en humanos y animales incluyen COVID-19 , [182] [183] ​​[184] [185] [186] asma , cáncer de pulmón, enfermedades respiratorias como la silicosis , [187] [188] enfermedad cardiovascular, parto prematuro , defectos de nacimiento, bajo peso al nacer , trastornos del desarrollo, [189] [190] [191] [192] trastornos neurodegenerativos [193] [194] trastornos mentales, [195] [196] [197] y muerte prematura. Las partículas finas al aire libre con un diámetro inferior a 2,5 micrones representan 4,2 millones de muertes anuales en todo el mundo y más de 103 millones de años de vida ajustados por discapacidad perdidos , lo que la convierte en el quinto factor de riesgo principal de muerte. La contaminación del aire también se ha relacionado con una variedad de otros problemas psicosociales. [196] Las partículas pueden causar daño tisular al entrar en los órganos directamente o indirectamente a través de una inflamación sistémica . Pueden producirse efectos adversos incluso con niveles de exposición inferiores a los estándares de calidad del aire publicados que se consideran seguros. [198] [199]

Partículas finas antropogénicas como principal peligro

El aumento de los niveles de partículas finas en el aire como resultado de la contaminación atmosférica por partículas antropogénicas "se relaciona de forma consistente e independiente con los efectos más graves, incluido el cáncer de pulmón [200] y otras muertes cardiopulmonares ". [201] La asociación entre un gran número de muertes [202] y otros problemas de salud y la contaminación por partículas se demostró por primera vez a principios de la década de 1970 [203] y se ha reproducido muchas veces desde entonces. Se estima que la contaminación por PM causa entre 22 000 y 52 000 muertes al año en los Estados Unidos (desde 2000) [204] y contribuyó a unas 370 000 muertes prematuras en Europa durante 2005. [205] y 3,22 millones de muertes a nivel mundial en 2010 según la colaboración sobre la carga mundial de enfermedades . [206] Un estudio de la Agencia Europea del Medio Ambiente estima que 307 000 personas han muerto prematuramente en 2019 debido a la contaminación por partículas finas en los 27 estados miembros de la UE. [207]

En un estudio realizado en 2000 en Estados Unidos se analizó cómo las partículas finas pueden ser más dañinas que las gruesas. El estudio se basó en seis ciudades diferentes y se descubrió que las muertes y las visitas al hospital causadas por partículas en el aire se debían principalmente a partículas finas. [208] De manera similar, un estudio de 1987 sobre datos de contaminación del aire en Estados Unidos descubrió que las partículas finas y los sulfatos, a diferencia de las partículas más gruesas, se correlacionaban de manera más consistente y significativa con las tasas de mortalidad anual total en áreas estadísticas metropolitanas estándar . [209]

Un estudio publicado en 2022 en GeoHealth concluyó que eliminar las emisiones de combustibles fósiles relacionadas con la energía en los Estados Unidos evitaría entre 46.900 y 59.400 muertes prematuras cada año y proporcionaría entre 537.000 y 678.000 millones de dólares en beneficios por evitar enfermedades y muertes relacionadas con PM 2,5 . [210]

Infertilidad, embarazo, fetos y defectos de nacimiento

Se ha relacionado la exposición a partículas con mayores tasas de infertilidad. [211] La exposición materna a PM 2,5 durante el embarazo también se asocia con presión arterial alta en los niños. [212]

La inhalación de PM 2,5 a PM 10 se asocia con un riesgo elevado de resultados adversos del embarazo, como bajo peso al nacer. [ 213] La exposición a PM 2,5 se ha asociado con mayores reducciones en el peso al nacer que la exposición a PM 10. [214] La exposición a PM puede causar inflamación, estrés oxidativo, alteración endocrina y deterioro del acceso del transporte de oxígeno a la placenta, [215] todos los cuales son mecanismos para aumentar el riesgo de bajo peso al nacer. [216] La evidencia epidemiológica y toxicológica general sugiere que existe una relación causal entre las exposiciones a largo plazo a PM 2,5 y los resultados del desarrollo (es decir, bajo peso al nacer). [214] Los estudios que investigan la importancia de la exposición específica del trimestre han demostrado ser poco concluyentes, [217] y los resultados de los estudios internacionales han sido inconsistentes al establecer asociaciones entre la exposición prenatal a material particulado y el bajo peso al nacer. [214] Dado que los resultados perinatales se han asociado con la salud de por vida [218] [219] y la exposición a partículas en suspensión es generalizada, esta cuestión es de importancia crítica para la salud pública.

Enfermedades cardiovasculares y respiratorias

PM 2.5 conduce a altos depósitos de placa en las arterias , causando inflamación vascular y aterosclerosis , un endurecimiento de las arterias que reduce la elasticidad, lo que puede provocar ataques cardíacos y otros problemas cardiovasculares . [220] Un metaanálisis de 2014 informó que la exposición a largo plazo a material particulado está relacionada con eventos coronarios. El estudio incluyó 11 cohortes que participaron en el Estudio Europeo de Cohortes para Efectos de la Contaminación del Aire (ESCAPE) con 100,166 participantes, seguidos durante un promedio de 11.5 años. Un aumento en la exposición anual estimada a PM 2.5 de solo 5 μg/m 3 se relacionó con un aumento del 13% en el riesgo de ataques cardíacos. [221] No solo afecta a las células y tejidos humanos, PM también impacta en las bacterias que causan enfermedades en los humanos. [222] La formación de biopelículas , la tolerancia a los antibióticos y la colonización tanto de Staphylococcus aureus como de Streptococcus pneumoniae se alteraron por la exposición al carbono negro .

El estudio más grande de Estados Unidos sobre los efectos agudos para la salud de la contaminación por partículas gruesas entre 2,5 y 10 micrómetros de diámetro se publicó en 2008 y encontró una asociación con las admisiones hospitalarias por enfermedades cardiovasculares, pero ninguna evidencia de una asociación con el número de admisiones hospitalarias por enfermedades respiratorias. [223] Después de tener en cuenta los niveles de partículas finas (PM 2,5 y menos), la asociación con las partículas gruesas se mantuvo, pero ya no fue estadísticamente significativa, lo que significa que el efecto se debe a la subsección de partículas finas.

La agencia gubernamental de Mongolia registró un aumento del 45% en la tasa de enfermedades respiratorias en los últimos cinco años (según se informó en 2011). [224] El asma bronquial, la enfermedad pulmonar obstructiva crónica y la neumonía intersticial fueron las enfermedades más comunes tratadas por los hospitales de la zona. Los niveles de muerte prematura, bronquitis crónica y enfermedades cardiovasculares están aumentando a un ritmo rápido. [69]

Riesgos cognitivos y salud mental

Los efectos de la contaminación del aire y las partículas en suspensión en el rendimiento cognitivo se han convertido en un área activa de investigación. [225]

La contaminación del aire puede aumentar el riesgo de trastornos del desarrollo (p. ej., autismo ), [189] [190] [191] [192] trastornos neurodegenerativos, [193] [194] trastornos mentales, [195] [196 ] [197] y suicidio , [195] [197] [226] aunque los estudios sobre el vínculo entre la depresión y algunos contaminantes del aire no son consistentes. [227] Al menos un estudio ha identificado "la abundante presencia en el cerebro humano de nanopartículas de magnetita que coinciden precisamente con las nanoesferas de magnetita de alta temperatura, formadas por combustión y/o calentamiento derivado de la fricción, que son prolíficas en la materia particulada (PM) urbana transportada por el aire". [228]

Las partículas también parecen tener un papel en la patogénesis de la enfermedad de Alzheimer y el envejecimiento prematuro del cerebro. Cada vez hay más pruebas que sugieren una correlación entre la exposición a PM 2,5 y la prevalencia de enfermedades neurodegenerativas como el Alzheimer. Varios estudios epidemiológicos han sugerido un vínculo entre la exposición a PM 2,5 y el deterioro cognitivo, en particular en el desarrollo de enfermedades neurodegenerativas como el Alzheimer.

Utilizando técnicas de análisis geoespacial, "los investigadores financiados por el NIEHS pudieron confirmar una fuerte asociación entre los casos de enfermedad de Parkinson y las partículas finas (conocidas como PM 2.5 ) en los EE. UU. En el estudio, las regiones del país con una alta tasa de enfermedad de Parkinson se asociaron generalmente con niveles más altos de PM 2.5 , cuyas fuentes incluyen vehículos de motor, incendios forestales y plantas de energía". [229] Si bien los mecanismos exactos detrás del vínculo entre la exposición a PM 2.5 y el deterioro cognitivo no se comprenden completamente, la investigación sugiere que las partículas finas pueden ingresar al cerebro a través del nervio olfativo y causar inflamación y estrés oxidativo, lo que puede dañar las células cerebrales y contribuir al desarrollo de enfermedades neurodegenerativas. [230]

Aumento de la mortalidad

La Organización Mundial de la Salud (OMS) estimó en 2005 que "... la contaminación del aire por partículas finas (PM(2,5)), causa alrededor del 3% de la mortalidad por enfermedades cardiopulmonares, alrededor del 5% de la mortalidad por cáncer de tráquea, bronquios y pulmón, y alrededor del 1% de la mortalidad por infecciones respiratorias agudas en niños menores de 5 años, en todo el mundo". [231] Un estudio de 2011 concluyó que los gases de escape del tráfico son la causa evitable más grave de ataque cardíaco en la población general, la causa del 7,4% de todos los ataques. [232]

Los estudios sobre partículas en suspensión realizados en Bangkok (Tailandia) en 2008 indicaron un aumento del 1,9% en el riesgo de morir de enfermedades cardiovasculares y del 1,0% en el riesgo de sufrir cualquier enfermedad por cada 10 microgramos por metro cúbico. Los niveles promedio fueron de 65 en 1996, 68 en 2002 y 52 en 2004. La disminución de los niveles puede atribuirse a la conversión de la combustión de diésel a gas natural, así como a una mejora de las reglamentaciones. [233]

Disparidades raciales

Se han realizado muchos estudios que vinculan la raza con una mayor proximidad a las partículas en suspensión y, por lo tanto, con una mayor susceptibilidad a los efectos adversos para la salud de la exposición a largo plazo. Un estudio estadounidense mostró que "la proporción de residentes negros en una zona residencial estaba vinculada a tasas más altas de asma". [234] Muchos académicos vinculan esta desproporción con la segregación racial en la vivienda y sus respectivas desigualdades en "exposiciones tóxicas". [234] Esta realidad se agrava por el hallazgo de que "la atención sanitaria se produce en el contexto de una desigualdad social y económica histórica y contemporánea más amplia y una discriminación racial y étnica persistente en muchos sectores de la vida estadounidense". [235] La proximidad residencial a instalaciones que emiten partículas aumenta la exposición a PM 2,5, lo que está vinculado a mayores tasas de morbilidad y mortalidad. [236] Múltiples estudios confirman que la carga de emisiones de PM es mayor entre las poblaciones no blancas y en situación de pobreza, [236] aunque algunos dicen que los ingresos no impulsan estas diferencias. [237] Esta correlación entre la raza y las repercusiones para la salud relacionadas con la vivienda se deriva de un problema de justicia ambiental de larga data vinculado a la práctica histórica de la segregación residencial. Un ejemplo de estos factores contextualizados es una zona del sureste de Luisiana, conocida coloquialmente como " Cancer Alley " por su alta concentración de muertes relacionadas con el cáncer debido a las plantas químicas vecinas. [238] El hecho de que Cancer Alley sea una comunidad mayoritariamente afroamericana, y que el vecindario más cercano a la planta sea 90% negro, [238] perpetúa la narrativa científica de que las poblaciones negras están ubicadas desproporcionadamente más cerca de las áreas de alta producción de PM que las poblaciones blancas. Un artículo de 2020 relaciona los efectos a largo plazo sobre la salud de vivir en altas concentraciones de PM con un mayor riesgo, propagación y tasas de mortalidad por el SARS-CoV-2 o COVID-19 , y culpa a una historia de racismo por este resultado. [238]

Riesgo de humo por incendios forestales

En las regiones donde los incendios forestales son persistentes, el riesgo de exposición a partículas aumenta. El humo de los incendios forestales puede afectar a grupos sensibles como los ancianos, los niños, las mujeres embarazadas y las personas con enfermedades pulmonares y cardiovasculares. [239] Se encontró que en la temporada de incendios forestales de 2008 en California, las partículas en suspensión eran mucho más tóxicas para los pulmones humanos, ya que se observó un mayor infiltrado de neutrófilos , afluencia de células y edema en comparación con las partículas en suspensión del aire ambiente. [240] Además, las partículas en suspensión de los incendios forestales se han relacionado con un factor desencadenante de eventos coronarios agudos, como la cardiopatía isquémica. [241] Los incendios forestales también se han asociado con un aumento de las visitas a los servicios de urgencias debido a la exposición a partículas en suspensión, así como con un mayor riesgo de eventos relacionados con el asma. [242] [243] Se ha descubierto un vínculo entre las PM 2,5 de los incendios forestales y un mayor riesgo de hospitalizaciones por enfermedades cardiopulmonares. [244] La evidencia también sugiere que el humo de los incendios forestales reduce el rendimiento mental. [245]

Conocimientos de la industria energética y respuesta a los efectos adversos para la salud

Las muertes causadas por accidentes y contaminación del aire derivadas del uso de combustibles fósiles en las centrales eléctricas superan a las causadas por la producción de energía renovable . [246]

Las grandes compañías energéticas comprendían, al menos desde los años 1960, que el uso de sus productos causaba efectos adversos generalizados para la salud y muertes, pero continuaron con su agresivo cabildeo político en Estados Unidos y en otros países contra la regulación del aire limpio y lanzaron importantes campañas de propaganda corporativa para sembrar dudas sobre el vínculo causal entre la quema de combustibles fósiles y los grandes riesgos para la vida humana. Los memorandos internos de las empresas revelan que los científicos y ejecutivos de la industria energética sabían que los contaminantes del aire creados por los combustibles fósiles se alojan profundamente en el tejido pulmonar humano y causan defectos de nacimiento en los hijos de los trabajadores de la industria petrolera. Los memorandos de la industria reconocen que los automóviles "son, con mucho, las mayores fuentes de contaminación del aire" y también que la contaminación del aire causa efectos adversos para la salud y aloja toxinas, incluidos carcinógenos , "profundamente en los pulmones que de otro modo se eliminarían por la garganta". [247]

En respuesta a la creciente preocupación pública, la industria acabó creando la Coalición Mundial por el Clima , un grupo de presión de la industria, para descarrilar los intentos de los gobiernos de regular la contaminación del aire y crear confusión en la mente del público sobre la necesidad de dicha regulación. El Instituto Americano del Petróleo , una asociación comercial de la industria del petróleo y el gas, y el centro de estudios privado negacionista del cambio climático , The Heartland Institute , emprendieron esfuerzos similares de cabildeo y relaciones públicas corporativas. "La respuesta de los intereses de los combustibles fósiles ha seguido el mismo esquema: primero saben, luego traman, luego niegan y luego demoran. Han recurrido a la demora, formas sutiles de propaganda y al debilitamiento de la regulación", dijo Geoffrey Supran, un investigador de la Universidad de Harvard sobre la historia de las empresas de combustibles fósiles y el cambio climático. Estos esfuerzos han sido comparados, por analistas de políticas como Carroll Muffett, del Centro de Derecho Ambiental Internacional , con la estrategia de la industria tabacalera de cabildeo y campañas de propaganda corporativa para crear dudas sobre la conexión causal entre el tabaquismo y el cáncer y para impedir su regulación. Además, los defensores financiados por la industria, cuando fueron designados para altos cargos gubernamentales en los Estados Unidos, revisaron los hallazgos científicos que mostraban los efectos mortales de la contaminación del aire y revocaron su regulación. [247] [248] [249]

Efectos sobre la vegetación

Las partículas en suspensión pueden obstruir las aberturas estomáticas de las plantas e interferir con las funciones de la fotosíntesis. [250] De esta manera, las altas concentraciones de partículas en suspensión en la atmósfera pueden provocar retraso del crecimiento o mortalidad en algunas especies de plantas. [ cita requerida ]

Regulación

La mayoría de los gobiernos han creado regulaciones tanto para las emisiones permitidas de ciertos tipos de fuentes de contaminación (vehículos de motor, emisiones industriales, etc.) como para la concentración ambiental de partículas. El IARC y la OMS designan a las partículas como un carcinógeno del Grupo 1. Las partículas son la forma más mortal de contaminación del aire debido a su capacidad de penetrar profundamente en los pulmones y el torrente sanguíneo sin filtrar, causando enfermedades respiratorias , ataques cardíacos y muerte prematura . [251] En 2013, el estudio ESCAPE que involucró a 312.944 personas en nueve países europeos reveló que no había un nivel seguro de partículas y que por cada aumento de 10 μg/m 3 en PM 10 , la tasa de cáncer de pulmón aumentaba un 22%. Para PM 2,5 hubo un aumento del 36% en el cáncer de pulmón por cada 10 μg/m 3 . [200] En un metanálisis de 2014 de 18 estudios a nivel mundial, incluidos los datos de ESCAPE, por cada aumento de 10 μg/m 3 en PM 2,5 , la tasa de cáncer de pulmón aumentó un 9%. [252]

Límites/estándares establecidos por los gobiernos

Canadá

En Canadá, el estándar para las partículas en suspensión lo establece a nivel nacional el Consejo Canadiense de Ministros de Medio Ambiente (CCME), organismo federal y provincial. Las jurisdicciones (provincias y territorios) pueden establecer estándares más estrictos. El estándar del CCME para las partículas en suspensión de 2,5 (PM 2,5 ) a partir de 2015 es de 28 μg/m 3 (calculado utilizando el promedio de 3 años del percentil 98 anual de las concentraciones promedio diarias de 24 horas) y 10 μg/m 3 (promedio de 3 años de la media anual). Los estándares para PM 2,5 aumentarán en rigurosidad en 2020. [266]

unión Europea

La Unión Europea ha establecido las normas europeas de emisiones , que incluyen límites para las partículas en el aire: [255]

Reino Unido

Para mitigar el problema de la quema de leña, a partir de mayo de 2021 ya no se podrá vender el carbón doméstico tradicional (carbón bituminoso) ni la madera húmeda, dos de los combustibles más contaminantes. La madera vendida en volúmenes inferiores a 2 m3 debe estar certificada como "Ready to Burn", lo que significa que tiene un contenido de humedad del 20% o menos. Los combustibles sólidos manufacturados también deben estar certificados como "Ready to Burn" para garantizar que cumplen los límites de emisión de azufre y humo. [267] A partir de enero de 2022, todas las nuevas estufas de leña deben cumplir con las nuevas normas de EcoDesign (las estufas de Ecodesign producen 450 veces más contaminación atmosférica tóxica que la calefacción central de gas. Las estufas más antiguas, cuya venta está prohibida ahora, producen 3.700 veces más). [268]

En 2023, la cantidad de humo que pueden emitir por hora los quemadores en las "áreas de control del humo" (la mayoría de las ciudades y pueblos de Inglaterra) se reducirá de 5 g a 3 g. Las infracciones se sancionarán con una multa de hasta 300 libras esterlinas. Quienes no cumplan pueden incluso quedar con antecedentes penales. [269]

Estados Unidos

Tendencias de la calidad del aire en Estados Unidos. El área azul muestra el rango del 80% medio de los sitios de monitoreo. [270]

La Agencia de Protección Ambiental de los Estados Unidos (EPA) ha establecido estándares para las concentraciones de PM 10 y PM 2,5 . [263] (Véase Estándares nacionales de calidad del aire ambiente ).

California

Tendencias de la calidad del aire en el oeste de Estados Unidos. El área azul muestra el rango del 80 % central de los sitios de monitoreo.

En octubre de 2008, el Departamento de Control de Sustancias Tóxicas (DTSC), dentro de la Agencia de Protección Ambiental de California , anunció su intención de solicitar información sobre métodos de prueba analíticos, destino y transporte en el medio ambiente, y otra información relevante de los fabricantes de nanotubos de carbono . [271] DTSC está ejerciendo su autoridad bajo el Código de Salud y Seguridad de California, Capítulo 699, secciones 57018-57020. [272] Estas secciones se agregaron como resultado de la adopción del Proyecto de Ley de la Asamblea AB 289 (2006). [272] Tienen como objetivo hacer que la información sobre el destino y el transporte, la detección y el análisis, y otra información sobre los productos químicos sea más disponible. La ley coloca la responsabilidad de proporcionar esta información al departamento en aquellos que fabrican o importan los productos químicos.

El 22 de enero de 2009, se envió una carta de solicitud de información formal [273] a los fabricantes que producen o importan nanotubos de carbono en California, o que pueden exportar nanotubos de carbono al Estado. [274] Esta carta constituye la primera implementación formal de las facultades que establece la ley AB 289 y está dirigida a los fabricantes de nanotubos de carbono, tanto industriales como académicos dentro del Estado, y a los fabricantes fuera de California que exportan nanotubos de carbono a California. Los fabricantes deben satisfacer esta solicitud de información en el plazo de un año. El DTSC está esperando la próxima fecha límite del 22 de enero de 2010 para recibir las respuestas a la solicitud de datos.

El 16 de noviembre de 2009, la Red de la Industria Nano de California y el DTSC organizaron un simposio de un día completo en Sacramento (California). Este simposio brindó la oportunidad de escuchar a expertos de la industria de la nanotecnología y debatir las futuras consideraciones regulatorias en California. [275]

DTSC está ampliando la convocatoria de información química específica a los miembros de los óxidos nanometálicos; la información más reciente se puede encontrar en su sitio web. [276]

Colorado

Tendencias de la calidad del aire en el suroeste de Estados Unidos. El área azul muestra el rango del 80 % central de los sitios de monitoreo.

Los puntos clave del Plan de Colorado incluyen la reducción de los niveles de emisiones y las soluciones por sector. La agricultura, el transporte, la electricidad ecológica y la investigación sobre energías renovables son los conceptos y objetivos principales de este plan. Los programas políticos como las pruebas obligatorias de emisiones de vehículos y la prohibición de fumar en espacios cerrados son acciones adoptadas por el gobierno local para crear conciencia y participación pública en favor de un aire más limpio. La ubicación de Denver junto a las Montañas Rocosas y una amplia extensión de llanuras hace que el área metropolitana de la capital de Colorado sea un lugar propenso a la contaminación atmosférica y al smog. [ cita requerida ]

Affected areas

Difference between levels of PM2.5 in the air in 2019 and 2022 among 70 capital cities[277]

To analyse the air pollution trend, 480 cities around the world (Ukraine excluded) was mapped by air experts[277] to calculate the average PM2.5 level of the first nine months of 2019 against that of 2022.[278] Average levels of PM2.5 were measured using aqicn.org's World Air Quality Index data, and a formula developed by AirNow was used to convert the PM2.5 figure into micrograms per cubic meter of air (μg/m3) values.

Among the 70 capital cities investigated, Baghdad, Iraq is the worst performing one, with PM2.5 levels going up +31.6 μg/m3. Ulan Bator (Ulaanbaatar), the capital city of Mongolia, is performing the best, with PM2.5 levels dropping by -23.4 μg/m3. Previously it was as one of the most polluted capital cities in the world. An air quality improvement plan in 2017 appears to be showing positive results.

Out of the 480 cities, Dammam in Saudi Arabia is performing the worst with PM2.5 levels going up +111.1 μg/m3. The city is a significant center for the Saudi oil industry and home to both the largest airport in the world and the largest port in the Persian Gulf. It is currently the most polluted city surveyed.

In Europe, the worst performing cities are located in Spain. They are Salamanca and Palma, with PM2.5 levels increase by +5.1 μg/m3 and +3.7 μg/m3 respectively. The best performing city is Skopje, the capital city of North Macedonia, with PM2.5 levels dropping by -12.4 μg/m3. It was once the most polluted capital city in Europe and still has a long way to go to achieve clean air.

In the U.S., Salt Lake City, Utah and Miami, Florida are the two cities with the highest PM2.5 level increases (+1.8 μg/m3). Salt Lake City suffers from a weather event known as 'inversion'. Located in a valley, cooler, polluted air is trapped close to ground level under the warmer air above when inversion occurs. On the other hand, Omaha, Nebraska is performing the best and has a decrease of -1.1 μg/m3 in PM2.5 levels.

The cleanest city in this report is Zürich, Switzerland with PM2.5 levels of just 0.5 μg/m3, placed first in both 2019 and 2022. The second cleanest city is Perth, with 1.7 μg/m3 and PM2.5 levels dropping by -6.2 μg/m3 since 2019. Of the top ten cleanest cities, five are from Australia. They are Hobart, Wollongong, Launceston, Sydney and Perth. Honolulu is the only U.S. city in the top ten list, ranking tenth with levels of 4 μg/m3, with a tiny increase since 2019.

Almost all of the top ten most polluted cities are in the Middle East and Asia. The worst is Dammam in Saudi Arabia with a PM2.5 level of 155 μg/m3. Lahore in Pakistan is the second worst with 98.1 μg/m3. The third is Dubai, home to the world's tallest building. In the bottom ten are three cities from India, Muzaffarnagar, Delhi and New Delhi. Here is a list of the 30 most polluted cities by PM2.5, Jan to Sep 2022:[277]

There are limits to the above survey. For example, not every city in the world is covered, and that the number of monitoring stations for each city would not be the same. The data is for reference only.

Australia

PM10 pollution in coal mining areas in Australia such as the Latrobe Valley in Victoria and the Hunter Region in New South Wales significantly increased during 2004 to 2014. Although the increase did not significantly add to non-attainment statistics the rate of increase has risen each year during 2010 to 2014.[279]

China

Some cities in Northern China and South Asia have had concentrations above 200 μg/m3.[280] The PM levels in Chinese cities were extreme between 2010 - 2014, reaching an all-time high in Beijing on 12 January 2013, of 993 μg/m3,[69] but has been improving thanks to clean air actions.[281][282]

To monitor the air quality of south China, the U.S. Consulate Guangzhou set a PM2.5 and PM10 monitor on Shamian Island in Guangzhou and displays readings on its official website and social platforms.[283]

Europe

Concentration of PM10[205] in Europe, 2005

Italy

Concentration of PM2,5 (European Air Quality Index) during time slot in a city in Italy 2019–2020

South Korea

As of 2017, South Korea has the worst air pollution among the developed nations in the OECD (Organization for Economic Cooperation and Development).[284] According to a study conducted by NASA and NIER, 52% of PM2.5 measured in Olympic Park, Seoul in May and June 2016 came from local emissions. The rest was trans-boundary pollution coming from China's Shandong Province (22%), North Korea (9%), Beijing (7%), [[Shanghai (5%), and a combined 5% from China's Liaoning Province, Japan and the West Sea.[285] In December 2017, the environmental ministers from South Korea and China signed the China-Korea Environmental Cooperation Plan (2018–22), a five-year plan to jointly solve issues in the air, water, soil and waste. An environmental cooperation centre was also launched in 2018 to aid cooperation.[286]

Thailand

Air quality of Thailand is getting worse in 2023, which is described as a "post-COVID back-to-normal situation". In addition to the capital Bangkok, air quality in Chiang Mai, a popular tourist destination, is also deteriorating. Chiang Mai was listed as the most polluted city in a live ranking by a Swiss air quality company on 27 March 2023. The ranking includes data from about 100 world cities for which measured PM2.5 data is available.[287][288]

Ulaanbaatar

Mongolia's capital city Ulaanbaatar has an annual average mean temperature of about 0 °C, making it the world's coldest capital city. About 40% of the population lives in apartments, 80% of which are supplied with central heating systems from three combined heat and power plants. In 2007, the power plants consumed almost 3.4 million tons of coal. The pollution control technology is in poor condition. [citation needed]

The other 60% of the population reside in shantytowns (Ger districts), which have developed due to the country's new market economy and the very cold winter seasons. The poor in these districts cook and heat their wood houses with indoor stoves fueled by wood or coal. The resulting air pollution is characterized by raised sulfur dioxide and nitrogen oxide levels and very high concentrations of airborne particles and particulate matter (PM).[69]Annual seasonal average particulate matter concentrations have been recorded as high as 279 μg/m3 (micrograms per cubic meter).[citation needed] The World Health Organization's recommended annual mean PM10 level is 20 μg/m3,[289] which means that Ulaanbaatar's PM10 annual mean levels are 14 times higher than recommended.[citation needed]

During the winter months, in particular, the air pollution obscures the air, affecting the visibility in the city to such an extent that airplanes on some occasions are prevented from landing at the airport.[290]

In addition to stack emissions, another source unaccounted for in the emission inventory is fly ash from ash ponds, the final disposal place for fly ash that has been collected in settling tanks. Ash ponds are continually eroded by wind during the winter.[291]

United States

From the "State of Air 2022" report compiled by the American Lung Association using data from the U.S. Environmental Protection Agency from 2018 to 2020,[292] California cities are the most polluted cities (by PM2.5) in the U.S. while the East Coast is cleaner.

However, another study has come up with a very different conclusion. According to Forbes, a travel insurance comparison site InsureMyTrip conducted a survey of 50 U.S. cities in 2020 and ranked them by cleanliness with criteria like hand sanitizer demand, cleanliness of restaurants, quantity of recycling collectors, satisfaction of garbage disposal, electric vehicle market share and pollution.[293] On their top ten cleanest cities list, seven are from California, including Long Beach (No. 1), San Diego (No. 2), Sacramento (No. 3), San Jose (No. 6), Oakland (No. 7), Bakersfield (No. 9), and San Francisco (No. 10). The discrepancies maybe due to the differences in data choice, calculation methods, definitions of "cleanliness" and a large variation of air quality across the same state, etc. This again shows that one need to be very careful when drawing conclusions from the many air quality rankings available on the internet.

In mid-2023, air quality in eastern U.S. lowered significantly as particulates from Canada's wildfires blew down. According to NASA, some of the fires were ignited by lightning.[294][12]

See also

Health effects:

Health-related:

Other names

Notes

  1. ^ PM10 limit since 1 January 2005
  2. ^ PM2.5 limit since 1 January 2015
  3. ^ Since 1 January 2014
  4. ^ PM10 referred to as Suspended Particulate Matter
  5. ^ PM2.5 limit since 21 September 2009
  6. ^ PM10 limit since 4 December 2006
  7. ^ PM2.5 limit since 27 March 2018
  8. ^ annual limit since 2024
  9. ^ daily limit since 2007
  10. ^ annual limit removed in 2006
  11. ^ daily limit since 1987[264]
  12. ^ 3-year average of annual 98th percentile

References

  1. ^ Seinfeld J, Pandis S (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2nd ed.). Hoboken, New Jersey: John Wiley & Sons. p. 97. ISBN 978-0-471-17816-3.
  2. ^ Plainiotis S, Pericleous KA, Fisher BE, Shier L (January 2010). "Application of Lagrangian particle dispersion models to air quality assessment in the Trans-Manche region of Nord-Pas-de-Calais (France) and Kent (Great Britain)" (PDF). International Journal of Environment and Pollution. 40 (1/2/3): 160–74. doi:10.1504/IJEP.2010.030891.
  3. ^ Brown JS, Gordon T, Price O, Asgharian B (April 2013). "Thoracic and respirable particle definitions for human health risk assessment". Particle and Fibre Toxicology. 10 (1): 12. Bibcode:2013PFTox..10...12B. doi:10.1186/1743-8977-10-12. PMC 3640939. PMID 23575443.
  4. ^ a b US EPA, OAR (19 April 2016). "Particulate Matter (PM) Basics". US EPA. Retrieved 5 October 2019.
  5. ^ "EHP – Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis". ehp.niehs.nih.gov. Archived from the original on 29 May 2016. Retrieved 29 December 2016.
  6. ^ Wasley, Andrew; Heal, Alexandra; Harvey, Fiona; Lainio, Mie (13 June 2019). "Revealed: UK government failing to tackle rise of serious air pollutant". The Guardian.
  7. ^ Thangavel, Prakash; Park, Duckshin; Lee, Young-Chul (19 June 2022). "Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview". International Journal of Environmental Research and Public Health. 19 (12): 7511. doi:10.3390/ijerph19127511. ISSN 1660-4601. PMC 9223652. PMID 35742761.
  8. ^ "STATE OF GLOBAL AIR/2018 A SPECIAL REPORT ON GLOBAL EXPOSURE TO AIR POLLUTION AND ITS DISEASE BURDEN" (PDF). Health Effects Institute. 2018.
  9. ^ "The Weight of Numbers: Air Pollution and PM2.5". Undark. Retrieved 6 September 2018.
  10. ^ Omidvarborna; et al. (2015). "Recent studies on soot modeling for diesel combustion". Renewable and Sustainable Energy Reviews. 48: 635–647. Bibcode:2015RSERv..48..635O. doi:10.1016/j.rser.2015.04.019.
  11. ^ "Air quality, EASA Eco".
  12. ^ a b Lee, Giyoon; Ahn, Jinho; Park, Seung-Myung; Moon, Jonghan; Park, Rokjin; Sim, Min Sub; Choi, Hanna; Park, Jinsoo; Ahn, Joon-Young (17 September 2023). "Sulfur isotope-based source apportionment and control mechanisms of PM2.5 sulfate in Seoul, South Korea during winter and early spring (2017–2020)". Science of the Total Environment. 905. doi:10.1016/j.scitotenv.2023.167112. PMID 37717778. S2CID 262046328.
  13. ^ Lin C, Huang RJ, Duan J, Zhong H, Xu W, Wu Y, Zhang R (April 2022). "Large contribution from worship activities to the atmospheric soot particles in northwest China". Environ Pollut. 299: 118907. Bibcode:2022EPoll.29918907L. doi:10.1016/j.envpol.2022.118907. PMID 35091017. S2CID 246355499.
  14. ^ Giang, Lam Van; Thanh, Tran; Hien, Truong Thanh; Tan, Lam Van; Thi Bich Phuong, Tran; Huu Loc, Ho (2021). "Heavy metals emissions from joss paper burning rituals and the air quality around a specific incinerator". Materials Today: Proceedings. 38: 2751–2757. doi:10.1016/j.matpr.2020.08.686. S2CID 226353498.
  15. ^ Shen H, Tsai CM, Yuan CS, Jen YH, Ie IR (January 2017). "How incense and joss paper burning during the worship activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian temple?". Chemosphere. 167: 530–540. Bibcode:2017Chmsp.167..530S. doi:10.1016/j.chemosphere.2016.09.159. PMID 27764746.
  16. ^ Ramadan, Bimastyaji Surya; Rosmalina, Raden Tina; Syafrudin; Munawir; Khair, Hafizhul; Rachman, Indriyani; Matsumoto, Toru (2023). "Potential Risks of Open Waste Burning at the Household Level: A Case Study of Semarang, Indonesia". Aerosol and Air Quality Research. 23 (5). Taiwan Association for Aerosol Research: 220412. doi:10.4209/aaqr.220412. ISSN 1680-8584. S2CID 257202752.
  17. ^ Shah R, Limaye S, Ujagare D, Madas S, Salvi S (2019). "Personal exposures to particulate matter <2.5 μm in mass median aerodynamic diameter (PM2.5) pollution during the burning of six most commonly used firecrackers in India". Lung India. 36 (4): 324–329. doi:10.4103/lungindia.lungindia_440_18. PMC 6625239. PMID 31290418.
  18. ^ Roy, Rajarshi; Schooff, Brian; Li, Xiaolong; Montgomery, Scott; Tuttle, Jacob; Wendt, Jost O. L.; Dickson, Kingsley; Iverson, Brian; Fry, Andrew (1 May 2023). "Ash aerosol particle size distribution, composition, and deposition behavior while co-firing coal and steam-exploded biomass in a 1.5 MWth combustor". Fuel Processing Technology. 243: 107674. doi:10.1016/j.fuproc.2023.107674. S2CID 256529257.
  19. ^ Azarmi, Farhad; Kumar, Prashant (2016). "Ambient exposure to coarse and fine particle emissions from building demolition". Atmospheric Environment. 137: 62–79. Bibcode:2016AtmEn.137...62A. doi:10.1016/j.atmosenv.2016.04.029.
  20. ^ "Emissions of air pollutants in the UK – Particulate matter (PM10 and PM2.5)".
  21. ^ "Building works responsible for 18% of UK large particle pollution". 21 October 2022.
  22. ^ "Delhi's deadly dust: how construction sites are choking the city". 15 February 2017.
  23. ^ "Particulate matter emissions from activities of building refurbishment".
  24. ^ "一家三口中鉛毒 疑含鉛船用油漆髹浴室門所致 衛生署提家中裝修注意事項 (14:05)". 明報新聞網 - 即時新聞 instant news (in Traditional Chinese). June 2024.
  25. ^ "GovHK: Green Tips for Home Renovation". GovHK. 16 September 2024. Retrieved 22 September 2024.
  26. ^ "SF Concrete Plant That Was Focus of NBC Bay Area Investigative Report, Ordered to Shut Down". 11 March 2022.
  27. ^ Scoop, pollution at Yau Tong Cement batching plant. HK: TVB.
  28. ^ Orirental Daily News once again revealed that the Yau Tong Concrete Plant violated regulations and emitted a large amount of smoke and dust, up to 40 meters. HK: Oriental Daily News.
  29. ^ Kholodov A, Zakharenko A, Drozd V, Chernyshev V, Kirichenko K, Seryodkin I, Karabtsov A, Olesik S, Khvost E, Vakhnyuk I, Chaika V, Stratidakis A, Vinceti M, Sarigiannis D, Hayes AW, Tsatsakis A, Golokhvast K (February 2020). "Identification of cement in atmospheric particulate matter using the hybrid method of laser diffraction analysis and Raman spectroscopy". Heliyon. 6 (2): e03299. Bibcode:2020Heliy...603299K. doi:10.1016/j.heliyon.2020.e03299. PMC 7042420. PMID 32128461.
  30. ^ "Cut down construction dust" (PDF).
  31. ^ "Proper Covering of Dusty Material on Dump Trucks". www.epd.gov.hk.
  32. ^ "Dusty Material - an overview | ScienceDirect Topics". www.sciencedirect.com.
  33. ^ Kim JY, Chen JC, Boyce PD, Christiani DC (March 2005). "Exposure to welding fumes is associated with acute systemic inflammatory responses". Occup Environ Med. 62 (3): 157–63. doi:10.1136/oem.2004.014795. PMC 1740976. PMID 15723880.
  34. ^ Bruschweiler ED, Danuser B, Huynh CK, Wild P, Schupfer P, Vernez D, Boiteux P, Hopf NB (2012). "Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations". Front Oncol. 2: 148. doi:10.3389/fonc.2012.00148. PMC 3475003. PMID 23087908.
  35. ^ "Woodworking health topics - Inhaling wood dust".
  36. ^ Patel, Sameer; Sankhyan, Sumit; Boedicker, Erin K.; DeCarlo, Peter F.; Farmer, Delphine K.; Goldstein, Allen H.; Katz, Erin F.; Nazaroff, William W; Tian, Yilin; Vanhanen, Joonas; Vance, Marina E. (16 June 2020). "Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures". Environmental Science & Technology. 54 (12): 7107–7116. Bibcode:2020EnST...54.7107P. doi:10.1021/acs.est.0c00740. ISSN 0013-936X. PMID 32391692. Archived from the original on 28 April 2023. Retrieved 11 April 2024.
  37. ^ "Dust advice for businesses - EPA Victoria".
  38. ^ Henneman L, Choirat C, Dedoussi I, Dominici F, Roberts J, Zigler C (November 2023). "Mortality risk from United States coal electricity generation". Science. 382 (6673): 941–946. Bibcode:2023Sci...382..941H. doi:10.1126/science.adf4915. PMC 10870829. PMID 37995235.
  39. ^ Lin Y, Zou J, Yang W, Li CQ (March 2018). "A Review of Recent Advances in Research on PM2.5in China". Int J Environ Res Public Health. 15 (3): 438. doi:10.3390/ijerph15030438. PMC 5876983. PMID 29498704.
  40. ^ Sharma R, Sharma M, Sharma R, Sharma V (2013). "The impact of incinerators on human health and environment". Rev Environ Health. 28 (1): 67–72. doi:10.1515/reveh-2012-0035. PMID 23612530. S2CID 21271240.
  41. ^ Non-exhaust Particulate Emissions from Road Transport. OECD. 2020. doi:10.1787/4a4dc6ca-en. ISBN 978-92-64-88885-2. S2CID 136987659.
  42. ^ Khan RK, Strand MA (2018). "Road dust and its effect on human health: a literature review". Epidemiol Health. 40: e2018013. doi:10.4178/epih.e2018013. PMC 5968206. PMID 29642653.
  43. ^ Fan, Long; Liu, Shimin (2021). "Respirable nano-particulate generations and their pathogenesis in mining workplaces: a review". International Journal of Coal Science & Technology. 8 (2): 179–198. Bibcode:2021IJCST...8..179F. doi:10.1007/s40789-021-00412-w. S2CID 233890096.
  44. ^ Petavratzi, E.; Kingman, S.; Lowndes, I. (2005). "Particulates from mining operations: A review of sources, effects and regulations". Minerals Engineering. 18 (12): 1183–1199. Bibcode:2005MiEng..18.1183P. doi:10.1016/j.mineng.2005.06.017.
  45. ^ Jeong H, Choi JY, Ra K (March 2021). "Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea". Sci Rep. 11 (1): 7238. doi:10.1038/s41598-021-86698-x. PMC 8012626. PMID 33790361.
  46. ^ McLaughlin, Tim (6 January 2022). "Harmful soot unchecked as Big Oil battles EPA over testing". Reuters.
  47. ^ Chandrappa, R.; Chandra Kulshrestha, U. (2016). "Air Pollution and Disasters". Sustainable Air Pollution Management. Environmental Science and Engineering. pp. 325–343. doi:10.1007/978-3-319-21596-9_8. ISBN 978-3-319-21595-2. PMC 7121041.
  48. ^ "Sand, Dust and Particulates Public Health".
  49. ^ Zalakeviciute, Rasa; Mejia, Danilo; Alvarez, Hermel; Bermeo, Xavier; Bonilla-Bedoya, Santiago; Rybarczyk, Yves; Lamb, Brian (2022). "WarImpact on Air Quality in Ukraine". Sustainability. 14 (21): 13832. doi:10.3390/su142113832.
  50. ^ Xie Y, Li Y, Feng Y, Cheng W, Wang Y (April 2022). "Inhalable microplastics prevails in air: Exploring the size detection limit". Environ Int. 162: 107151. Bibcode:2022EnInt.16207151X. doi:10.1016/j.envint.2022.107151. PMID 35228011.
  51. ^ Liu C, Li J, Zhang Y, Wang L, Deng J, Gao Y, Yu L, Zhang J, Sun H (July 2019). "Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure". Environ Int. 128: 116–124. Bibcode:2019EnInt.128..116L. doi:10.1016/j.envint.2019.04.024. PMID 31039519.
  52. ^ a b Hardin M, Kahn R (2 November 2010). "Aerosols and Climate Change".
  53. ^ "Emissions of air pollutants". 22 February 2023.
  54. ^ Hawkes N (May 2015). "Air pollution in UK: the public health problem that won't go away". BMJ. 350: h2757. doi:10.1136/bmj.h2757. PMID 26001592. S2CID 40717317.
  55. ^ Carrington, Damian (16 February 2021). "Wood burning at home now biggest cause of UK particle pollution". The Guardian. Retrieved 13 February 2022.
  56. ^ "Wood burning heaters and your health - Fact sheets".
  57. ^ "How to choose and maintain a wood heater - EPA Victoria".
  58. ^ "How to choose the right wood for your wood heater - EPA Victoria".
  59. ^ "How to light and maintain your wood heater fire - EPA Victoria".
  60. ^ "Smoke and the law - EPA Victoria".
  61. ^ "Simulating the Transport of Aerosols with GEOS-5, GMAO".
  62. ^ "GMAO - Global Modeling and Assimilation Office Research Site". gmao.gsfc.nasa.gov.
  63. ^ "Primary and Secondary Sources of Aerosols: Soil dust". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  64. ^ Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, et al. (February 2012). "Nonequilibrium atmospheric secondary organic aerosol formation and growth". Proceedings of the National Academy of Sciences of the United States of America. 109 (8): 2836–41. Bibcode:2012PNAS..109.2836P. doi:10.1073/pnas.1119909109. PMC 3286997. PMID 22308444.
  65. ^ "Primary and Secondary Sources of Aerosols: Sea salt". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  66. ^ Schiffer, J. M.; Mael, L. E.; Prather, K. A.; Amaro, R. E.; Grassian, V. H. (2018). "Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry". ACS Central Science. 4 (12): 1617–1623. doi:10.1021/acscentsci.8b00674. PMC 6311946. PMID 30648145.
  67. ^ "Primary and Secondary Sources of Aerosols: Primary biogenic aerosols". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  68. ^ Barringer, Felicity (18 February 2012). "Scientists Find New Dangers in Tiny but Pervasive Particles in Air Pollution". The New York Times. Retrieved 19 February 2012.
  69. ^ a b c d "Mongolia: Air Pollution in Ulaanbaatar – Initial Assessment of Current Situations and Effects of Abatement Measures" (PDF). The World Bank. 2010. Archived from the original (PDF) on 19 September 2016.
  70. ^ a b "Aerosol Size, Earth Observatory". NASA. 31 August 2016.Public Domain This article incorporates text from this source, which is in the public domain.
  71. ^ "An American Aerosol in Paris". 15 September 2017.
  72. ^ Goswami A, Barman J, Rajput K, Lakhlani HN (2013). "Behaviour Study of Particulate Matter and Chemical Composition with Different Combustion Strategies". SAE Technical Paper Series. Vol. 1. doi:10.4271/2013-01-2741. Retrieved 17 June 2016.
  73. ^ "Effect Of Particulate Matter On Plants Climate, Ecosystem and Human Health" (PDF). www.ijates.com. April 2014. Retrieved 3 February 2016.
  74. ^ "What are PM2.5 filters and why are they effective?". Puraka Masks.
  75. ^ Chen, J.; Jiang, Z. A.; Chen, J. (2018). "Effect of Inlet Air Volumetric Flow Rate on the Performance of a Two-Stage Cyclone Separator". ACS Omega. 3 (10): 13219–13226. doi:10.1021/acsomega.8b02043. PMC 6644756. PMID 31458040.
  76. ^ Dominick DalSanto (February 2011). "The Encyclopedia of Dust Collection".
  77. ^ "Integrated Building Rehabilitation Assistance Scheme".
  78. ^ "Operation Building Bright 2.0".
  79. ^ "DEVB - Press Releases: Operation Building Bright launched (with photos, 2009)".
  80. ^ "Hong Kong watchdog arrests 49 suspects in housing renovation scam involving contracts worth HK$500 million". 6 January 2023.
  81. ^ "大廈外牆維修,你地會搬走嗎?" [Will you move out because there is building exterior wall repair work?] (in Chinese).
  82. ^ "買樓難題:大廈維修,住得難頂嗎?" [The problem of buying a house: Is it difficult to live in a building under rehabilitation?] (in Chinese).
  83. ^ "Operation Building Bright improves living environment of residents (with photos/video)".
  84. ^ a b "Hong Kong eLegislation, AIR POLLUTION CONTROL (CONSTRUCTION DUST) REGULATION (Cap.311 section 43) 16 June 1997, L.N. 304 of 1997".
  85. ^ "Monitoring by Control Technique - Wet Scrubber For Particulate Matter". 25 May 2016.
  86. ^ "Monitoring by Control Technique - Electrostatic Precipitators". 24 May 2016.
  87. ^ "Enforcement Activities and Statistics under the Air Pollution Control Ordinance and the Ozone Layer Protection Ordinance 2021".
  88. ^ "Construction contractor fined for carrying out building demolition work in Shek O without appropriate dust control measures".
  89. ^ "Pollution Problems & Practical Solutions".
  90. ^ "Delhi Govt To Impose Fines On Violation Of Anti-Dust Norms". 6 October 2022.
  91. ^ "Management Regulations for Construction Project Air Pollution Control Facilities".
  92. ^ "Revised GRAP to deal with adverse air quality scenario".
  93. ^ "Achievements in environmental pollution control on construction activities, 2004".
  94. ^ "Particulate Matter in the United Kingdom Summary" (PDF). Air Quality Expert Group. Defra. 2005. Retrieved 28 June 2023.
  95. ^ "Condensation particle counters". Center for Atmospheric Science. University of Manchester. Retrieved 5 July 2023.
  96. ^ Department for Environment, Food and Rural Affairs (Defra) webmaster@defra gsi gov uk. "Particle Numbers and Concentrations Network- Defra, UK". uk-air.defra.gov.uk.
  97. ^ Gilfrich, J; Burkhalter, P; Birks, L (1973). "X-ray spectrometry for particulate air pollution—a quantitative comparison of techniques". Anal Chem. 45 (12): 2002–9. doi:10.1021/ac60334a033. PMID 4762375.
  98. ^ Forster, Piers M.; Smith, Christopher J.; Walsh, Tristram; Lamb, William F.; et al. (2023). "Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence" (PDF). Earth System Science Data. 15 (6). Copernicus Programme: 2295–2327. Bibcode:2023ESSD...15.2295F. doi:10.5194/essd-15-2295-2023. Fig. 2(a).
  99. ^ a b Haywood, James; Boucher, Olivier (November 2000). "Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review". Reviews of Geophysics. 38 (4): 513–543. Bibcode:2000RvGeo..38..513H. doi:10.1029/1999RG000078. S2CID 129107853.
  100. ^ a b Twomey S (1977). "The influence of pollution on the shortwave albedo of clouds". Journal of the Atmospheric Sciences. 34 (7): 1149–1152. Bibcode:1977JAtS...34.1149T. doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
  101. ^ a b c d e f Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, et al. (October 2007). "Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change in Climate Change 2007: The Physical Science Basis". In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.). Changes in Atmospheric Constituents and in Radiative Forcing. Cambridge, United Kingdom and New York, NY, US: Cambridge University Press. pp. 129–234.
  102. ^ "6.7.8 Discussion of Uncertainties". IPCC Third Assessment Report – Climate Change 2001. Archived from the original on 28 February 2002. Retrieved 14 July 2012.
  103. ^ Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (January 1992). "Climate forcing by anthropogenic aerosols". Science. 255 (5043): 423–30. Bibcode:1992Sci...255..423C. doi:10.1126/science.255.5043.423. PMID 17842894. S2CID 26740611.
  104. ^ Ackerman AS, Toon OB, Taylor JP, Johnson DW, Hobbs PV, Ferek RJ (2000). "Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks". Journal of the Atmospheric Sciences. 57 (16): 2684–2695. Bibcode:2000JAtS...57.2684A. doi:10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO;2.
  105. ^ Kaufman YJ, Fraser RS (1997). "The Effect of Smoke Particles on Clouds and Climate Forcing". Science. 277 (5332): 1636–1639. doi:10.1126/science.277.5332.1636.
  106. ^ Ferek RJ, Garrett T, Hobbs PV, Strader S, Johnson D, Taylor JP, Nielsen K, Ackerman AS, Kogan Y, Liu Q, Albrecht BA, et al. (2000). "Drizzle Suppression in Ship Tracks". Journal of the Atmospheric Sciences. 57 (16): 2707–2728. Bibcode:2000JAtS...57.2707F. doi:10.1175/1520-0469(2000)057<2707:DSIST>2.0.CO;2. hdl:10945/46780. S2CID 40273867.
  107. ^ Rosenfeld D (1999). "TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall". Geophysical Research Letters. 26 (20): 3105–3108. Bibcode:1999GeoRL..26.3105R. doi:10.1029/1999GL006066.
  108. ^ a b Hansen J, Sato M, Ruedy R (1997). "Radiative forcing and climate response". Journal of Geophysical Research. 102 (D6): 6831–6864. Bibcode:1997JGR...102.6831H. doi:10.1029/96JD03436.
  109. ^ Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (May 2000). "Reduction of tropical cloudiness by soot". Science. 288 (5468): 1042–7. Bibcode:2000Sci...288.1042A. doi:10.1126/science.288.5468.1042. PMID 10807573.
  110. ^ Koren I, Kaufman YJ, Remer LA, Martins JV (February 2004). "Measurement of the effect of Amazon smoke on inhibition of cloud formation". Science. 303 (5662): 1342–5. Bibcode:2004Sci...303.1342K. doi:10.1126/science.1089424. PMID 14988557. S2CID 37347993.
  111. ^ Riva, Matthieu; Chen, Yuzhi; Zhang, Yue; Lei, Ziying; Olson, Nicole E.; Boyer, Hallie C.; Narayan, Shweta; Yee, Lindsay D.; Green, Hilary S.; Cui, Tianqu; Zhang, Zhenfa; Baumann, Karsten; Fort, Mike; Edgerton, Eric; Budisulistiorini, Sri H. (6 August 2019). "Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties". Environmental Science & Technology. 53 (15): 8682–8694. Bibcode:2019EnST...53.8682R. doi:10.1021/acs.est.9b01019. ISSN 0013-936X. PMC 6823602. PMID 31335134.
  112. ^ Seinfeld, John H.; Pandis, Spyros N (1998). Atmospheric Chemistry and Physics — From Air Pollution to Climate Change. John Wiley and Sons, Inc. ISBN 978-0-471-17816-3
  113. ^ a b Legras, Bernard; Duchamp, Clair; Sellitto, Pasquale; Podglajen, Aurélien; Carboni, Elisa; Siddans, Richard; Grooß, Jens-Uwe; Khaykin, Sergey; Ploeger, Felix (23 November 2022). "The evolution and dynamics of the Hunga Tonga plume in the stratosphere". Atmospheric Chemistry and Physics. 22 (22): 14957–14970. doi:10.5194/acp-22-14957-2022. S2CID 253875202.
  114. ^ Charlson, Robert J.; Wigley, Tom M. L. (1994). "Sulfate Aerosol and Climatic Change". Scientific American. 270 (2): 48–57. Bibcode:1994SciAm.270b..48C. doi:10.1038/scientificamerican0294-48. ISSN 0036-8733. JSTOR 24942590.
  115. ^ Allen, Bob (6 April 2015). "Atmospheric Aerosols: What Are They, and Why Are They So Important?". NASA. Retrieved 17 April 2023.
  116. ^ IPCC, 1990: Chapter 1: Greenhouse Gases and Aerosols [R.T. Watson, H. Rodhe, H. Oeschger and U. Siegenthaler]. In: Climate Change: The IPCC Scientific Assessment [J.T.Houghton, G.J.Jenkins and J.J.Ephraums (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 31–34,
  117. ^ a b c Effects of Acid Rain – Human Health Archived January 18, 2008, at the Wayback Machine. Epa.gov (June 2, 2006). Retrieved on 2013-02-09.
  118. ^ "Effects of Acid Rain - Surface Waters and Aquatic Animals". US EPA. Archived from the original on 14 May 2009.
  119. ^ Likens, G. E.; Driscoll, C. T.; Buso, D. C. (1996). "Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem" (PDF). Science. 272 (5259): 244. Bibcode:1996Sci...272..244L. doi:10.1126/science.272.5259.244. S2CID 178546205. Archived (PDF) from the original on 24 December 2012. Retrieved 9 February 2013.
  120. ^ Wang, X.; Ding, H.; Ryan, L.; Xu, X. (1 May 1997). "Association between air pollution and low birth weight: a community-based study". Environmental Health Perspectives. 105 (5): 514–20. doi:10.1289/ehp.97105514. ISSN 0091-6765. PMC 1469882. PMID 9222137. S2CID 2707126.
  121. ^ Tie, X.; et al. (2003). "Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence". J. Geophys. Res. 108 (D4): 8364. Bibcode:2003JGRD..108.8364T. doi:10.1029/2001JD001508.
  122. ^ Clean Air Act Reduces Acid Rain In Eastern United States Archived August 8, 2018, at the Wayback Machine, ScienceDaily, September 28, 1998
  123. ^ "Air Emissions Trends – Continued Progress Through 2005". U.S. Environmental Protection Agency. 8 July 2014. Archived from the original on 17 March 2007. Retrieved 17 March 2007.
  124. ^ Moses, Elizabeth; Cardenas, Beatriz; Seddon, Jessica (25 February 2020). "The Most Successful Air Pollution Treaty You've Never Heard Of".
  125. ^ Stanhill, G.; S. Cohen (2001). "Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences". Agricultural and Forest Meteorology. 107 (4): 255–278. Bibcode:2001AgFM..107..255S. doi:10.1016/S0168-1923(00)00241-0.
  126. ^ Cohen, Shabtai; Stanhill, Gerald (1 January 2021), Letcher, Trevor M. (ed.), "Chapter 32 – Changes in the Sun's radiation: the role of widespread surface solar radiation trends in climate change: dimming and brightening", Climate Change (Third Edition), Elsevier, pp. 687–709, doi:10.1016/b978-0-12-821575-3.00032-3, ISBN 978-0-12-821575-3, S2CID 234180702, retrieved 26 April 2023
  127. ^ "Global 'Sunscreen' Has Likely Thinned, Report NASA Scientists". NASA. 15 March 2007. Archived from the original on 22 December 2018. Retrieved 28 June 2023.
  128. ^ "A bright sun today? It's down to the atmosphere". The Guardian. 2017. Archived from the original on 20 May 2017. Retrieved 19 May 2017.
  129. ^ Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S. M.; Wehner, M.; Zhou, B. (2021). Masson-Delmotte, V.; Zhai, P.; Piran, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Weather and Climate Extreme Events in a Changing Climate" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021: 1238. Bibcode:2021AGUFM.U13B..05K. doi:10.1017/9781009157896.007.
  130. ^ Gillett, Nathan P.; Kirchmeier-Young, Megan; Ribes, Aurélien; Shiogama, Hideo; Hegerl, Gabriele C.; Knutti, Reto; Gastineau, Guillaume; John, Jasmin G.; Li, Lijuan; Nazarenko, Larissa; Rosenbloom, Nan; Seland, Øyvind; Wu, Tongwen; Yukimoto, Seiji; Ziehn, Tilo (18 January 2021). "Constraining human contributions to observed warming since the pre-industrial period" (PDF). Nature Climate Change. 11 (3): 207–212. Bibcode:2021NatCC..11..207G. doi:10.1038/s41558-020-00965-9. S2CID 231670652.
  131. ^ IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, doi:10.1017/9781009157896.001.
  132. ^ Andrew, Tawana (27 September 2019). "Behind the Forecast: How clouds affect temperatures". Science Behind the Forecast. LOUISVILLE, Ky. (WAVE). Retrieved 4 January 2023.
  133. ^ McCoy, Daniel T.; Field, Paul; Gordon, Hamish; Elsaesser, Gregory S.; Grosvenor, Daniel P. (6 April 2020). "Untangling causality in midlatitude aerosol–cloud adjustments". Atmospheric Chemistry and Physics. 20 (7): 4085–4103. Bibcode:2020ACP....20.4085M. doi:10.5194/acp-20-4085-2020.
  134. ^ Rosenfeld, Daniel; Zhu, Yannian; Wang, Minghuai; Zheng, Youtong; Goren, Tom; Yu, Shaocai (2019). "Aerosol-driven droplet concentrations dominate coverage and water of oceanic low level clouds" (PDF). Science. 363 (6427): eaav0566. doi:10.1126/science.aav0566. PMID 30655446. S2CID 58612273.
  135. ^ Glassmeier, Franziska; Hoffmann, Fabian; Johnson, Jill S.; Yamaguchi, Takanobu; Carslaw, Ken S.; Feingold, Graham (29 January 2021). "Aerosol-cloud-climate cooling overestimated by ship-track data". Science. 371 (6528): 485–489. Bibcode:2021Sci...371..485G. doi:10.1126/science.abd3980. PMID 33510021.
  136. ^ Manshausen, Peter; Watson-Parris, Duncan; Christensen, Matthew W.; Jalkanen, Jukka-Pekka; Stier, Philip Stier (7 March 2018). "Invisible ship tracks show large cloud sensitivity to aerosol". Nature. 610 (7930): 101–106. doi:10.1038/s41586-022-05122-0. PMC 9534750. PMID 36198778.
  137. ^ Jongebloed, U. A.; Schauer, A. J.; Cole-Dai, J.; Larrick, C. G.; Wood, R.; Fischer, T. P.; Carn, S. A.; Salimi, S.; Edouard, S. R.; Zhai, S.; Geng, L.; Alexander, B. (2 January 2023). "Underestimated Passive Volcanic Sulfur Degassing Implies Overestimated Anthropogenic Aerosol Forcing". Geophysical Research Letters. 50 (1): e2022GL102061. Bibcode:2023GeoRL..5002061J. doi:10.1029/2022GL102061. S2CID 255571342.
  138. ^ Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G; Mahowald, Natalie M; Goodale, Christine L; Xia, Lili (1 September 2020). "What goes up must come down: impacts of deposition in a sulfate geoengineering scenario". Environmental Research Letters. 15 (9): 094063. Bibcode:2020ERL....15i4063V. doi:10.1088/1748-9326/ab94eb. ISSN 1748-9326.
  139. ^ Andrew Charlton-Perez & Eleanor Highwood. "Costs and benefits of geo-engineering in the Stratosphere" (PDF). Archived from the original (PDF) on 14 January 2017. Retrieved 17 February 2009.
  140. ^ Trisos, Christopher H.; Geden, Oliver; Seneviratne, Sonia I.; Sugiyama, Masahiro; van Aalst, Maarten; Bala, Govindasamy; Mach, Katharine J.; Ginzburg, Veronika; de Coninck, Heleen; Patt, Anthony (2021). "Cross-Working Group Box SRM: Solar Radiation Modification" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021: 1238. Bibcode:2021AGUFM.U13B..05K. doi:10.1017/9781009157896.007.
  141. ^ Bond, T. C. (2013). "Bounding the role of black carbon in the climate system: A scientific assessment". Journal of Geophysical Research: Atmospheres. 118 (11): 5380–5552. Bibcode:2013JGRD..118.5380B. doi:10.1002/jgrd.50171.
  142. ^ "1600 Eruption Caused Global Disruption" Archived 15 February 2011 at the Wayback Machine, Geology Times, 25 April 2008, accessed 13 November 2010
  143. ^ Andrea Thompson, "Volcano in 1600 caused global disruption", NBC News, 5 May 2008, accessed 13 November 2010
  144. ^ "The 1600 eruption of Huaynaputina in Peru caused global disruption" Archived 28 April 2010 at the Wayback Machine, Science Centric
  145. ^ McCormick, M. Patrick; Thomason, Larry W.; Trepte, Charles R. (February 1995). "Atmospheric effects of the Mt Pinatubo eruption". Nature. 373 (6513): 399–404. Bibcode:1995Natur.373..399M. doi:10.1038/373399a0. S2CID 46437912.
  146. ^ Stowe LL, Carey RM, Pellegrino PP (1992). "Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data". Geophysical Research Letters (Submitted manuscript). 19 (2): 159–162. Bibcode:1992GeoRL..19..159S. doi:10.1029/91GL02958.
  147. ^ Perkins, Sid (4 March 2013). "Earth Not So Hot Thanks to Volcanoes". Science. doi:10.1126/article.26322 (inactive 2 September 2024).{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  148. ^ Neely III RR, Toon OB, Solomon S, Vernier JP, Alvarez C, English JM, Rosenlof KH, Mills MJ, Bardeen CG, Daniel JS, Thayer JP (2013). "Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol". Geophysical Research Letters. 40 (5): 999–1004. Bibcode:2013GeoRL..40..999N. doi:10.1002/grl.50263. hdl:1721.1/85851. S2CID 54922537. moderate volcanic eruptions, rather than anthropogenic influences, are the primary source of the observed increases in stratospheric aerosol.
  149. ^ a b Chung CE, Ramanathan V (2006). "Weakening of North Indian SST Gradients and the Monsoon Rainfall in India and the Sahel". Journal of Climate. 19 (10): 2036–2045. Bibcode:2006JCli...19.2036C. doi:10.1175/JCLI3820.1. S2CID 10435613.
  150. ^ "Pollutants and Their Effect on the Water and Radiation Budgets". Archived from the original on 16 December 2008.
  151. ^ "Australian rainfall and Asian aerosols" (PDF). Archived from the original (PDF) on 16 June 2012.
  152. ^ Region 4: Laboratory and Field Operations – PM 2.5 (2008).PM 2.5 Objectives and History. U.S. Environmental Protection Agency.
  153. ^ Balmes, John R.; Fine, Jonathan M.; Sheppard, Dean (November 1987). "Symptomatic Bronchoconstriction after Short-Term Inhalation of Sulfur Dioxide". American Review of Respiratory Disease. 136 (5): 1117–1121. doi:10.1164/ajrccm/136.5.1117. PMID 3674573.
  154. ^ Nieuwenhuijsen, M.J. (2003). Exposure Assessment in Occupational and Environmental Epidemiology. London: Oxford University Press.[page needed]
  155. ^ "Pollution Particles Lead to Higher Heart Attack Risk". Bloomberg L.P. 17 January 2008. Archived from the original on 29 June 2011. The pollutants, abundant in urban areas, are less than 0.18 micrometers in size and cause four times more artery buildup than particles four times larger, said Jesus Araujo, director of environmental cardiology at University of California, Los Angeles.
  156. ^ Araujo, Jesus A.; et al. (17 January 2008). "Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress". Circulation Research. 102 (5): 589–596. doi:10.1161/CIRCRESAHA.107.164970. PMC 3014059. PMID 18202315.
  157. ^ Hennig, Frauke; Quass, Ulrich; Hellack, Bryan; Küpper, Miriam; Kuhlbusch, Thomas A. J.; Stafoggia, Massimo; Hoffmann, Barbara (February 2018). "Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009–2014". Environmental Health Perspectives. 126 (2): 027008. doi:10.1289/EHP2054. ISSN 0091-6765. PMC 6066351. PMID 29467106.
  158. ^ De Jesus, Alma Lorelei; et al. (2019). "Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?". Environment International. 129: 118–135. doi:10.1016/j.envint.2019.05.021. PMID 31125731. S2CID 164216753.
  159. ^ Lippmann, M., Cohen, B.S., Schlesinger, R.S. (2003). Environmental Health Science. New York: Oxford University Press.[page needed]
  160. ^ "Scattering Matrix for Typical Urban Anthropogenic Origin Cement Dust and Discrimination of Representative Atmospheric Particulates".
  161. ^ "The dangers of a scrap yard fire in your community". 10 October 2022.
  162. ^ "Cargo boat fire put out in Hong Kong's Victoria Harbour after burning for 15 hours and sending fumes across city". 3 June 2021.
  163. ^ "Stench from burning metal-waste ship blows across HK".
  164. ^ "Electric Arc Furnace (EAF) Slag". 3 June 2021.
  165. ^ Nair, Abhilash T.; Mathew, Aneesh; a r, Archana; Akbar, M Abdul (2022). "Use of hazardous electric arc furnace dust in the construction industry: A cleaner production approach". Journal of Cleaner Production. 377: 134282. Bibcode:2022JCPro.37734282N. doi:10.1016/j.jclepro.2022.134282. S2CID 252553231.
  166. ^ "Sustainability".
  167. ^ "Hong Kong Housing Authority Sustainability Report 2012/13" (PDF). Archived from the original (PDF) on 28 June 2023.
  168. ^ "Hong Kong Housing Authority - Environmental Report 2020/21". Archived from the original on 28 June 2023.
  169. ^ "Cement industry news from Global Cement". Archived from the original on 3 December 2022.
  170. ^ "黑水泥厂"围城" 打假队一年揪出13家" [City "besieged" with dishonest cement factories, anti-counterfeiting teams found 13 of them in one year] (in Chinese).
  171. ^ "Growing Importance of Slag Cement in the Global Cement Industry". 6 July 2022.
  172. ^ "房市新制大調查 爐渣屋掰 2021年起禁用爐渣" [A look into the property market new regulations. No more slag house. Slag will be banned from 2021] (in Chinese). 10 December 2020.
  173. ^ "新版預售屋契約禁用「煉鋼爐碴」 建商違規將挨罰" [The new version of the pre-sale house contract prohibits "steelmaking furnace slag" and builders will be fined for violations] (in Chinese). 8 May 2019.
  174. ^ "Welding - Fumes And Gases, OSH Answers". 10 February 2023.
  175. ^ Li Y, Chen J, Bu S, Wang S, Geng X, Guan G, Zhao Q, Ao L, Qu W, Zheng Y, Jin Y, Tang J (May 2021). "Blood lead levels and their associated risk factors in Chinese adults from 1980 to 2018". Ecotoxicol Environ Saf. 218: 112294. Bibcode:2021EcoES.21812294L. doi:10.1016/j.ecoenv.2021.112294. PMID 33984660.
  176. ^ Han Z, Guo X, Zhang B, Liao J, Nie L (June 2018). "Blood lead levels of children in urban and suburban areas in China (1997-2015): Temporal and spatial variations and influencing factors". Sci Total Environ. 625: 1659–1666. Bibcode:2018ScTEn.625.1659H. doi:10.1016/j.scitotenv.2017.12.315. PMID 29996461. S2CID 51617692.
  177. ^ Ren, J.; Tang, M.; Novoselac, A. (2022). "Experimental study to quantify airborne particle deposition onto and resuspension from clothing using a fluorescent-tracking method". Building and Environment. 209: 108580. Bibcode:2022BuEnv.20908580R. doi:10.1016/j.buildenv.2021.108580. PMC 8620412. PMID 34848915.
  178. ^ "地盤工滿身泥衣鞋入茶餐廳 網民批成身水泥累慘清潔工:做死阿姐". 香港01 (in Chinese). 20 July 2023. Retrieved 14 August 2023.
  179. ^ Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. (2011). "The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain". Environmental Health Perspectives. 119 (12): 1781–1787. doi:10.1289/ehp.1103618. PMC 3261985. PMID 21846610.
  180. ^ "10-year Hospital Development Plan".
  181. ^ "Architectural Services Department - Capital Projects Under Construction".
  182. ^ Renard, J. B.; Surcin, J.; Annesi-Maesano, I.; Delaunay, G.; Poincelet, E.; Dixsaut, G. (2022). "Relation between PM2.5 pollution and Covid-19 mortality in Western Europe for the 2020–2022 period". The Science of the Total Environment. 848: 157579. Bibcode:2022ScTEn.84857579R. doi:10.1016/j.scitotenv.2022.157579. PMC 9310379. PMID 35901896.
  183. ^ Perone, Gaetano (2022). "Assessing the impact of long-term exposure to nine outdoor air pollutants on COVID-19 spatial spread and related mortality in 107 Italian provinces". Scientific Reports. 12 (1): 13317. Bibcode:2022NatSR..1213317P. doi:10.1038/s41598-022-17215-x. PMC 9349267. PMID 35922645.
  184. ^ Kiser, Daniel; Elhanan, Gai; Metcalf, William J.; Schnieder, Brendan; Grzymski, Joseph J. (2021). "SARS-CoV-2 test positivity rate in Reno, Nevada: Association with PM2.5 during the 2020 wildfire smoke events in the western United States". Journal of Exposure Science & Environmental Epidemiology. 31 (5): 797–803. Bibcode:2021JESEE..31..797K. doi:10.1038/s41370-021-00366-w. PMC 8276229. PMID 34257389.
  185. ^ Solimini, Angelo; Filipponi, F.; Fegatelli, D. Alunni; Caputo, B.; De Marco, C. M.; Spagnoli, A.; Vestri, A. R. (2021). "A global association between Covid-19 cases and airborne particulate matter at regional level". Scientific Reports. 11 (1): 6256. doi:10.1038/s41598-021-85751-z. PMC 7973572. PMID 33737616.
  186. ^ "With metals and maybe even coronavirus, wildfire smoke is more dangerous than you think". Los Angeles Times. 22 July 2021.
  187. ^ "Silicosis, OSH Answers Fact Sheets". 13 June 2023.
  188. ^ Preventing Silicosis and Deaths From Sandblasting (Report). Centers for Disease Control and Prevention. 1992. doi:10.26616/NIOSHPUB92102.
  189. ^ a b Flores-Pajot, Marie-Claire; Ofner, Marianna; Do, Minh T.; Lavigne, Eric; Villeneuve, Paul J. (November 2016). "Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis". Environmental Research. 151: 763–776. Bibcode:2016ER....151..763F. doi:10.1016/j.envres.2016.07.030. PMID 27609410.
  190. ^ a b Chun, HeeKyoung; Leung, Cheryl; Wen, Shi Wu; McDonald, Judy; Shin, Hwashin H. (January 2020). "Maternal exposure to air pollution and risk of autism in children: A systematic review and meta-analysis". Environmental Pollution. 256: 113307. Bibcode:2020EPoll.25613307C. doi:10.1016/j.envpol.2019.113307. PMID 31733973.
  191. ^ a b Lam, Juleen; Sutton, Patrice; Kalkbrenner, Amy; Windham, Gayle; Halladay, Alycia; Koustas, Erica; Lawler, Cindy; Davidson, Lisette; Daniels, Natalyn; Newschaffer, Craig; Woodruff, Tracey (21 September 2016). "A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder". PLOS ONE. 11 (9): e0161851. Bibcode:2016PLoSO..1161851L. doi:10.1371/journal.pone.0161851. PMC 5031428. PMID 27653281.
  192. ^ a b Weisskopf, Marc G.; Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L. (December 2015). "Air Pollution and Autism Spectrum Disorders: Causal or Confounded?". Current Environmental Health Reports. 2 (4): 430–439. Bibcode:2015CEHR....2..430W. doi:10.1007/s40572-015-0073-9. PMC 4737505. PMID 26399256.
  193. ^ a b Fu, Pengfei; Yung, Ken Kin Lam (15 September 2020). "Air Pollution and Alzheimer's Disease: A Systematic Review and Meta-Analysis". Journal of Alzheimer's Disease. 77 (2): 701–714. doi:10.3233/JAD-200483. PMID 32741830. S2CID 220942039.
  194. ^ a b Tsai, Tsung-Lin; Lin, Yu-Ting; Hwang, Bing-Fang; Nakayama, Shoji F.; Tsai, Chon-Haw; Sun, Xian-Liang; Ma, Chaochen; Jung, Chau-Ren (October 2019). "Fine particulate matter is a potential determinant of Alzheimer's disease: A systemic review and meta-analysis". Environmental Research. 177: 108638. Bibcode:2019ER....17708638T. doi:10.1016/j.envres.2019.108638. PMID 31421449. S2CID 201057595.
  195. ^ a b c Braithwaite, Isobel; Zhang, Shuo; Kirkbride, James B.; Osborn, David P. J.; Hayes, Joseph F. (December 2019). "Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis". Environmental Health Perspectives. 127 (12): 126002. doi:10.1289/EHP4595. PMC 6957283. PMID 31850801.
  196. ^ a b c Lu, Jackson G (April 2020). "Air pollution: A systematic review of its psychological, economic, and social effects". Current Opinion in Psychology. 32: 52–65. doi:10.1016/j.copsyc.2019.06.024. PMID 31557706. S2CID 199147061.
  197. ^ a b c Liu, Qisijing; Wang, Wanzhou; Gu, Xuelin; Deng, Furong; Wang, Xueqin; Lin, Hualiang; Guo, Xinbiao; Wu, Shaowei (February 2021). "Association between particulate matter air pollution and risk of depression and suicide: a systematic review and meta-analysis". Environmental Science and Pollution Research. 28 (8): 9029–9049. Bibcode:2021ESPR...28.9029L. doi:10.1007/s11356-021-12357-3. PMID 33481201. S2CID 231677095.
  198. ^ Schraufnagel, Dean E.; Balmes, John R.; Cowl, Clayton T.; De Matteis, Sara; Jung, Soon-Hee; Mortimer, Kevin; Perez-Padilla, Rogelio; Rice, Mary B.; Riojas-Rodriguez, Horacio; Sood, Akshay; Thurston, George D.; To, Teresa; Vanker, Anessa; Wuebbles, Donald J. (February 2019). "Air Pollution and Noncommunicable Diseases". Chest. 155 (2): 409–416. doi:10.1016/j.chest.2018.10.042. PMC 6904855. PMID 30419235.
  199. ^ Carrington, Damian; McMullan, Lydia; Blight, Garry; Roberts, Simon; Hulley-Jones, Frank (17 May 2019). "Revealed: air pollution may be damaging 'every organ in the body'". The Guardian.
  200. ^ a b Raaschou-Nielsen, Ole; Andersen, Zorana J; Beelen, Rob; Samoli, Evangelia; Stafoggia, Massimo; Weinmayr, Gudrun; et al. (August 2013). "Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)". The Lancet Oncology. 14 (9): 813–822. doi:10.1016/S1470-2045(13)70279-1. PMID 23849838.
  201. ^ Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, et al. (2005). "The global burden of disease due to outdoor air pollution". Journal of Toxicology and Environmental Health. Part A. 68 (13–14): 1301–7. Bibcode:2005JTEHA..68.1301C. doi:10.1080/15287390590936166. PMID 16024504. S2CID 23814778.
  202. ^ "Air Pollution & Cardiovascular Disease". National Institute of Environmental Health Sciences. Archived from the original on 14 May 2011.
  203. ^ Lave, Lester B.; Seskin, Eugene P. (June 1973). "An Analysis of the Association between U.S. Mortality and Air Pollution". Journal of the American Statistical Association. 68 (342): 284–290. doi:10.1080/01621459.1973.10482421. eISSN 1537-274X. ISSN 0162-1459.
  204. ^ Mokdad AH, Marks JS, Stroup DF, Gerberding JL (March 2004). "Actual causes of death in the United States, 2000". JAMA. 291 (10): 1238–45. doi:10.1001/jama.291.10.1238. PMID 15010446. S2CID 14589790.
  205. ^ a b European Environment Agency (2009). Spatial assessment of PM10 and ozone concentrations in Europe (2005). Publications Office. doi:10.2800/165. ISBN 978-92-9167-988-1.[page needed]
  206. ^ Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. (December 2012). "A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2224–60. doi:10.1016/s0140-6736(12)61766-8. PMC 4156511. PMID 23245609.
  207. ^ "Air pollution in Europe: These are the worst-hit cities to live in". euronews. 24 December 2021. Retrieved 1 April 2022.
  208. ^ Laden, F; Neas, L M; Dockery, D W; Schwartz, J (October 2000). "Association of fine particulate matter from different sources with daily mortality in six U.S. cities". Environmental Health Perspectives. 108 (10): 941–947. doi:10.1289/ehp.00108941. PMC 1240126. PMID 11049813.
  209. ^ Ozkaynak, Haluk; Thurston, George D. (December 1987). "Associations Between 1980 U.S. Mortality Rates and Alternative Measures of Airborne Particle Concentration". Risk Analysis. 7 (4): 449–461. Bibcode:1987RiskA...7..449O. doi:10.1111/j.1539-6924.1987.tb00482.x. PMID 3444932.
  210. ^ Mailloux, Nicholas A.; Abel, David W.; Holloway, Tracey; Patz, Jonathan A. (16 May 2022). "Nationwide and Regional PM2.5-Related Air Quality Health Benefits From the Removal of Energy-Related Emissions in the United States". GeoHealth. 6 (5): e2022GH000603. Bibcode:2022GHeal...6..603M. doi:10.1029/2022GH000603. PMC 9109601. PMID 35599962.
  211. ^ Carrington, Damian (17 February 2021). "Air pollution significantly raises risk of infertility, study finds". The Guardian.
  212. ^ Zhang M, Mueller NT, Wang H, Hong X, Appel LJ, Wang X (July 2018). "Maternal Exposure to Ambient Particulate Matter ≤2.5 μm During Pregnancy and the Risk for High Blood Pressure in Childhood". Hypertension. 72 (1): 194–201. doi:10.1161/HYPERTENSIONAHA.117.10944. PMC 6002908. PMID 29760154.
  213. ^ Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B (1 December 2012). "Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis". Air Quality, Atmosphere & Health. 5 (4): 369–381. Bibcode:2012AQAH....5..369S. doi:10.1007/s11869-010-0106-3. S2CID 95781433.
  214. ^ a b c Sacks J. "2009 Final Report: Integrated Science Assessment for Particulate Matter". US EPA National Center for Environmental Assessment, Research Triangle Park Nc, Environmental Media Assessment Group. Retrieved 31 March 2017.
  215. ^ Erickson AC, Arbour L (26 November 2014). "The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development". Journal of Environmental and Public Health. 2014: 901017. doi:10.1155/2014/901017. PMC 4276595. PMID 25574176.
  216. ^ Lee PC, Talbott EO, Roberts JM, Catov JM, Bilonick RA, Stone RA, et al. (August 2012). "Ambient air pollution exposure and blood pressure changes during pregnancy". Environmental Research. 117: 46–53. Bibcode:2012ER....117...46L. doi:10.1016/j.envres.2012.05.011. PMC 3656658. PMID 22835955.
  217. ^ Woodruff TJ, Parker JD, Darrow LA, Slama R, Bell ML, Choi H, et al. (April 2009). "Methodological issues in studies of air pollution and reproductive health". Environmental Research. 109 (3): 311–320. Bibcode:2009ER....109..311W. doi:10.1016/j.envres.2008.12.012. PMC 6615486. PMID 19215915.
  218. ^ Byrne CD, Phillips DI (November 2000). "Fetal origins of adult disease: epidemiology and mechanisms". Journal of Clinical Pathology. 53 (11): 822–8. doi:10.1136/jcp.53.11.822. PMC 1731115. PMID 11127263.
  219. ^ Barker DJ (November 1990). "The fetal and infant origins of adult disease". BMJ. 301 (6761): 1111. doi:10.1136/bmj.301.6761.1111. PMC 1664286. PMID 2252919.
  220. ^ Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (March 2002). "Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution". JAMA. 287 (9): 1132–41. doi:10.1001/jama.287.9.1132. PMC 4037163. PMID 11879110.
  221. ^ EU's PM2.5 Limit Festering: New Study Linked PM with Heart Attack Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, et al. (January 2014). "Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project". BMJ. 348: f7412. doi:10.1136/bmj.f7412. PMC 3898420. PMID 24452269.
  222. ^ Hussey SJ, Purves J, Allcock N, Fernandes VE, Monks PS, Ketley JM, et al. (May 2017). "Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation" (PDF). Environmental Microbiology. 19 (5): 1868–1880. Bibcode:2017EnvMi..19.1868H. doi:10.1111/1462-2920.13686. PMC 6849702. PMID 28195384.
  223. ^ "National Study Examines Health Risks of Coarse Particle Pollution". www.newswise.com.
  224. ^ "Mongolia: Ulaanbaatar Air Pollution Linked to Public Health Crisis".
  225. ^ Matthews, Dylan (27 December 2021). "How humans could live two years longer". Vox.
  226. ^ Symons, Angela (15 December 2022). "Suicide rates rise as air quality worsens, study finds". euronews. Retrieved 19 December 2022.
  227. ^ Fan, Shu-Jun; Heinrich, Joachim; Bloom, Michael S.; Zhao, Tian-Yu; Shi, Tong-Xing; Feng, Wen-Ru; Sun, Yi; Shen, Ji-Chuan; Yang, Zhi-Cong; Yang, Bo-Yi; Dong, Guang-Hui (January 2020). "Ambient air pollution and depression: A systematic review with meta-analysis up to 2019". Science of the Total Environment. 701: 134721. Bibcode:2020ScTEn.70134721F. doi:10.1016/j.scitotenv.2019.134721. PMID 31715478. S2CID 207944384. Archived from the original on 31 March 2022. Retrieved 26 January 2022.
  228. ^ Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian (27 September 2016). "Magnetite pollution nanoparticles in the human brain". Proceedings of the National Academy of Sciences. 113 (39): 10797–10801. Bibcode:2016PNAS..11310797M. doi:10.1073/pnas.1605941113. PMC 5047173. PMID 27601646.
  229. ^ "Parkinson's Disease".
  230. ^ Kanninen, K. M.; Lampinen, R.; Rantanen, L. M.; Odendaal, L.; Jalava, P.; Chew, S.; White, A. R. (1 June 2020). "Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration". Neurochemistry International. 136: 104729. doi:10.1016/j.neuint.2020.104729. PMID 32201281. S2CID 214585295 – via ScienceDirect.
  231. ^ Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, et al. (2005). "The global burden of disease due to outdoor air pollution". Journal of Toxicology and Environmental Health. Part A. 68 (13–14): 1301–7. Bibcode:2005JTEHA..68.1301C. doi:10.1080/15287390590936166. PMID 16024504. S2CID 23814778.
  232. ^ Nawrot TS, Perez L, Künzli N, Munters E, Nemery B (February 2011). "Public health importance of triggers of myocardial infarction: a comparative risk assessment". Lancet. 377 (9767): 732–40. doi:10.1016/S0140-6736(10)62296-9. PMID 21353301. S2CID 20168936. "Taking into account the OR and the prevalences of exposure, the highest PAF was estimated for traffic exposure (7.4%)... ":"... [O]dds ratios and frequencies of each trigger were used to compute population-attributable fractions (PAFs), which estimate the proportion of cases that could be avoided if a risk factor were removed. PAFs depend not only on the risk factor strength at the individual level but also on its frequency in the community. ... [T]he exposure prevalence for triggers in the relevant control time window ranged from 0.04% for cocaine use to 100% for air pollution. ... Taking into account the OR and the prevalences of exposure, the highest PAF was estimated for traffic exposure (7.4%) ...
  233. ^ "Resources and Information" (PDF). ww16.baq2008.org. Archived from the original (PDF) on 17 December 2008.
  234. ^ a b Smiley, Kevin T. (2019). "Racial and Environmental Inequalities in Spatial Patterns in Asthma Prevalence in the US South". Southeastern Geographer. 59 (4): 389–402. doi:10.1353/sgo.2019.0031. S2CID 210244838. Project MUSE 736789.
  235. ^ "Erratum: Eur. Phys. J. C.22, 695–705 (2002) – DOI 10.1007/s100520100827 Published online: 7 December 2001". The European Physical Journal C. 24 (4): 665–666. August 2002. Bibcode:2002EPJC...24..665.. doi:10.1007/s10052-002-0987-x. S2CID 195313204.
  236. ^ a b Mikati, Ihab; Benson, Adam F.; Luben, Thomas J.; Sacks, Jason D.; Richmond-Bryant, Jennifer (1 April 2018). "Disparities in Distribution of Particulate Matter Emission Sources by Race and Poverty Status". American Journal of Public Health. 108 (4): 480–485. doi:10.2105/AJPH.2017.304297. PMC 5844406. PMID 29470121.
  237. ^ "Urban Air Pollution and Health Inequities: A Workshop Report". Environmental Health Perspectives. 109 (s3): 357–374. 1 June 2001. doi:10.1289/ehp.01109s3357.
  238. ^ a b c Jervis, Rick; Gomez, Alan (12 October 2020). "Racism turned their neighborhood into 'Cancer Alley.' Now they're dying from COVID-19". USA Today.
  239. ^ US EPA, OAR (12 November 2018). "How Smoke from Fires Can Affect Your Health". US EPA. Retrieved 26 November 2020.
  240. ^ Wegesser TC, Pinkerton KE, Last JA (June 2009). "California wildfires of 2008: coarse and fine particulate matter toxicity". Environmental Health Perspectives. 117 (6): 893–7. doi:10.1289/ehp.0800166. PMC 2702402. PMID 19590679.
  241. ^ Haikerwal A, Akram M, Del Monaco A, Smith K, Sim MR, Meyer M, et al. (July 2015). "Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes". Journal of the American Heart Association. 4 (7): e001653. doi:10.1161/JAHA.114.001653. PMC 4608063. PMID 26178402.
  242. ^ Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M (August 2019). "Associations between respiratory health and ozone and fine particulate matter during a wildfire event". Environment International. 129: 291–298. Bibcode:2019EnInt.129..291R. doi:10.1016/j.envint.2019.04.033. PMID 31146163.
  243. ^ Haikerwal A, Akram M, Sim MR, Meyer M, Abramson MJ, Dennekamp M (January 2016). "Fine particulate matter (PM2.5 ) exposure during a prolonged wildfire period and emergency department visits for asthma". Respirology. 21 (1): 88–94. doi:10.1111/resp.12613. PMID 26346113. S2CID 22910313.
  244. ^ DeFlorio-Barker S, Crooks J, Reyes J, Rappold AG (March 2019). "Cardiopulmonary Effects of Fine Particulate Matter Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States 2008-2010". Environmental Health Perspectives. 127 (3): 37006. doi:10.1289/EHP3860. PMC 6768318. PMID 30875246.
  245. ^ Jiang, Kevin (27 June 2023). "What is 'smoke brain'? How air pollution can harm our cognition and mental health". Toronto Star.
  246. ^ Ritchie, Hannah; Roser, Max (2021). "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
  247. ^ a b The Guardian, 18 March 2021 "Oil Firms Knew Decades Ago Fossil Fuels Posed Grave Health Risks, Riles Reveal; Exclusive: Documents Seen by Guardian Show Companies Fought Clean-Air Rules Despite Being Aware of Harm Caused by Air Pollution"
  248. ^ The Guardian "75 Ways Trump Made America Dirtier and the Planet Warmer: In the Past Four Years, Trump has Shredded Environmental Protections for American Lands, Animals and People"
  249. ^ Union of Concerned Scientists, 27 April 2020 "Oil Industry Ghostwrites Trump's Deadly Anti-Environmental Policies"
  250. ^ Hogan CM (2010). Emily Monosson and C. Cleveland (ed.). "Abiotic factor". Encyclopedia of Earth. National Council for Science and the Environment.
  251. ^ US EPA, OAR (26 April 2016). "Health and Environmental Effects of Particulate Matter (PM)". US EPA. Retrieved 5 October 2019.
  252. ^ Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. (September 2014). "Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis". Environmental Health Perspectives. 122 (9): 906–11. doi:10.1289/ehp.1408092. PMC 4154221. PMID 24911630.
  253. ^ Department of the Environment (25 February 2016). "National Environment Protection (Ambient Air Quality) Measure". Federal Register of Legislation. Retrieved 16 November 2018.
  254. ^ "Ambient air quality standards" (PDF). Archived (PDF) from the original on 30 April 2013. Retrieved 30 April 2013.
  255. ^ a b "Air Quality Standards – Environment – European Commission". Ec.europa.eu. Retrieved 1 February 2015.
  256. ^ "Air Quality Objectives". Environmental Protection Department, Hong Kong. 19 December 2012. Retrieved 27 July 2013.
  257. ^ "微小粒子状物質(PM2.5)対策|東京都環境局 大気・騒音・振動・悪臭対策". Kankyo.metro.tokyo.jp. Archived from the original on 28 February 2015. Retrieved 1 February 2015.
  258. ^ "Air Quality Standards" (PDF).
  259. ^ "Home". airkorea.or.kr.
  260. ^ "미세먼지 환경기준 선진국 수준 강화...'나쁨' 4배 늘 듯".
  261. ^ "細懸浮微粒管制". Environmental Protection Administration, ROC. Retrieved 16 November 2015.
  262. ^ "FEATURE: Air pollution reason for concern: groups - Taipei Times". www.taipeitimes.com. 5 February 2014.
  263. ^ a b "Pm Naaqs | Us Epa". Epa.gov. Retrieved 1 February 2015.
  264. ^ "Environmental Protection Agency – Particulate Matter (PM-10)". Epa.gov. 28 June 2006. Retrieved 1 February 2015.
  265. ^ "WHO global air quality guidelines" (PDF). WHO.
  266. ^ "Canadian Ambient Air Quality Standards (CAAQS) for Fine Particulate Matter (PM2.5) and Ozone" (PDF). Archived from the original (PDF) on 20 December 2016. Retrieved 11 December 2016.
  267. ^ "Burn better: Making changes for cleaner air".
  268. ^ "Guidance for wood burning in London".
  269. ^ "Log burners: What are the new rules and are they going to be banned?". Independent.co.uk. 6 February 2023.
  270. ^ Air Quality Trends - How to Interpret the Graphs
  271. ^ "Nanotechnology web page". Department of Toxic Substances Control. 2008. Archived from the original on 1 January 2010.
  272. ^ a b "Chemical Information Call-In web page". Department of Toxic Substances Control. 2008. Archived from the original on 18 March 2010. Retrieved 28 December 2009.
  273. ^ Wong J (22 January 2009), Call in letter (PDF), archived from the original (PDF) on 27 January 2017, retrieved 28 December 2009
  274. ^ "Contact List for CNT January 22 & 26 2009 Document" (PDF). Archived from the original (PDF) on 31 January 2017. Retrieved 28 December 2009.
  275. ^ "Archived DTSC Nanotechnology Symposia". Department of Toxic Substances Control. Archived from the original on 1 January 2010.
  276. ^ Chemical Information Call-in: Nanomaterials dtsc.ca.gov Archived 1 January 2010 at the Wayback Machine
  277. ^ a b c "The Cities Where Air Pollution Has Increased and Decreased the Most since 2019". 20 February 2023.
  278. ^ "Mapped: New Survey Shows Air Pollution Changes In Cities Around The World". Forbes.
  279. ^ Oliver Milman (1 April 2015). "Call for action on pollution as emissions linked to respiratory illnesses double". The Guardian. Retrieved 3 April 2015. emissions of a key pollutant linked to respiratory illness have doubled over the past five years
  280. ^ Li, Jie; Du, Huiyun; Wang, Zifa; Sun, Yele; Yang, Wenyi; Li, Jianjun; Tang, Xiao; Fu, Pingqing (1 April 2017). "Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain". Environmental Pollution. 223: 605–615. Bibcode:2017EPoll.223..605L. doi:10.1016/j.envpol.2017.01.063. ISSN 0269-7491. PMID 28159396.
  281. ^ Zhong, Junting; Zhang, Xiaoye; Gui, Ke; Liao, Jie; Fei, Ye; Jiang, Lipeng; Guo, Lifeng; Liu, Liangke; Che, Huizheng; Wang, Yaqiang; Wang, Deying; Zhou, Zijiang (12 July 2022). "Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China". Earth System Science Data. 14 (7): 3197–3211. Bibcode:2022ESSD...14.3197Z. doi:10.5194/essd-14-3197-2022. ISSN 1866-3508. S2CID 250512127.
  282. ^ "China: annual PM2.5 levels Beijing 2022". Statista. Retrieved 1 April 2023.
  283. ^ Consulate General of the United States of America Guangzhou, China (n.d.). "U.S. Consulate Air Quality Monitor and StateAir". U.S. Department of State. Archived from the original on 1 July 2011. Retrieved 24 December 2014.
  284. ^ "Armed With NASA Data, South Korea Confronts Its Choking Smog". NPR.
  285. ^ "NASA and NIER study finds that 48% of particulate matter comes from outside S. Korea".
  286. ^ "China, South Korea build environment cooperation". 26 June 2018.
  287. ^ "Air pollution chokes Thailand as campaigners call for stricter laws". 27 March 2023.
  288. ^ "Air pollution hospitalises 200,000 in one week as fumes, emissions and smoke descend on Thailand". 13 March 2023.
  289. ^ "Ambient (outdoor) air pollution". www.who.int.
  290. ^ "Aviation Pollution".
  291. ^ "Chapter 1 - Fly Ash - An Engineering Material - Fly Ash Facts for Highway Engineers - Recycling - Sustainability - Pavements - Federal Highway Administration". Federal Highway Administration (FHWA).
  292. ^ "City Rankings, State of the Air, American Lung Association".
  293. ^ "The Dirtiest And Cleanest Cities In America (The Worst Will Surprise You)". Forbes.
  294. ^ "An N95 Mask Is Your Best Defense Against Wildfire Smoke | Time". 7 June 2023.

Further reading

Control

Health

More

External links

Control

Others