stringtranslate.com

Parasitismo

Un parásito de peces , el isópodo Cymothoa exigua , reemplaza la lengua de un Lithognathus

El parasitismo es una relación estrecha entre especies , donde un organismo, el parásito, vive sobre o dentro de otro organismo, el huésped , causándole algún daño, y está adaptado estructuralmente a esta forma de vida. [1] El entomólogo EO Wilson caracterizó a los parásitos como "depredadores que comen presas en unidades de menos de uno". [2] Los parásitos incluyen protozoos unicelulares como los agentes de la malaria , la enfermedad del sueño y la disentería amebiana ; animales como anquilostomas , piojos , mosquitos y murciélagos vampiros ; hongos como el hongo de la miel y los agentes de la tiña ; y plantas como el muérdago , la cuscuta y las retamas .

Existen seis estrategias parasitarias principales de explotación de huéspedes animales, a saber: castración parasitaria , parasitismo transmitido directamente (por contacto), parasitismo transmitido tróficamente (al ser ingerido), parasitismo transmitido por vectores , parasitoidismo y microdepredación. Un eje principal de clasificación se refiere a la invasividad: un endoparásito vive dentro del cuerpo del huésped; un ectoparásito vive fuera, en la superficie del huésped.

Al igual que la depredación, el parasitismo es un tipo de interacción entre consumidor y recurso , [3] pero a diferencia de los depredadores , los parásitos, con excepción de los parasitoides, suelen ser mucho más pequeños que sus huéspedes, no los matan y a menudo viven en sus huéspedes o sobre ellos durante un período prolongado. Los parásitos de los animales son altamente especializados y se reproducen a un ritmo más rápido que sus huéspedes. Los ejemplos clásicos incluyen interacciones entre huéspedes vertebrados y tenias , duelas , la especie Plasmodium causante de la malaria y pulgas .

Los parásitos reducen la aptitud del hospedador mediante patologías generales o especializadas , desde la castración parasitaria hasta la modificación del comportamiento del hospedador. Los parásitos aumentan su propia aptitud explotando a los hospedadores para obtener los recursos necesarios para su supervivencia, en particular alimentándose de ellos y utilizando hospedadores intermediarios (secundarios) para ayudar en su transmisión de un hospedador definitivo (primario) a otro. Aunque el parasitismo es a menudo inequívoco, es parte de un espectro de interacciones entre especies , que se gradúa a través del parasitoidismo en depredación, a través de la evolución en mutualismo y, en algunos hongos, en ser saprofito .

La gente conoce parásitos como lombrices intestinales y tenias desde el antiguo Egipto , Grecia y Roma . A principios de la época moderna, Antonie van Leeuwenhoek observó Giardia lamblia en su microscopio en 1681, mientras que Francesco Redi describió parásitos internos y externos, incluidos el trematodo hepático de las ovejas y las garrapatas . La parasitología moderna se desarrolló en el siglo XIX. En la cultura humana, el parasitismo tiene connotaciones negativas. Estas fueron explotadas con efecto satírico en el poema de Jonathan Swift de 1733 "Sobre la poesía: una rapsodia", comparando a los poetas con "alimañas" hiperparasitarias . En la ficción, la novela de terror gótico de Bram Stoker de 1897 Drácula y sus muchas adaptaciones posteriores presentaron un parásito bebedor de sangre . La película Alien de Ridley Scott de 1979 fue una de las muchas obras de ciencia ficción que presentaron una especie alienígena parásita. [4]

Etimología

Utilizada por primera vez en inglés en 1539, la palabra parásito proviene del francés medieval parasite , de la forma latinizada parasitus , del griego antiguo παράσιτος [5] (parasitos)  'el que come en la mesa de otro' a su vez de παρά [6] (para)  'al lado, por' y σῖτος (sitos)  'trigo, comida'. [7] El término relacionado parasitismo aparece en inglés a partir de 1611. [8]

Estrategias evolutivas

Conceptos básicos

La cabeza (escólex) de la tenia Taenia solium , un parásito intestinal , tiene ganchos y ventosas para adherirse a su huésped.

El parasitismo es un tipo de simbiosis , una interacción biológica estrecha y persistente a largo plazo entre un parásito y su hospedador. A diferencia de los saprótrofos , los parásitos se alimentan de hospedadores vivos, aunque algunos hongos parásitos, por ejemplo, pueden seguir alimentándose de hospedadores que han matado. A diferencia del comensalismo y el mutualismo , la relación parasitaria daña al hospedador, ya sea alimentándose de él o, como en el caso de los parásitos intestinales, consumiendo parte de su alimento. Debido a que los parásitos interactúan con otras especies, pueden actuar fácilmente como vectores de patógenos, causando enfermedades . [9] [10] [11] La depredación , por definición, no es una simbiosis, ya que la interacción es breve, pero el entomólogo EO Wilson ha caracterizado a los parásitos como "depredadores que comen presas en unidades de menos de uno". [2]

Dentro de ese ámbito hay muchas estrategias posibles. Los taxónomos clasifican a los parásitos en una variedad de esquemas superpuestos, basados ​​en sus interacciones con sus hospedadores y en sus ciclos de vida , que a veces son muy complejos. Un parásito obligado depende completamente del hospedador para completar su ciclo de vida, mientras que un parásito facultativo no. Los ciclos de vida de los parásitos que involucran solo a un hospedador se denominan "directos"; aquellos con un hospedador definitivo (donde el parásito se reproduce sexualmente) y al menos un hospedador intermediario se denominan "indirectos". [12] [13] Un endoparásito vive dentro del cuerpo del hospedador; un ectoparásito vive afuera, en la superficie del hospedador. [14] Los mesoparásitos, como algunos copépodos , por ejemplo, ingresan a una abertura en el cuerpo del hospedador y permanecen parcialmente incrustados allí. [15] Algunos parásitos pueden ser generalistas y alimentarse de una amplia gama de hospedadores, pero muchos parásitos, y la mayoría de los protozoos y helmintos que parasitan animales, son especialistas y extremadamente específicos de hospedadores. [14] Una primera división básica y funcional de los parásitos distinguía a los microparásitos y los macroparásitos. A cada uno de ellos se le asignaba un modelo matemático para analizar los movimientos poblacionales de los grupos hospedador-parásito. [16] Los microorganismos y virus que pueden reproducirse y completar su ciclo de vida dentro del hospedador se conocen como microparásitos. Los macroparásitos son los organismos multicelulares que se reproducen y completan su ciclo de vida fuera del hospedador o en el cuerpo de este. [16] [17]

Gran parte del pensamiento sobre los tipos de parasitismo se ha centrado en los parásitos de animales terrestres, como los helmintos. Aquellos en otros entornos y con otros huéspedes a menudo tienen estrategias análogas. Por ejemplo, la anguila chata es probablemente un endoparásito facultativo (es decir, es semiparásito) que oportunistamente excava y se come a los peces enfermos y moribundos. [18] Los insectos herbívoros como las cochinillas , los pulgones y las orugas se parecen mucho a los ectoparásitos, atacando plantas mucho más grandes; sirven como vectores de bacterias, hongos y virus que causan enfermedades de las plantas . Como las cochinillas hembras no pueden moverse, son parásitos obligados, permanentemente adheridos a sus huéspedes. [16]

Las señales sensoriales que utiliza un parásito para identificar y acercarse a un huésped potencial se conocen como "señales del huésped". Estas señales pueden incluir, por ejemplo, vibración, [19] dióxido de carbono exhalado , olores de la piel, señales visuales y térmicas y humedad. [20] Las plantas parásitas pueden utilizar, por ejemplo, la luz, la fisioquímica del huésped y los compuestos volátiles para reconocer a los huéspedes potenciales. [21]

Estrategias principales

Existen seis estrategias parasitarias principales , a saber: castración parasitaria ; parasitismo transmitido directamente; parasitismo transmitido tróficamente; parasitismo transmitido por vectores ; parasitoidismo ; y microdepredación. Estas se aplican a parásitos cuyos huéspedes son plantas y animales. [16] [22] Estas estrategias representan picos adaptativos ; son posibles estrategias intermedias, pero los organismos de muchos grupos diferentes han convergido consistentemente en estas seis, que son evolutivamente estables. [22]

Se puede obtener una perspectiva de las opciones evolutivas considerando cuatro cuestiones clave: el efecto sobre la aptitud de los hospedadores de un parásito; el número de hospedadores que tiene por etapa de vida; si se impide que el hospedador se reproduzca; y si el efecto depende de la intensidad (número de parásitos por hospedador). De este análisis, surgen las principales estrategias evolutivas del parasitismo, junto con la depredación. [23]

Castradores parásitos

El parásito castrador Sacculina carcini (resaltado) adherido a su cangrejo huésped

Los castradores parásitos destruyen parcial o totalmente la capacidad de su anfitrión para reproducirse, desviando la energía que se habría destinado a la reproducción hacia el crecimiento del anfitrión y del parásito, a veces causando gigantismo en el anfitrión. Los otros sistemas del anfitrión permanecen intactos, lo que le permite sobrevivir y sostener al parásito. [22] [24] Los crustáceos parásitos como los del género especializado Sacculina , los percebes , causan específicamente daños a las gónadas de sus muchas especies [25] de cangrejos anfitriones . En el caso de Sacculina , los testículos de más de dos tercios de sus cangrejos anfitriones se degeneran lo suficiente para que estos cangrejos machos desarrollen características sexuales secundarias femeninas , como abdómenes más anchos, pinzas más pequeñas y apéndices para agarrar huevos. Varias especies de helmintos castran a sus anfitriones (como insectos y caracoles). Esto puede suceder directamente, ya sea mecánicamente alimentándose de sus gónadas o secretando una sustancia química que destruye las células reproductivas; o indirectamente, ya sea secretando una hormona o desviando nutrientes. Por ejemplo, el trematodo Zoogonus lasius , cuyos esporocistos carecen de boca, castra químicamente al caracol marino intermareal Tritia obsoleta , desarrollándose en su gónada y matando sus células reproductivas. [24] [26]

Transmisión directa

Los piojos humanos son ectoparásitos obligados que se transmiten directamente

Los parásitos de transmisión directa, que no requieren un vector para llegar a sus huéspedes, incluyen parásitos de vertebrados terrestres como piojos y ácaros; parásitos marinos como copépodos y anfípodos cíamidas ; monogeneos ; y muchas especies de nematodos, hongos, protozoos, bacterias y virus. Ya sean endoparásitos o ectoparásitos, cada uno tiene una sola especie huésped. Dentro de esa especie, la mayoría de los individuos están libres o casi libres de parásitos, mientras que una minoría porta una gran cantidad de parásitos; esto se conoce como distribución agregada . [22]

Transmisión trófica

Clonorchis sinensis , el parásito hepático chino, se transmite tróficamente

Los parásitos de transmisión trófica se transmiten al ser ingeridos por un huésped. Incluyen trematodos (todos excepto esquistosomas ), cestodos , acantocéfalos , pentastómidos , muchos gusanos redondos y muchos protozoos como Toxoplasma . [22] Tienen ciclos de vida complejos que involucran huéspedes de dos o más especies. En sus etapas juveniles infectan y a menudo se enquistan en el huésped intermediario. Cuando el animal huésped intermediario es ingerido por un depredador, el huésped definitivo, el parásito sobrevive al proceso de digestión y madura hasta convertirse en un adulto; algunos viven como parásitos intestinales . Muchos parásitos de transmisión trófica modifican el comportamiento de sus huéspedes intermediarios, aumentando sus posibilidades de ser ingeridos por un depredador. Al igual que con los parásitos de transmisión directa, la distribución de parásitos de transmisión trófica entre individuos huéspedes es agregada. [22] La coinfección por múltiples parásitos es común. [27] La ​​autoinfección , en la que (por excepción) todo el ciclo de vida del parásito tiene lugar en un único huésped primario, a veces puede ocurrir en helmintos como Strongyloides stercoralis . [28]

Transmitido por vector

El endoparásito protozoario transmitido por vector Trypanosoma entre los glóbulos rojos humanos

Los parásitos transmitidos por vectores dependen de un tercero, un huésped intermediario, donde el parásito no se reproduce sexualmente, [14] para llevarlos de un huésped definitivo a otro. [22] Estos parásitos son microorganismos, a saber, protozoos , bacterias o virus , a menudo patógenos intracelulares (causantes de enfermedades). [22] Sus vectores son en su mayoría artrópodos hematófagos como pulgas, piojos, garrapatas y mosquitos. [22] [29] Por ejemplo, la garrapata del ciervo Ixodes scapularis actúa como vector de enfermedades como la enfermedad de Lyme , la babesiosis y la anaplasmosis . [30] Los endoparásitos protozoarios, como los parásitos de la malaria del género Plasmodium y los parásitos de la enfermedad del sueño del género Trypanosoma , tienen estadios infecciosos en la sangre del huésped que son transportados a nuevos huéspedes por insectos que pican. [31]

Parasitoides

Los parasitoides son insectos que tarde o temprano matan a sus hospedadores, lo que hace que su relación sea cercana a la depredación. [32] La mayoría de los parasitoides son avispas parasitoides u otros himenópteros ; otros incluyen dípteros como las moscas fóridas . Se pueden dividir en dos grupos, idiobiontes y koinobiontes, que difieren en su trato con sus hospedadores. [33]

Los parasitoides idiobiontes pican a sus presas, que suelen ser de gran tamaño, y las matan o las paralizan inmediatamente. La presa inmovilizada es luego llevada a un nido, a veces junto con otras presas si no es lo suficientemente grande como para sostener al parasitoide durante su desarrollo. Ponen un huevo sobre la presa y luego se sella el nido. El parasitoide se desarrolla rápidamente a través de sus etapas de larva y pupa, alimentándose de las provisiones que le dejan. [33]

Los parasitoides koinobiontes , que incluyen moscas y avispas, ponen sus huevos dentro de huéspedes jóvenes, generalmente larvas. A estas se les permite seguir creciendo, por lo que el huésped y el parasitoide se desarrollan juntos durante un período prolongado, que termina cuando los parasitoides emergen como adultos, dejando a la presa muerta, comida desde adentro. Algunos koinobiontes regulan el desarrollo de su huésped, por ejemplo, impidiendo que se transforme en pupa o haciendo que mude cuando el parasitoide esté listo para mudar. Pueden hacerlo produciendo hormonas que imitan las hormonas de muda del huésped ( ecdiesteroides ), o regulando el sistema endocrino del huésped. [33]

Microdepredadores

Los mosquitos son microdepredadores y vectores importantes de enfermedades.

Un microdepredador ataca a más de un huésped, reduciendo la aptitud de cada huésped al menos en una pequeña cantidad, y solo está en contacto con cualquier huésped de manera intermitente. Este comportamiento hace que los microdepredadores sean adecuados como vectores, ya que pueden pasar parásitos más pequeños de un huésped a otro. [22] [34] [23] La mayoría de los microdepredadores son hematófagos y se alimentan de sangre. Incluyen anélidos como sanguijuelas , crustáceos como branquiuros e isópodos gnátidos , varios dípteros como mosquitos y moscas tsé-tsé , otros artrópodos como pulgas y garrapatas, vertebrados como lampreas y mamíferos como murciélagos vampiros . [22]

Estrategias de transmisión

Ciclo de vida de Entamoeba histolytica , un protozoo parásito anaeróbico transmitido por vía fecal-oral

Los parásitos utilizan una variedad de métodos para infectar a los huéspedes animales, incluido el contacto físico, la ruta fecal-oral , etapas infecciosas de vida libre y vectores, que se adaptan a sus diferentes huéspedes, ciclos de vida y contextos ecológicos. [35] En la tabla se dan ejemplos para ilustrar algunas de las muchas combinaciones posibles.

Variaciones

Entre las muchas variaciones de las estrategias parasitarias se encuentran el hiperparasitismo, [37] el parasitismo social, [38] el parasitismo de cría, [39] el cleptoparasitismo, [40] el parasitismo sexual, [41] y el adelfoparasitismo. [42]

Hiperparasitismo

Los hiperparásitos se alimentan de otro parásito, como lo ejemplifican los protozoos que viven en parásitos helmintos, [37] o parasitoides facultativos u obligados cuyos huéspedes son parásitos convencionales o parasitoides. [22] [33] También se dan niveles de parasitismo más allá del secundario, especialmente entre los parasitoides facultativos. En los sistemas de agallas de roble , puede haber hasta cinco niveles de parasitismo. [43]

Los hiperparásitos pueden controlar las poblaciones de sus huéspedes y se utilizan para este propósito en la agricultura y, en cierta medida, en la medicina . Los efectos de control se pueden ver en la forma en que el virus CHV1 ayuda a controlar el daño que la plaga del castaño , Cryphonectria parasitica , causa a los castaños americanos , y en la forma en que los bacteriófagos pueden limitar las infecciones bacterianas. Es probable, aunque poco investigado, que la mayoría de los microparásitos patógenos tengan hiperparásitos que pueden resultar muy útiles tanto en la agricultura como en la medicina. [44]

Parasitismo social

Los parásitos sociales se aprovechan de las interacciones interespecíficas entre miembros de animales eusociales como las hormigas , las termitas y los abejorros . Algunos ejemplos son la gran mariposa azul, Phengaris arion , cuyas larvas emplean el mimetismo de las hormigas para parasitar a ciertas hormigas, [38] Bombus bohemicus , un abejorro que invade las colmenas de otras abejas y se hace cargo de la reproducción mientras sus crías son criadas por obreras anfitrionas, y Melipona scutellaris , una abeja eusocial cuyas reinas vírgenes escapan de las obreras asesinas e invaden otra colonia sin reina. [45] Un ejemplo extremo de parasitismo social interespecífico se encuentra en la hormiga Tetramorium inquilinum , un parásito obligado que vive exclusivamente en las espaldas de otras hormigas Tetramorium . [46] Un mecanismo para la evolución del parasitismo social fue propuesto por primera vez por Carlo Emery en 1909. [47] Ahora conocida como " regla de Emery ", establece que los parásitos sociales tienden a estar estrechamente relacionados con sus huéspedes, y a menudo pertenecen al mismo género. [48] [49] [50]

El parasitismo social intraespecífico se produce en la lactancia parasitaria, en la que algunas crías individuales toman leche de hembras no emparentadas. En los monos capuchinos , las hembras de rango superior a veces toman leche de hembras de rango inferior sin ninguna reciprocidad. [51]

Parasitismo de cría

En el parasitismo de cría , los hospedadores actúan como padres mientras crían a las crías como si fueran suyas. Los parásitos de cría incluyen aves de diferentes familias, como los tordos , los urogallos , los cucos y los patos de cabeza negra . Estos no construyen nidos propios, sino que dejan sus huevos en nidos de otras especies . Los huevos de algunos parásitos de cría imitan a los de sus hospedadores, mientras que algunos huevos de tordos tienen cáscaras duras, lo que hace que sea difícil para los hospedadores matarlos perforándolos, ambos mecanismos implican una selección por parte de los hospedadores contra los huevos parásitos. [39] [52] [53] La hembra adulta del cuco europeo imita aún más a un depredador, el gavilán europeo , lo que le da tiempo para poner sus huevos en el nido del hospedador sin ser observada. [54]

Cleptoparasitismo

En el cleptoparasitismo (del griego κλέπτης ( kleptēs ), "ladrón"), los parásitos roban la comida recogida por el huésped. El parasitismo se da a menudo sobre parientes cercanos, ya sea dentro de la misma especie o entre especies del mismo género o familia. Por ejemplo, los numerosos linajes de abejas cucú ponen sus huevos en las celdas de nido de otras abejas de la misma familia. [40] El cleptoparasitismo es poco común en general, pero es evidente en las aves; algunas, como las págalos, están especializadas en piratear la comida de otras aves marinas, persiguiéndolas implacablemente hasta que regurgitan su captura. [55]

Parasitismo sexual

En algunas especies de rape , como Ceratias holboelli , se observa un enfoque único: los machos se reducen a pequeños parásitos sexuales , totalmente dependientes de las hembras de su propia especie para sobrevivir, permanentemente adheridos debajo del cuerpo de la hembra e incapaces de valerse por sí mismos. La hembra nutre al macho y lo protege de los depredadores, mientras que el macho no le devuelve nada excepto el esperma que la hembra necesita para producir la siguiente generación. [41]

Adelfoparasitismo

El adelfoparasitismo (del griego ἀδελφός ( adelphós ), hermano [56] ), también conocido como parasitismo entre hermanos, ocurre cuando la especie hospedadora está estrechamente relacionada con el parásito, a menudo en la misma familia o género. [42] En el parasitoide de la mosca negra de los cítricos, Encarsia perplexa , las hembras no apareadas pueden poner huevos haploides en las larvas completamente desarrolladas de su propia especie, produciendo crías masculinas, [57] mientras que el gusano marino Bonellia viridis tiene una estrategia reproductiva similar, aunque las larvas son planctónicas. [58]

Ilustraciones

Se ilustran ejemplos de las principales estrategias variantes.

Rango taxonómico

El parasitismo tiene un rango taxonómico extremadamente amplio, que incluye animales, plantas, hongos, protozoos, bacterias y virus. [59]

Animales

El parasitismo está muy extendido en el reino animal, [63] y ha evolucionado independientemente de las formas de vida libre cientos de veces. [22] Muchos tipos de helmintos , incluidos los trematodos y los cestodos, tienen ciclos de vida completos que involucran a dos o más huéspedes. El grupo más grande, con diferencia, es el de las avispas parasitoides de los himenópteros. [22] Los filos y clases con el mayor número de especies parásitas se enumeran en la tabla. Los números son estimaciones mínimas conservadoras. Las columnas de endoparasitismo y ectoparasitismo se refieren al huésped definitivo, como se documenta en las columnas de vertebrados e invertebrados. [60]

Plantas

Cuscuta (una cuscuta), un holoparásito del tallo , en unárbol de acacia

Un hemiparásito o parásito parcial como el muérdago obtiene algunos de sus nutrientes de otra planta viva, mientras que un holoparásito como la cuscuta obtiene todos sus nutrientes de otra planta. [64] Las plantas parásitas constituyen alrededor del uno por ciento de las angiospermas y se encuentran en casi todos los biomas del mundo. [65] [66] [67] Todas estas plantas tienen raíces modificadas, haustorios , que penetran en las plantas hospedantes, conectándolas al sistema conductor, ya sea el xilema , el floema o ambos. Esto les proporciona la capacidad de extraer agua y nutrientes del hospedante. Una planta parásita se clasifica dependiendo de dónde se adhiere al hospedante, ya sea el tallo o la raíz, y la cantidad de nutrientes que requiere. Dado que los holoparásitos no tienen clorofila y, por lo tanto, no pueden producir alimento por sí mismos mediante la fotosíntesis , siempre son parásitos obligados, que obtienen todo su alimento de sus hospedantes. [66] Algunas plantas parásitas pueden localizar a sus plantas hospedantes detectando sustancias químicas en el aire o el suelo emitidas por los brotes o raíces hospedantes , respectivamente. Se conocen alrededor de 4.500 especies de plantas parásitas en aproximadamente 20 familias de plantas con flores . [68] [66]

Las especies de la familia Orobanchaceae (nabos) se encuentran entre las plantas más destructivas económicamente. Se estima que las especies de Striga (hierba bruja) cuestan miles de millones de dólares al año en pérdidas de rendimiento de los cultivos, infestando más de 50 millones de hectáreas de tierra cultivada solo en el África subsahariana. Striga infecta tanto pastos como cereales, incluidos el maíz , el arroz y el sorgo , que se encuentran entre los cultivos alimentarios más importantes del mundo. Orobanche también amenaza una amplia gama de otros cultivos importantes, incluidos los guisantes , los garbanzos , los tomates , las zanahorias y las variedades de repollo . La pérdida de rendimiento causada por Orobanche puede ser total; a pesar de una amplia investigación, ningún método de control ha sido completamente exitoso. [69]

Muchas plantas y hongos intercambian carbono y nutrientes en relaciones micorrízicas mutualistas. Sin embargo, unas 400 especies de plantas micoheterótrofas , principalmente en los trópicos, hacen trampa de manera efectiva al tomar carbono de un hongo en lugar de intercambiarlo por minerales. Tienen raíces mucho más reducidas, ya que no necesitan absorber agua del suelo; sus tallos son delgados con pocos haces vasculares , y sus hojas se reducen a pequeñas escamas, ya que no realizan la fotosíntesis. Sus semillas son muy pequeñas y numerosas, por lo que parecen depender de ser infectadas por un hongo adecuado poco después de germinar. [70]

El hongo de la miel, Armillaria mellea , es un parásito de los árboles y un saprófito que se alimenta de los árboles que ha matado.

Hongos

Los hongos parásitos obtienen parte o la totalidad de sus requerimientos nutricionales de plantas, otros hongos o animales.

Los hongos fitopatógenos se clasifican en tres categorías según su modo de nutrición: biótrofos, hemibiótrofos y necrótrofos. Los hongos biótrofos obtienen nutrientes de las células vegetales vivas y, durante el curso de la infección, colonizan su planta huésped de tal manera que la mantienen viva durante un tiempo máximo. [71] Un ejemplo bien conocido de un patógeno biótrofo es Ustilago maydis , agente causante de la enfermedad del carbón del maíz. Los patógenos necrotróficos, por otro lado, matan las células huésped y se alimentan de forma saprofita , un ejemplo son los hongos melíferos colonizadores de raíces del género Armillaria . [72] Los patógenos hemibiótrofos comienzan a colonizar sus huéspedes como biótrofos y, posteriormente, matan las células huésped y se alimentan como necrótrofos, un fenómeno denominado cambio de biotrofia a necrotrofia. [73]

Los hongos patógenos son agentes causales bien conocidos de enfermedades en animales y humanos. Se estima que las infecciones fúngicas ( micosis ) matan a 1,6 millones de personas cada año. [74] Un ejemplo de un potente patógeno fúngico animal son los microsporidios , hongos parásitos intracelulares obligados que afectan principalmente a los insectos, pero también pueden afectar a los vertebrados, incluidos los humanos, causando la infección intestinal microsporidiosis . [75]

Borrelia burgdorferi , la bacteria que causa la enfermedad de Lyme , es transmitida porgarrapatas Ixodes .

Protozoos

Los protozoos como Plasmodium , Trypanosoma y Entamoeba [76] son ​​endoparásitos. Causan enfermedades graves en vertebrados, incluidos los humanos (en estos casos, malaria, enfermedad del sueño y disentería amebiana ) y tienen ciclos de vida complejos. [31]

Bacteria

Muchas bacterias son parásitas, aunque generalmente se las considera patógenos que causan enfermedades. [77] Las bacterias parásitas son extremadamente diversas e infectan a sus huéspedes por diversas vías. Por dar algunos ejemplos, Bacillus anthracis , la causa del ántrax , se propaga por contacto con animales domésticos infectados ; sus esporas , que pueden sobrevivir durante años fuera del cuerpo, pueden ingresar al huésped a través de una abrasión o pueden inhalarse. Borrelia , la causa de la enfermedad de Lyme y la fiebre recurrente , se transmite por vectores, garrapatas del género Ixodes , desde los reservorios de las enfermedades en animales como los ciervos . Campylobacter jejuni , una causa de gastroenteritis , se propaga por vía fecal-oral de los animales, o al comer aves de corral insuficientemente cocidas , o por agua contaminada. Haemophilus influenzae , un agente de meningitis bacteriana e infecciones del tracto respiratorio como la gripe y la bronquitis , se transmite por contacto con gotitas. Treponema pallidum , la causa de la sífilis , se transmite a través de la actividad sexual . [78]

El fago T4 de Enterobacteria es un virus bacteriófago que infecta a su huésped, Escherichia coli , inyectando su ADN a través de su cola, que se adhiere a la superficie de la bacteria.

Virus

Los virus son parásitos intracelulares obligados, caracterizados por una función biológica extremadamente limitada, hasta el punto de que, si bien evidentemente pueden infectar a todos los demás organismos, desde bacterias y arqueas hasta animales, plantas y hongos, no está claro si pueden describirse como vivos. Pueden ser virus de ARN o ADN que consisten en una cadena simple o doble de material genético ( ARN o ADN , respectivamente), cubierto por una capa de proteína y, a veces, una envoltura lipídica . Por lo tanto, carecen de toda la maquinaria habitual de la célula , como las enzimas , y dependen completamente de la capacidad de la célula huésped para replicar el ADN y sintetizar proteínas. La mayoría de los virus son bacteriófagos que infectan bacterias. [79] [80] [81] [82]

Ecología evolutiva

Restauración de un tiranosaurio con agujeros posiblemente causados ​​por un parásito similar a Trichomonas

El parasitismo es un aspecto importante de la ecología evolutiva; por ejemplo, casi todos los animales que viven en libertad son huéspedes de al menos una especie de parásito. Los vertebrados, el grupo mejor estudiado, son huéspedes de entre 75.000 y 300.000 especies de helmintos y de un número incontable de microorganismos parásitos. En promedio, una especie de mamífero alberga cuatro especies de nematodos, dos de trematodos y dos de cestodos. [83] Los humanos tienen 342 especies de parásitos helmintos y 70 especies de parásitos protozoarios. [84] Aproximadamente tres cuartas partes de los eslabones de las redes alimentarias incluyen un parásito, importante para regular el número de huéspedes. Quizás el 40 por ciento de las especies descritas son parásitas. [83]

Registro fósil

El parasitismo es difícil de demostrar a partir del registro fósil , pero los agujeros en las mandíbulas de varios especímenes de Tyrannosaurus pueden haber sido causados ​​por parásitos similares a Trichomonas . [85] Saurophthirus , la pulga del Cretácico Inferior , parasitó a los pterosaurios . [86] [87] Se encontraron huevos que pertenecían a gusanos nematodos y probablemente quistes protozoarios en el coprolito del Triásico Tardío del fitosaurio . Este raro hallazgo en Tailandia revela más sobre la ecología de los parásitos prehistóricos. [88]

Coevolución

A medida que los hospedadores y los parásitos evolucionan juntos, sus relaciones suelen cambiar. Cuando un parásito tiene una relación exclusiva con un hospedador, la selección hace que la relación se vuelva más benigna, incluso mutualista, ya que el parásito puede reproducirse durante más tiempo si su hospedador vive más. [89] Pero cuando los parásitos compiten, la selección favorece al parásito que se reproduce más rápido, lo que conduce a una mayor virulencia. Por lo tanto, existen diversas posibilidades en la coevolución hospedador-parásito . [90]

La epidemiología evolutiva analiza cómo se propagan y evolucionan los parásitos, mientras que la medicina darwiniana aplica un pensamiento evolutivo similar a enfermedades no parasitarias como el cáncer y las enfermedades autoinmunes . [91]

La coevolución favorece el mutualismo

Bacteria Wolbachia dentro de una célula de insecto

La coevolución a largo plazo a veces conduce a una relación relativamente estable que tiende al comensalismo o al mutualismo , ya que, en igualdad de condiciones, es de interés evolutivo del parásito que su anfitrión prospere. Un parásito puede evolucionar para volverse menos dañino para su anfitrión o un anfitrión puede evolucionar para hacer frente a la presencia inevitable de un parásito, hasta el punto de que la ausencia del parásito le cause daño al anfitrión. Por ejemplo, aunque los animales parasitados por gusanos a menudo sufren daños evidentes, dichas infecciones también pueden reducir la prevalencia y los efectos de los trastornos autoinmunes en los huéspedes animales, incluidos los humanos. [89] En un ejemplo más extremo, algunos gusanos nematodos no pueden reproducirse, o incluso sobrevivir, sin la infección por la bacteria Wolbachia . [92]

Lynn Margulis y otros han argumentado, siguiendo el libro de Peter Kropotkin de 1902 Ayuda mutua: un factor de evolución , que la selección natural hace que las relaciones pasen del parasitismo al mutualismo cuando los recursos son limitados. Este proceso puede haber estado involucrado en la simbiogénesis que formó los eucariotas a partir de una relación intracelular entre arqueas y bacterias, aunque la secuencia de eventos sigue siendo en gran parte indefinida. [93] [94]

La competencia favorece la virulencia

Se puede esperar que la competencia entre parásitos favorezca a los parásitos que se reproducen más rápido y, por lo tanto, son más virulentos , por selección natural . [90] [95]

Los biólogos sospecharon durante mucho tiempo que los flamencos y los patos se habían coespeciado con sus piojos parásitos , que eran similares en ambas familias. La coespeciación se produjo, pero dio lugar a los flamencos y a los somormujos , con un posterior cambio de hospedador de los piojos de los flamencos a los patos.

Entre las bacterias parásitas que matan insectos de los géneros Photorhabdus y Xenorhabdus , la virulencia dependía de la potencia relativa de las toxinas antimicrobianas ( bacteriocinas ) producidas por las dos cepas involucradas. Cuando sólo una bacteria podía matar a la otra, la otra cepa era excluida por la competencia. Pero cuando las orugas eran infectadas con bacterias que tenían toxinas capaces de matar a la otra cepa, ninguna cepa era excluida, y su virulencia era menor que cuando el insecto era infectado por una sola cepa. [90]

Coespeciación

Un parásito a veces experimenta coespeciación con su huésped, lo que da como resultado el patrón descrito en la regla de Fahrenholz , según el cual las filogenias del huésped y del parásito llegan a reflejarse entre sí. [96]

Un ejemplo es el virus espumoso de los simios (SFV) y sus hospedadores primates. Se descubrió que las filogenias de la polimerasa del SFV y la subunidad II de la citocromo c oxidasa mitocondrial de los primates africanos y asiáticos eran muy congruentes en cuanto al orden de ramificación y los tiempos de divergencia, lo que implica que los virus espumosos de los simios coespeciaron con los primates del Viejo Mundo durante al menos 30 millones de años. [97]

La presunción de una historia evolutiva compartida entre parásitos y hospedadores puede ayudar a dilucidar cómo se relacionan los taxones hospedadores. Por ejemplo, ha habido una disputa sobre si los flamencos están más estrechamente relacionados con las cigüeñas o los patos . El hecho de que los flamencos compartan parásitos con patos y gansos fue tomado inicialmente como evidencia de que estos grupos estaban más estrechamente relacionados entre sí que con las cigüeñas. Sin embargo, eventos evolutivos como la duplicación o la extinción de especies de parásitos (sin eventos similares en la filogenia del hospedador) a menudo erosionan las similitudes entre las filogenias del hospedador y el parásito. En el caso de los flamencos, tienen piojos similares a los de los somormujos . Los flamencos y los somormujos tienen un ancestro común, lo que implica coespeciación de aves y piojos en estos grupos. Los piojos de los flamencos luego cambiaron de hospedadores a patos, creando la situación que había confundido a los biólogos. [98]

El protozoo Toxoplasma gondii facilita su transmisión al inducir cambios de comportamiento en ratas a través de la infección de neuronas en su sistema nervioso central .

Los parásitos infectan a los huéspedes simpátricos (aquellos dentro de su misma área geográfica) de manera más efectiva, como se ha demostrado con los trematodos digenéticos que infectan a los caracoles de lago. [99] Esto está en línea con la hipótesis de la Reina Roja , que establece que las interacciones entre especies conducen a una selección natural constante para la coadaptación. Los parásitos rastrean los fenotipos de los huéspedes locales comunes, por lo que los parásitos son menos infecciosos para los huéspedes alopátricos , aquellos de diferentes regiones geográficas. [99]

Modificación del comportamiento del anfitrión


Algunos parásitos modifican el comportamiento del huésped para aumentar su transmisión entre huéspedes, a menudo en relación con el depredador y la presa ( el parásito aumenta la transmisión trófica ). Por ejemplo, en la marisma costera de California , la duela Euhaplorchis californiensis reduce la capacidad de su huésped, el pez killi, para evitar a los depredadores. [100] Este parásito madura en las garcetas , que tienen más probabilidades de alimentarse de peces killi infectados que de peces no infectados. Otro ejemplo es el protozoo Toxoplasma gondii , un parásito que madura en los gatos pero que puede ser transportado por muchos otros mamíferos . Las ratas no infectadas evitan los olores de los gatos, pero las ratas infectadas con T. gondii se sienten atraídas por este olor, lo que puede aumentar la transmisión a los huéspedes felinos. [101] El parásito de la malaria modifica el olor de la piel de sus huéspedes humanos, aumentando su atractivo para los mosquitos y, por tanto, mejorando la posibilidad de que el parásito se transmita. [36] La araña Cyclosa argenteoalba suele tener larvas de avispas parasitoides adheridas a ella, lo que altera su comportamiento de construcción de telarañas. En lugar de producir sus habituales telarañas pegajosas en forma de espiral, creaban telas simplificadas cuando se les adherían los parásitos. Este comportamiento manipulado duraba más y era más notorio cuanto más tiempo se dejaban los parásitos en las arañas. [102]

Pérdida de rasgos: la chinche Cimex lectularius no puede volar, como muchos insectos ectoparásitos.

Pérdida de rasgos

Los parásitos pueden explotar a sus hospedadores para llevar a cabo una serie de funciones que de otro modo tendrían que llevar a cabo por sí mismos. Los parásitos que pierden esas funciones tienen una ventaja selectiva, ya que pueden desviar recursos hacia la reproducción. Muchos insectos ectoparásitos, incluidas las chinches , las chinches murciélago , los piojos y las pulgas , han perdido su capacidad de volar y dependen en cambio de sus hospedadores para el transporte. [103] La pérdida de rasgos es más generalizada entre los parásitos. [104] Un ejemplo extremo es el mixospario Henneguya zschokkei , un ectoparásito de los peces y el único animal conocido que ha perdido la capacidad de respirar aeróbicamente: sus células carecen de mitocondrias . [105]

Defensas del huésped

Los huéspedes han desarrollado una variedad de medidas defensivas contra sus parásitos, incluidas barreras físicas como la piel de los vertebrados, [106] el sistema inmunológico de los mamíferos, [107] insectos que eliminan activamente los parásitos, [108] y sustancias químicas defensivas en las plantas. [109]

El biólogo evolutivo WD Hamilton sugirió que la reproducción sexual podría haber evolucionado para ayudar a derrotar a múltiples parásitos al permitir la recombinación genética , la mezcla de genes para crear combinaciones variadas. Hamilton demostró mediante modelos matemáticos que la reproducción sexual sería evolutivamente estable en diferentes situaciones, y que las predicciones de la teoría coincidían con la ecología real de la reproducción sexual. [110] [111] Sin embargo, puede haber una compensación entre la inmunocompetencia y la reproducción de las características sexuales secundarias de los huéspedes vertebrados machos , como el plumaje de los pavos reales y las melenas de los leones . Esto se debe a que la hormona masculina testosterona fomenta el crecimiento de las características sexuales secundarias, favoreciendo a dichos machos en la selección sexual , al precio de reducir sus defensas inmunológicas. [112]

Vertebrados

La piel seca de los vertebrados, como el lagarto de cuernos cortos, impide la entrada de muchos parásitos.

La barrera física de la piel dura y a menudo seca e impermeable de los reptiles, aves y mamíferos evita que los microorganismos invasores entren en el cuerpo. La piel humana también secreta sebo , que es tóxico para la mayoría de los microorganismos. [106] Por otro lado, los parásitos más grandes, como los trematodos, detectan las sustancias químicas producidas por la piel para localizar a sus huéspedes cuando entran en el agua. La saliva y las lágrimas de los vertebrados contienen lisozima , una enzima que descompone las paredes celulares de las bacterias invasoras. [106] Si el organismo pasa por la boca, el estómago con su ácido clorhídrico , tóxico para la mayoría de los microorganismos, es la siguiente línea de defensa. [106] Algunos parásitos intestinales tienen una capa exterior gruesa y dura que se digiere lentamente o no se digiere en absoluto, lo que permite que el parásito pase vivo por el estómago, momento en el que ingresa al intestino y comienza la siguiente etapa de su vida. Una vez dentro del cuerpo, los parásitos deben superar las proteínas séricas del sistema inmunológico y los receptores de reconocimiento de patrones , intracelulares y celulares, que activan los linfocitos del sistema inmunológico adaptativo, como las células T y las células B productoras de anticuerpos . Estas tienen receptores que reconocen a los parásitos. [107]

Insectos

Mancha foliar en roble . La propagación del hongo parásito se ve limitada por las sustancias químicas defensivas que produce el árbol, lo que da lugar a manchas circulares de tejido dañado.

Los insectos a menudo adaptan sus nidos para reducir el parasitismo. Por ejemplo, una de las razones principales por las que la avispa Polistes canadensis anida en múltiples panales , en lugar de construir un solo panal como gran parte del resto de su género, es para evitar la infestación por polillas tineidas . La polilla tineida pone sus huevos dentro de los nidos de las avispas y luego estos huevos eclosionan en larvas que pueden excavar de celda en celda y cazar pupas de avispa. Las avispas adultas intentan eliminar y matar los huevos y larvas de polilla masticando los bordes de las celdas, recubriendo las celdas con una secreción oral que le da al nido una apariencia marrón oscura. [108]

Plantas

Las plantas responden al ataque de parásitos con una serie de defensas químicas, como la polifenol oxidasa , bajo el control de las vías de señalización insensibles al ácido jasmónico (JA) y al ácido salicílico (SA). [109] [113] Las diferentes vías bioquímicas se activan por diferentes ataques, y las dos vías pueden interactuar positiva o negativamente. En general, las plantas pueden iniciar una respuesta específica o no específica. [114] [113] Las respuestas específicas implican el reconocimiento de un parásito por los receptores celulares de la planta, lo que lleva a una respuesta fuerte pero localizada: se producen químicos defensivos alrededor del área donde se detectó el parásito, bloqueando su propagación y evitando desperdiciar la producción defensiva donde no es necesaria. [114] Las respuestas defensivas no específicas son sistémicas, lo que significa que las respuestas no se limitan a un área de la planta, sino que se extienden por toda la planta, lo que las hace costosas en energía. Estas son efectivas contra una amplia gama de parásitos. [114] Cuando las hojas de plantas como el maíz y el algodón sufren daños, como por ejemplo a causa de orugas lepidópteros , liberan mayores cantidades de sustancias químicas volátiles, como terpenos , que indican que están siendo atacadas; uno de los efectos de esto es atraer avispas parasitoides, que a su vez atacan a las orugas. [115]

Biología y conservación

Ecología y parasitología

El rescate del cóndor de California fue un proyecto exitoso, aunque muy costoso, pero su ectoparásito , el piojo Colpocephalum californici , se extinguió.

El parasitismo y la evolución de los parásitos fueron estudiados hasta el siglo XXI por parasitólogos , en una ciencia dominada por la medicina, en lugar de por ecólogos o biólogos evolutivos . Aunque las interacciones parásito-huésped eran claramente ecológicas e importantes en la evolución, la historia de la parasitología provocó lo que el ecólogo evolutivo Robert Poulin llamó una "toma de posesión del parasitismo por parte de los parasitólogos", lo que llevó a los ecólogos a ignorar el área. Esto fue en su opinión "desafortunado", ya que los parásitos son "agentes omnipresentes de la selección natural" y fuerzas significativas en la evolución y la ecología. [116] En su opinión, la división de larga data entre las ciencias limitó el intercambio de ideas, con conferencias separadas y revistas separadas. Los lenguajes técnicos de la ecología y la parasitología a veces implicaban diferentes significados para las mismas palabras. También hubo diferencias filosóficas: Poulin señala que, influenciados por la medicina, "muchos parasitólogos aceptaron que la evolución condujo a una disminución de la virulencia de los parásitos, mientras que la teoría evolutiva moderna habría predicho una gama más amplia de resultados". [116]

Sus complejas relaciones hacen que sea difícil ubicar a los parásitos en las redes alimentarias: un trematodo con múltiples hospedadores para sus diversas etapas del ciclo de vida ocuparía muchas posiciones en una red alimentaria simultáneamente y establecería bucles de flujo de energía, lo que confundiría el análisis. Además, dado que casi todos los animales tienen (múltiples) parásitos, estos ocuparían los niveles superiores de cada red alimentaria. [84]

Los parásitos pueden desempeñar un papel en la proliferación de especies no nativas. Por ejemplo, los cangrejos verdes invasores se ven mínimamente afectados por los trematodos nativos en la costa este del Atlántico. Esto los ayuda a competir con cangrejos nativos como los cangrejos de roca del Atlántico y los cangrejos Jonah . [117]

La parasitología ecológica puede ser importante para los intentos de control, como ocurrió durante la campaña para erradicar el gusano de Guinea . Aunque el parásito fue erradicado en todos los países excepto cuatro, el gusano comenzó a utilizar ranas como hospedador intermediario antes de infectar a los perros, lo que hizo que el control fuera más difícil de lo que hubiera sido si se hubieran entendido mejor las relaciones. [118]

Justificación de la conservación

Aunque se considera que los parásitos son dañinos, la erradicación de todos ellos no sería beneficiosa. Los parásitos representan al menos la mitad de la diversidad de la vida; desempeñan importantes funciones ecológicas; y sin parásitos, los organismos podrían tender a la reproducción asexual, disminuyendo la diversidad de rasgos que genera la reproducción sexual. [119] Los parásitos brindan una oportunidad para la transferencia de material genético entre especies, lo que facilita el cambio evolutivo. [120] Muchos parásitos requieren múltiples hospedadores de diferentes especies para completar sus ciclos de vida y dependen de interacciones depredador-presa u otras interacciones ecológicas estables para llegar de un hospedador a otro. La presencia de parásitos, por lo tanto, indica que un ecosistema es saludable. [121]

Un ectoparásito, el piojo del cóndor de California, Colpocephalum californici , se convirtió en un conocido problema de conservación. En Estados Unidos se llevó a cabo un importante y muy costoso programa de cría en cautiverio para rescatar al cóndor de California . Era el huésped de un piojo que vivía únicamente sobre él. Todos los piojos encontrados fueron "deliberadamente asesinados" durante el programa, para mantener a los cóndores en el mejor estado de salud posible. El resultado fue que una especie, el cóndor, fue salvada y devuelta a la naturaleza, mientras que otra especie, el parásito, se extinguió. [122]

Aunque los parásitos suelen omitirse en las representaciones de las redes alimentarias , suelen ocupar la primera posición. Los parásitos pueden funcionar como especies clave , reduciendo el predominio de competidores superiores y permitiendo que las especies competidoras coexistan. [84] [123] [124]

Los parásitos se distribuyen de forma muy desigual entre sus huéspedes: la mayoría de ellos no tienen parásitos y unos pocos albergan la mayor parte de la población de parásitos. Esta distribución dificulta el muestreo y requiere un uso cuidadoso de las estadísticas.

Ecología cuantitativa

Una sola especie de parásito suele tener una distribución agregada entre los animales hospedadores, lo que significa que la mayoría de los hospedadores son portadores de pocos parásitos, mientras que unos pocos hospedadores son portadores de la gran mayoría de individuos parásitos. Esto plantea problemas considerables para los estudiantes de ecología de parásitos, ya que invalida las estadísticas paramétricas que suelen utilizar los biólogos. Varios autores recomiendan la transformación logarítmica de los datos antes de aplicar la prueba paramétrica o el uso de estadísticas no paramétricas , pero esto puede dar lugar a más problemas, por lo que la parasitología cuantitativa se basa en métodos bioestadísticos más avanzados. [125]

Historia

Antiguo

Los parásitos humanos , incluidos los gusanos redondos, el gusano de Guinea , los oxiuros y las tenias, se mencionan en registros de papiros egipcios desde el año 3000 a. C. en adelante; el papiro de Ebers describe el anquilostoma . En la antigua Grecia , los parásitos, incluido el gusano de la vejiga, se describen en el Corpus hipocrático , mientras que el dramaturgo cómico Aristófanes llamó a las tenias "piedras de granizo". Los médicos romanos Celso y Galeno documentaron los gusanos redondos Ascaris lumbricoides y Enterobius vermicularis . [126]

Medieval

Una placa de Osservazioni intorno agli animali viventi che si trovano negli animali viventi (Observaciones sobre animales vivos encontrados dentro de animales vivos) de Francesco Redi , 1684

En su Canon de Medicina , completado en 1025, el médico persa Avicena registró parásitos humanos y animales, incluyendo lombrices intestinales, lombrices intestinales, gusanos de Guinea y tenias. [126]

En su libro de 1397 Traité de l'état, science et pratique de l'art de la Bergerie (Tratado del estado, la ciencia y la práctica del arte del pastoreo), Jehan de Brie  [fr] escribió la primera descripción de un endoparásito trematodo, la duela del hígado de oveja Fasciola hepatica . [127] [128]

Edad moderna temprana

En el período moderno temprano , el libro de Francesco Redi de 1668 Esperienze Intorno alla Generazione degl'Insetti ( Experiencias de la generación de insectos ), describió explícitamente los ectoparásitos y endoparásitos, ilustrando las garrapatas , las larvas de las moscas nasales de los ciervos y la duela del hígado de las ovejas . [129] Redi señaló que los parásitos se desarrollan a partir de huevos, contradiciendo la teoría de la generación espontánea . [130] En su libro de 1684 Osservazioni intorno agli animali viventi che si trovano negli animali viventi ( Observaciones sobre animales vivos encontrados en animales vivos ), Redi describió e ilustró más de 100 parásitos, incluido el gran gusano redondo en humanos que causa ascariasis . [129] Redi fue el primero en nombrar los quistes de Echinococcus granulosus observados en perros y ovejas como parásitos; Un siglo después, en 1760, Peter Simon Pallas sugirió correctamente que se trataba de larvas de tenias. [126]

En 1681, Antonie van Leeuwenhoek observó e ilustró el parásito protozoario Giardia lamblia y lo relacionó con "sus propias heces blandas". Este fue el primer parásito protozoario de humanos que se vio bajo un microscopio. [126] Unos años más tarde, en 1687, los biólogos italianos Giovanni Cosimo Bonomo y Diacinto Cestoni describieron la sarna como causada por el ácaro parásito Sarcoptes scabiei , señalándola como la primera enfermedad de humanos con un agente causal microscópico conocido. [131]

Ronald Ross ganó el Premio Nobel en 1902 por demostrar que el parásito de la malaria se transmite por mosquitos. Esta página de cuaderno de 1897 registra sus primeras observaciones del parásito en mosquitos.

Parasitología

La parasitología moderna se desarrolló en el siglo XIX con observaciones y experimentos precisos por parte de muchos investigadores y médicos; [127] el término se utilizó por primera vez en 1870. [132] En 1828, James Annersley describió la amebiasis , infecciones protozoarias de los intestinos y el hígado, aunque el patógeno, Entamoeba histolytica , no fue descubierto hasta 1873 por Friedrich Lösch. James Paget descubrió el nematodo intestinal Trichinella spiralis en humanos en 1835. James McConnell describió el trematodo hepático humano, Clonorchis sinensis , en 1875. [126] Algernon Thomas y Rudolf Leuckart hicieron de forma independiente el primer descubrimiento del ciclo de vida de un trematodo, el trematodo hepático ovino, mediante un experimento en 1881-1883. [127] En 1877 Patrick Manson descubrió el ciclo de vida de los gusanos filariales que causan la elefantiasis transmitida por mosquitos. Manson predijo además que el parásito de la malaria , Plasmodium , tenía un mosquito vector, y persuadió a Ronald Ross para que investigara. Ross confirmó que la predicción era correcta en 1897-1898. Al mismo tiempo, Giovanni Battista Grassi y otros describieron las etapas del ciclo de vida del parásito de la malaria en los mosquitos Anopheles . Ross recibió el premio Nobel de 1902 por su trabajo, mientras que Grassi no lo recibió. [126] En 1903, David Bruce identificó el parásito protozoario y el vector de la mosca tsé-tsé de la tripanosomiasis africana . [133]

Vacuna

Given the importance of malaria, with some 220 million people infected annually, many attempts have been made to interrupt its transmission. Various methods of malaria prophylaxis have been tried including the use of antimalarial drugs to kill off the parasites in the blood, the eradication of its mosquito vectors with organochlorine and other insecticides, and the development of a malaria vaccine. All of these have proven problematic, with drug resistance, insecticide resistance among mosquitoes, and repeated failure of vaccines as the parasite mutates.[134] The first and as of 2015 the only licensed vaccine for any parasitic disease of humans is RTS,S for Plasmodium falciparum malaria.[135]

Biological control

Encarsia formosa, widely used in greenhouse horticulture, was one of the first biological control agents developed.[136]

Several groups of parasites, including microbial pathogens and parasitoidal wasps have been used as biological control agents in agriculture and horticulture.[137][138]

Resistance

Poulin observes that the widespread prophylactic use of anthelmintic drugs in domestic sheep and cattle constitutes a worldwide uncontrolled experiment in the life-history evolution of their parasites. The outcomes depend on whether the drugs decrease the chance of a helminth larva reaching adulthood. If so, natural selection can be expected to favour the production of eggs at an earlier age. If on the other hand the drugs mainly affects adult parasitic worms, selection could cause delayed maturity and increased virulence. Such changes appear to be underway: the nematode Teladorsagia circumcincta is changing its adult size and reproductive rate in response to drugs.[139]

Cultural significance

"An Old Parasite in a New Form": an 1881 Punch cartoon by Edward Linley Sambourne compares a crinoletta bustle to a parasitic insect's exoskeleton

Classical times

In the classical era, the concept of the parasite was not strictly pejorative: the parasitus was an accepted role in Roman society, in which a person could live off the hospitality of others, in return for "flattery, simple services, and a willingness to endure humiliation".[140][141]

Society

Parasitism has a derogatory sense in popular usage. According to the immunologist John Playfair,[142]

In everyday speech, the term 'parasite' is loaded with derogatory meaning. A parasite is a sponger, a lazy profiteer, a drain on society.[142]

The satirical cleric Jonathan Swift alludes to hyperparasitism in his 1733 poem "On Poetry: A Rhapsody", comparing poets to "vermin" who "teaze and pinch their foes":[143]

The vermin only teaze and pinch
Their foes superior by an inch.
So nat'ralists observe, a flea
Hath smaller fleas that on him prey;

And these have smaller fleas to bite 'em.
And so proceeds ad infinitum.
Thus every poet, in his kind,
Is bit by him that comes behind:

A 2022 study examined the naming of some 3000 parasite species discovered in the previous two decades. Of those named after scientists, over 80% were named for men, whereas about a third of authors of papers on parasites were women. The study found that the percentage of parasite species named for relatives or friends of the author has risen sharply in the same period.[144]

Fiction

Fictional parasitism: oil painting Parasites by Katrin Alvarez, 2011

In Bram Stoker's 1897 Gothic horror novel Dracula, and its many film adaptations, the eponymous Count Dracula is a blood-drinking parasite (a vampire). The critic Laura Otis argues that as a "thief, seducer, creator, and mimic, Dracula is the ultimate parasite. The whole point of vampirism is sucking other people's blood—living at other people's expense."[145]

Disgusting and terrifying parasitic alien species are widespread in science fiction,[146][147] as for instance in Ridley Scott's 1979 film Alien.[148][149] In one scene, a Xenomorph bursts out of the chest of a dead man, with blood squirting out under high pressure assisted by explosive squibs. Animal organs were used to reinforce the shock effect. The scene was filmed in a single take, and the startled reaction of the actors was genuine.[4][150]

See also

Notes

  1. ^ Trophically-transmitted parasites are transmitted to their definitive host, a predator, when their intermediate host is eaten. These parasites often modify the behaviour of their intermediate hosts, causing them to behave in a way that makes them likely to be eaten, such as by climbing to a conspicuous point: this gets the parasites transmitted at the cost of the intermediate host's life.
  2. ^ The wolf is a social predator, hunting in packs; the cougar is a solitary predator, hunting alone. Neither strategy is conventionally considered parasitic.[23]

References

  1. ^ Poulin 2007, pp. 4–5.
  2. ^ a b Wilson, Edward O. (2014). The Meaning of Human Existence. W. W. Norton & Company. p. 112. ISBN 978-0-87140-480-0. Parasites, in a phrase, are predators that eat prey in units of less than one. Tolerable parasites are those that have evolved to ensure their own survival and reproduction but at the same time with minimum pain and cost to the host.
  3. ^ Getz, W. M. (2011). "Biomass transformation webs provide a unified approach to consumer-resource modelling". Ecology Letters. 14 (2): 113–124. Bibcode:2011EcolL..14..113G. doi:10.1111/j.1461-0248.2010.01566.x. PMC 3032891. PMID 21199247.
  4. ^ a b "The Making of Alien's Chestburster Scene". The Guardian. 13 October 2009. Archived from the original on 30 April 2010. Retrieved 29 May 2010.
  5. ^ παράσιτος, Liddell, Henry George; Scott, Robert, A Greek–English Lexicon, on Perseus Digital Library
  6. ^ παρά, Henry George Liddell, Robert Scott, A Greek–English Lexicon, on Perseus Digital Library
  7. ^ σῖτος, Liddell, Henry George; Scott, Robert, A Greek–English Lexicon, on Perseus Digital Library
  8. ^ σιτισμός, Liddell, Henry George; Scott, Robert, A Greek–English Lexicon, on Perseus Digital Library
  9. ^ Overview of Parasitology. Australian Society of Parasitology and Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. July 2010. ISBN 978-1-86499-991-4. Parasitism is a form of symbiosis, an intimate relationship between two different species. There is a biochemical interaction between host and parasite; i.e. they recognize each other, ultimately at the molecular level, and host tissues are stimulated to react in some way. This explains why parasitism may lead to disease, but not always.
  10. ^ Suzuki, Sayaki U.; Sasaki, Akira (2019). "Ecological and Evolutionary Stabilities of Biotrophism, Necrotrophism, and Saprotrophism" (PDF). The American Naturalist. 194 (1): 90–103. doi:10.1086/703485. ISSN 0003-0147. PMID 31251653. S2CID 133349792. Archived (PDF) from the original on 6 March 2020.
  11. ^ Rozsa, L.; Garay, J. (2023). "Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization". Parasitology. 150 (9): 761–768. doi:10.1017/S0031182023000598. PMC 10478066. PMID 37458178.
  12. ^ "A Classification of Animal-Parasitic Nematodes". plpnemweb.ucdavis.edu. Archived from the original on 6 October 2017. Retrieved 25 February 2016.
  13. ^ Garcia, L. S. (1999). "Classification of Human Parasites, Vectors, and Similar Organisms". Clinical Infectious Diseases. 29 (4): 734–746. doi:10.1086/520425. PMID 10589879.
  14. ^ a b c Overview of Parasitology. Australian Society of Parasitology and Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. July 2010. ISBN 978-1-86499-991-4.
  15. ^ Vecchione, Anna; Aznar, Francisco Javier (2008). "The mesoparasitic copepod Pennella balaenopterae and its significance as a visible indicator of health status in dolphins (Delphinidae): a review" (PDF). Journal of Marine Animals and Their Ecology. 7 (1): 4–11. Archived from the original (PDF) on 10 April 2018. Retrieved 11 April 2018.
  16. ^ a b c d Poulin, Robert (2011). Rollinson, D.; Hay, S. I. (eds.). "The Many Roads to Parasitism: A Tale of Convergence". Advances in Parasitology. 74. Academic Press: 27–28. doi:10.1016/B978-0-12-385897-9.00001-X. ISBN 978-0-12-385897-9. PMID 21295676.
  17. ^ "Parasitism | The Encyclopedia of Ecology and Environmental Management". Blackwell Science. Retrieved 8 April 2018.
  18. ^ Caira, J. N.; Benz, G. W.; Borucinska, J.; Kohler, N. E. (1997). "Pugnose eels, Simenchelys parasiticus (Synaphobranchidae) from the heart of a shortfin mako, Isurus oxyrinchus (Lamnidae)". Environmental Biology of Fishes. 49 (1): 139–144. Bibcode:1997EnvBF..49..139C. doi:10.1023/a:1007398609346. S2CID 37865366.
  19. ^ Lawrence, P. O. (1981). "Host vibration—a cue to host location by the parasite, Biosteres longicaudatus". Oecologia. 48 (2): 249–251. Bibcode:1981Oecol..48..249L. doi:10.1007/BF00347971. PMID 28309807. S2CID 6182657.
  20. ^ Cardé, R. T. (2015). "Multi-cue integration: how female mosquitoes locate a human host". Current Biology. 25 (18): R793–R795. Bibcode:2015CBio...25.R793C. doi:10.1016/j.cub.2015.07.057. PMID 26394099. Open access icon
  21. ^ Randle, C. P.; Cannon, B. C.; Faust, A. L.; et al. (2018). "Host Cues Mediate Growth and Establishment of Oak Mistletoe (Phoradendron leucarpum, Viscaceae), an Aerial Parasitic Plant". Castanea. 83 (2): 249–262. doi:10.2179/18-173. S2CID 92178009.
  22. ^ a b c d e f g h i j k l m n o Poulin, Robert; Randhawa, Haseeb S. (February 2015). "Evolution of parasitism along convergent lines: from ecology to genomics". Parasitology. 142 (Suppl 1): S6–S15. doi:10.1017/S0031182013001674. PMC 4413784. PMID 24229807. Open access icon
  23. ^ a b c d Lafferty, K. D.; Kuris, A. M. (2002). "Trophic strategies, animal diversity and body size" (PDF). Trends in Ecology and Evolution. 17 (11): 507–513. doi:10.1016/s0169-5347(02)02615-0. Archived from the original (PDF) on 3 October 2019.
  24. ^ a b Poulin 2007, p. 111.
  25. ^ Elumalai, V.; Viswanathan, C.; Pravinkumar, M.; Raffi, S. M. (2013). "Infestation of parasitic barnacle Sacculina spp. in commercial marine crabs". Journal of Parasitic Diseases. 38 (3): 337–339. doi:10.1007/s12639-013-0247-z. PMC 4087306. PMID 25035598.
  26. ^ Cheng, Thomas C. (2012). General Parasitology. Elsevier Science. pp. 13–15. ISBN 978-0-323-14010-2.
  27. ^ Cox, F. E. (2001). "Concomitant infections, parasites and immune responses" (PDF). Parasitology. 122. Supplement: S23–38. doi:10.1017/s003118200001698x. PMID 11442193. S2CID 150432. Archived (PDF) from the original on 2 December 2017.
  28. ^ "Helminth Parasites". Australian Society of Parasitology. Retrieved 9 October 2017.
  29. ^ "Pathogenic Parasitic Infections". PEOI. Retrieved 18 July 2013.
  30. ^ Steere, A. C. (July 2001). "Lyme disease". New England Journal of Medicine. 345 (2): 115–125. doi:10.1056/NEJM200107123450207. PMID 11450660.
  31. ^ a b Pollitt, Laura C.; MacGregor, Paula; Matthews, Keith; Reece, Sarah E. (2011). "Malaria and trypanosome transmission: different parasites, same rules?". Trends in Parasitology. 27 (5): 197–203. doi:10.1016/j.pt.2011.01.004. PMC 3087881. PMID 21345732.
  32. ^ Stevens, Alison N. P. (2010). "Predation, Herbivory, and Parasitism". Nature Education Knowledge. 3 (10): 36. Retrieved 12 February 2018. Predation, herbivory, and parasitism exist along a continuum of severity in terms of the extent to which they negatively affect an organism's fitness. ... In most situations, parasites do not kill their hosts. An exception, however, occurs with parasitoids, which blur the line between parasitism and predation.
  33. ^ a b c d Gullan, P. J.; Cranston, P. S. (2010). The Insects: An Outline of Entomology (4th ed.). Wiley. pp. 308, 365–367, 375, 440–441. ISBN 978-1-118-84615-5.
  34. ^ Wilson, Anthony J.; et al. (March 2017). "What is a vector?". Philosophical Transactions of the Royal Society B: Biological Sciences. 372 (1719): 20160085. doi:10.1098/rstb.2016.0085. PMC 5352812. PMID 28289253.
  35. ^ a b Godfrey, Stephanie S. (December 2013). "Networks and the ecology of parasite transmission: A framework for wildlife parasitology". Wildlife. 2: 235–245. doi:10.1016/j.ijppaw.2013.09.001. PMC 3862525. PMID 24533342.
  36. ^ a b de Boer, Jetske G.; Robinson, Ailie; Powers, Stephen J.; Burgers, Saskia L. G. E.; Caulfield, John C.; Birkett, Michael A.; Smallegange, Renate C.; van Genderen, Perry J. J.; Bousema, Teun; Sauerwein, Robert W.; Pickett, John A.; Takken, Willem; Logan, James G. (August 2017). "Odours of Plasmodium falciparum-infected participants influence mosquito–host interactions". Scientific Reports. 7 (1): 9283. Bibcode:2017NatSR...7.9283D. doi:10.1038/s41598-017-08978-9. PMC 5570919. PMID 28839251.
  37. ^ a b Dissanaike, A. S. (1957). "On Protozoa hyperparasitic in Helminth, with some observations on Nosema helminthorum Moniez, 1887". Journal of Helminthology. 31 (1–2): 47–64. doi:10.1017/s0022149x00033290. PMID 13429025. S2CID 35487084.
  38. ^ a b Thomas, J. A.; Schönrogge, K.; Bonelli, S.; Barbero, F.; Balletto, E. (2010). "Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants". Commun Integr Biol. 3 (2): 169–171. doi:10.4161/cib.3.2.10603. PMC 2889977. PMID 20585513.
  39. ^ a b Payne, R. B. (1997). "Avian brood parasitism". In Clayton, D. H.; Moore, J. (eds.). Host–parasite evolution: General principles and avian models. Oxford University Press. pp. 338–369. ISBN 978-0-19-854892-8.
  40. ^ a b Slater, Peter J. B.; Rosenblatt, Jay S.; Snowdon, Charles T.; Roper, Timothy J.; Brockmann, H. Jane; Naguib, Marc (30 January 2005). Advances in the Study of Behavior. Academic Press. p. 365. ISBN 978-0-08-049015-1.
  41. ^ a b Pietsch, Theodore W. (25 August 2005). "Dimorphism, parasitism, and sex revisited: modes of reproduction among deep-sea ceratioid anglerfishes (Teleostei: Lophiiformes)". Ichthyological Research. 52 (3): 207–236. Bibcode:2005IchtR..52..207P. doi:10.1007/s10228-005-0286-2. S2CID 24768783.
  42. ^ a b Rochat, Jacques; Gutierrez, Andrew Paul (May 2001). "Weather-mediated regulation of olive scale by two parasitoids". Journal of Animal Ecology. 70 (3): 476–490. Bibcode:2001JAnEc..70..476R. doi:10.1046/j.1365-2656.2001.00505.x. S2CID 73607283.
  43. ^ Askew, R. R. (1961). "On the Biology of the Inhabitants of Oak Galls of Cynipidae (Hymenoptera) in Britain". Transactions of the Society for British Entomology. 14: 237–268.
  44. ^ Parratt, Steven R.; Laine, Anna-Liisa (January 2016). "The role of hyperparasitism in microbial pathogen ecology and evolution". The ISME Journal. 10 (8): 1815–1822. Bibcode:2016ISMEJ..10.1815P. doi:10.1038/ismej.2015.247. PMC 5029149. PMID 26784356.
  45. ^ Van Oystaeyen, Annette; Araujo Alves, Denise; Caliari Oliveira, Ricardo; Lima do Nascimento, Daniela; Santos do Nascimento, Fábio; Billen, Johan; Wenseleers, Tom (September 2013). "Sneaky queens in Melipona bees selectively detect and infiltrate queenless colonies". Animal Behaviour. 86 (3): 603–609. CiteSeerX 10.1.1.309.6081. doi:10.1016/j.anbehav.2013.07.001. S2CID 12921696.
  46. ^ "Social Parasites in the Ant Colony". Antkeepers. Retrieved 4 April 2016.
  47. ^ Emery, Carlo (1909). "Über den Ursprung der dulotischen, parasitischen un myrmekophilen Ameisen". Biologischen Centralblatt. 29: 352–362.
  48. ^ Deslippe, Richard (2010). "Social Parasitism in Ants". Nature Education Knowledge. Retrieved 29 October 2010.
  49. ^ Emery, C. (1909). "Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen". Biologisches Centralblatt. 29: 352–362.
  50. ^ Bourke, Andrew F. G.; Franks, Nigel R. (July 1991). "Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants". Biological Journal of the Linnean Society. 43 (3): 157–178. doi:10.1111/j.1095-8312.1991.tb00591.x. ISSN 0024-4066.
  51. ^ O'Brien, Timothy G. (1988). "Parasitic nursing behavior in the wedge-capped capuchin monkey (Cebus olivaceus)". American Journal of Primatology. 16 (4): 341–344. doi:10.1002/ajp.1350160406. PMID 32079372. S2CID 86176932.
  52. ^ Rothstein, S. I. (1990). "A model system for coevolution: avian brood parasitism". Annual Review of Ecology and Systematics. 21: 481–508. doi:10.1146/annurev.ecolsys.21.1.481.
  53. ^ De Marsico, M. C.; Gloag, R.; Ursino, C. A.; Reboreda, J. C. (March 2013). "A novel method of rejection of brood parasitic eggs reduces parasitism intensity in a cowbird host". Biology Letters. 9 (3): 20130076. doi:10.1098/rsbl.2013.0076. PMC 3645041. PMID 23485877.
  54. ^ Welbergen, J.; Davies, N. B. (2011). "A parasite in wolf's clothing: hawk mimicry reduces mobbing of cuckoos by hosts". Behavioral Ecology. 22 (3): 574–579. doi:10.1093/beheco/arr008.
  55. ^ Furness, R. W. (1978). "Kleptoparasitism by great skuas (Catharacta skua Brünn.) and Arctic skuas (Stercorarius parasiticus L.) at a Shetland seabird colony". Animal Behaviour. 26: 1167–1177. doi:10.1016/0003-3472(78)90107-0. S2CID 53155057.
  56. ^ Maggenti, Armand R.; Maggenti, Mary Ann; Gardner, Scott Lyell (2005). Online Dictionary of Invertebrate Zoology (PDF). University of Nebraska. p. 22. Archived from the original (PDF) on 18 April 2018.
  57. ^ "Featured Creatures. Encarsia perplexa". University of Florida. Retrieved 6 January 2018.
  58. ^ Berec, Ludek; Schembri, Patrick J.; Boukal, David S. (2005). "Sex determination in Bonellia viridis (Echiura: Bonelliidae): population dynamics and evolution" (PDF). Oikos. 108 (3): 473–484. Bibcode:2005Oikos.108..473B. doi:10.1111/j.0030-1299.2005.13350.x. Archived (PDF) from the original on 3 October 2019.
  59. ^ Rollinson, D.; Hay, S. I. (2011). Advances in parasitology. Oxford: Elsevier Science. pp. 4–7. ISBN 978-0-12-385897-9.
  60. ^ a b Poulin 2007, p. 6.
  61. ^ Polaszek, Andrew; Vilhemsen, Lars (2023). "Biodiversity of hymenopteran parasitoids". Current Opinion in Insect Science. 56: 101026. Bibcode:2023COIS...5601026P. doi:10.1016/j.cois.2023.101026. PMID 36966863. S2CID 257756440.
  62. ^ Forbes, Andrew A.; Bagley, Robin K.; Beer, Marc A.; et al. (12 July 2018). "Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order". BMC Ecology. 18 (1): 21. Bibcode:2018BMCE...18...21F. doi:10.1186/s12898-018-0176-x. ISSN 1472-6785. PMC 6042248. PMID 30001194.
  63. ^ Morand, Serge; Krasnov, Boris R.; Littlewood, D. Timothy J. (2015). Parasite Diversity and Diversification. Cambridge University Press. p. 44. ISBN 978-1-107-03765-6.
  64. ^ Rastogi, V. B. (1997). Modern Biology. Pitambar Publishing. p. 115. ISBN 978-81-209-0496-5.
  65. ^ Kokla, Anna; Melnyk, Charles W. (1 October 2018). "Developing a thief: Haustoria formation in parasitic plants". Developmental Biology. 442 (1): 53–59. doi:10.1016/j.ydbio.2018.06.013. ISSN 0012-1606. PMID 29935146. S2CID 49394142.
  66. ^ a b c Heide-Jørgensen, Henning S. (2008). Parasitic flowering plants. Brill. ISBN 978-90-04-16750-6.
  67. ^ Nickrent, Daniel L. (2002). "Parasitic Plants of the World" (PDF). Archived (PDF) from the original on 6 March 2016. Retrieved 10 April 2018. which appeared in Spanish as Chapter 2, pp. 7–27 in: J. A. López-Sáez, P. Catalán and L. Sáez [eds.], Parasitic Plants of the Iberian Peninsula and Balearic Islands.
  68. ^ Nickrent, D. L.; Musselman, L. J. (2004). "Introduction to Parasitic Flowering Plants". The Plant Health Instructor. doi:10.1094/PHI-I-2004-0330-01.
  69. ^ Westwood, James H.; Yoder, John I.; Timko, Michael P.; dePamphilis, Claude W. (2010). "The evolution of parasitism in plants". Trends in Plant Science. 15 (4): 227–235. doi:10.1016/j.tplants.2010.01.004. PMID 20153240.
  70. ^ Leake, J. R. (1994). "The biology of myco-heterotrophic ('saprophytic') plants". New Phytologist. 127 (2): 171–216. doi:10.1111/j.1469-8137.1994.tb04272.x. PMID 33874520. S2CID 85142620.
  71. ^ Fei, Wang; Liu, Ye (11 August 2022). "Biotrophic Fungal Pathogens: a Critical Overview". Applied Biochemistry and Biotechnology. 195 (1): 1–16. doi:10.1007/s12010-022-04087-0. ISSN 0273-2289. PMID 35951248. S2CID 251474576.
  72. ^ "What is honey fungus?". Royal Horticultural Society. Retrieved 12 October 2017.
  73. ^ Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha (8 December 2017). "Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases". Scientific Reports. 7 (1): 17251. Bibcode:2017NatSR...717251C. doi:10.1038/s41598-017-17248-7. ISSN 2045-2322. PMC 5722813. PMID 29222513.
  74. ^ "Stop neglecting fungi". Nature Microbiology. 2 (8): 17120. 25 July 2017. doi:10.1038/nmicrobiol.2017.120. PMID 28741610.
  75. ^ Didier, E. S.; Stovall, M. E.; Green, L. C.; Brindley, P. J.; Sestak, K.; Didier, P. J. (9 December 2004). "Epidemiology of microsporidiosis: sources and modes of transmission". Veterinary Parasitology. 126 (1–2): 145–166. doi:10.1016/j.vetpar.2004.09.006. PMID 15567583.
  76. ^ Esch, K. J.; Petersen, C. A. (January 2013). "Transmission and epidemiology of zoonotic protozoal diseases of companion animals". Clinical Microbiology Reviews. 26 (1): 58–85. doi:10.1128/CMR.00067-12. PMC 3553666. PMID 23297259.
  77. ^ McFall-Ngai, Margaret (January 2007). "Adaptive Immunity: Care for the community". Nature. 445 (7124): 153. Bibcode:2007Natur.445..153M. doi:10.1038/445153a. PMID 17215830. S2CID 9273396.
  78. ^ Fisher, Bruce; Harvey, Richard P.; Champe, Pamela C. (2007). Lippincott's Illustrated Reviews: Microbiology (Lippincott's Illustrated Reviews Series). Lippincott Williams & Wilkins. pp. 332–353. ISBN 978-0-7817-8215-9.
  79. ^ Koonin, E. V.; Senkevich, T. G.; Dolja, V. V. (2006). "The ancient Virus World and evolution of cells". Biology Direct. 1: 29. doi:10.1186/1745-6150-1-29. PMC 1594570. PMID 16984643.
  80. ^ Breitbart, M.; Rohwer, F. (2005). "Here a virus, there a virus, everywhere the same virus?". Trends in Microbiology. 13 (6): 278–284. doi:10.1016/j.tim.2005.04.003. PMID 15936660.
  81. ^ Lawrence, C. M.; Menon, S.; Eilers, B. J.; et al. (2009). "Structural and functional studies of archaeal viruses". The Journal of Biological Chemistry. 284 (19): 12599–603. doi:10.1074/jbc.R800078200. PMC 2675988. PMID 19158076.
  82. ^ Edwards, R. A.; Rohwer, F. (2005). "Viral metagenomics" (PDF). Nature Reviews Microbiology. 3 (6): 504–510. doi:10.1038/nrmicro1163. PMID 15886693. S2CID 8059643. Archived (PDF) from the original on 3 October 2019.
  83. ^ a b Dobson, A.; Lafferty, K. D.; Kuris, A. M.; Hechinger, R. F.; Jetz, W. (2008). "Homage to Linnaeus: How many parasites? How many hosts?". Proceedings of the National Academy of Sciences. 105 (Supplement 1): 11482–11489. Bibcode:2008PNAS..10511482D. doi:10.1073/pnas.0803232105. PMC 2556407. PMID 18695218.
  84. ^ a b c Sukhdeo, Michael V.K. (2012). "Where are the parasites in food webs?". Parasites & Vectors. 5 (1): 239. doi:10.1186/1756-3305-5-239. PMC 3523981. PMID 23092160.
  85. ^ Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varrichio, David J. (2009). "Common Avian Infection Plagued the Tyrant Dinosaurs". PLOS ONE. 4 (9): e7288. Bibcode:2009PLoSO...4.7288W. doi:10.1371/journal.pone.0007288. PMC 2748709. PMID 19789646.
  86. ^ Ponomarenko, A.G. (1976) A new insect from the Cretaceous of Transbaikalia, a possible parasite of pterosaurians. Paleontological Journal 10(3):339-343 (English) / Paleontologicheskii Zhurnal 1976(3):102-106 (Russian)
  87. ^ Zhang, Yanjie; Shih, Chungkun; Rasnitsyn, Alexandr; Ren, Dong; Gao, Taiping (2020). "A new flea from the Early Cretaceous of China". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00680.2019.
  88. ^ Thanit Nonsrirach, Serge Morand, Alexis Ribas, Sita Manitkoon, Komsorn Lauprasert, Julien Claude (9 August 2023). "First discovery of parasite eggs in a vertebrate coprolite of the Late Triassic in Thailand". PLOS ONE. 18 (8): e0287891. Bibcode:2023PLoSO..1887891N. doi:10.1371/journal.pone.0287891. PMC 10411797. PMID 37556448.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  89. ^ a b Rook, G. A. (2007). "The hygiene hypothesis and the increasing prevalence of chronic inflammatory disorders". Transactions of the Royal Society of Tropical Medicine and Hygiene. 101 (11): 1072–1074. doi:10.1016/j.trstmh.2007.05.014. PMID 17619029.
  90. ^ a b c Massey, R. C.; Buckling, A.; ffrench-Constant, R. (2004). "Interference competition and parasite virulence". Proceedings of the Royal Society B: Biological Sciences. 271 (1541): 785–788. doi:10.1098/rspb.2004.2676. PMC 1691666. PMID 15255095.
  91. ^ Ewald, Paul W. (1994). Evolution of Infectious Disease. Oxford University Press. p. 8. ISBN 978-0-19-534519-3.
  92. ^ Werren, John H. (February 2003). "Invasion of the Gender Benders: by manipulating sex and reproduction in their hosts, many parasites improve their own odds of survival and may shape the evolution of sex itself". Natural History. 112 (1): 58. OCLC 1759475. Archived from the original on 8 July 2012. Retrieved 15 November 2008.
  93. ^ Margulis, Lynn; Sagan, Dorion; Eldredge, Niles (1995). What Is Life?. Simon and Schuster. ISBN 978-0-684-81087-4.
  94. ^ Sarkar, Sahotra; Plutynski, Anya (2008). A Companion to the Philosophy of Biology. John Wiley & Sons. p. 358. ISBN 978-0-470-69584-5.
  95. ^ Rigaud, T.; Perrot-Minnot, M.-J.; Brown, M. J. F. (2010). "Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence". Proceedings of the Royal Society B: Biological Sciences. 277 (1701): 3693–3702. doi:10.1098/rspb.2010.1163. PMC 2992712. PMID 20667874.
  96. ^ Page, Roderic D. M. (27 January 2006). "Cospeciation". Encyclopedia of Life Sciences. John Wiley. doi:10.1038/npg.els.0004124. ISBN 978-0-470-01617-6.
  97. ^ Switzer, William M.; Salemi, Marco; Shanmugam, Vedapuri; et al. (2005). "Ancient co-speciation of simian foamy viruses and primates". Nature. 434 (7031): 376–380. Bibcode:2005Natur.434..376S. doi:10.1038/nature03341. PMID 15772660. S2CID 4326578.
  98. ^ Johnson, K. P.; Kennedy, M.; McCracken, K. G (2006). "Reinterpreting the origins of flamingo lice: cospeciation or host-switching?". Biology Letters. 2 (2): 275–278. doi:10.1098/rsbl.2005.0427. PMC 1618896. PMID 17148381.
  99. ^ a b Lively, C. M.; Dybdahl, M. F. (2000). "Parasite adaptation to locally common host genotypes" (PDF). Nature. 405 (6787): 679–81. Bibcode:2000Natur.405..679L. doi:10.1038/35015069. PMID 10864323. S2CID 4387547. Archived (PDF) from the original on 7 June 2016.
  100. ^ Lafferty, K. D.; Morris, A. K. (1996). "Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts" (PDF). Ecology. 77 (5): 1390–1397. Bibcode:1996Ecol...77.1390L. doi:10.2307/2265536. JSTOR 2265536. Archived (PDF) from the original on 3 March 2019.
  101. ^ Berdoy, M.; Webster, J. P.; Macdonald, D. W. (2000). "Fatal attraction in rats infected with Toxoplasma gondii". Proc. Biol. Sci. 267 (1452): 1591–4. doi:10.1098/rspb.2000.1182. PMC 1690701. PMID 11007336.
  102. ^ Takasuka, Keizo (16 September 2019). "Evaluation of manipulative effects by an ichneumonid spider-ectoparasitoid larva upon an orb-weaving spider host (Araneidae: Cyclosa argenteoalba) by means of surgical removal and transplantation". The Journal of Arachnology. 47 (2): 181. doi:10.1636/joa-s-18-082. ISSN 0161-8202. S2CID 202579182.
  103. ^ Alexander, David E. (2015). On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight. Oxford University Press. p. 119. ISBN 978-0-19-999679-7.
  104. ^ Poulin, Robert (September 1995). "Evolution of parasite life history traits: myths and reality" (PDF). Parasitology Today. 11 (9): 342–345. doi:10.1016/0169-4758(95)80187-1. PMID 15275316. Archived from the original (PDF) on 16 February 2012.
  105. ^ Yahalom, Dayana; Atkinson, Stephen D.; Neuhof, Moran; Chang, E. Sally; Philippe, Hervé; Cartwright, Paulyn; Bartholomew, Jerri L.; Huchon, Dorothée (19 February 2020). "A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome". Proceedings of the National Academy of Sciences. 117 (10): 5358–5363. Bibcode:2020PNAS..117.5358Y. doi:10.1073/pnas.1909907117. PMC 7071853. PMID 32094163.
  106. ^ a b c d "Host–Parasite Interactions Innate Defenses of the Host" (PDF). University of Colorado. Archived from the original (PDF) on 4 March 2016. Retrieved 7 May 2014.
  107. ^ a b Maizels, R. M. (2009). "Parasite immunomodulation and polymorphisms of the immune system". J. Biol. 8 (7): 62. doi:10.1186/jbiol166. PMC 2736671. PMID 19664200.
  108. ^ a b Jeanne, Robert L. (1979). "Construction and Utilization of Multiple Combs in Polistes canadensis in Relation to the Biology of a Predaceous Moth". Behavioral Ecology and Sociobiology. 4 (3): 293–310. doi:10.1007/bf00297649. S2CID 36132488.
  109. ^ a b Runyon, J. B.; Mescher, M. C.; De Moraes, C. M. (2010). "Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens". Plant Signal Behav. 5 (8): 929–31. Bibcode:2010PlSiB...5..929R. doi:10.4161/psb.5.8.11772. PMC 3115164. PMID 20495380.
  110. ^ Hamilton, W. D.; Axelrod, R.; Tanese, R. (May 1990). "Sexual reproduction as an adaptation to resist parasites (a review)". Proceedings of the National Academy of Sciences. 87 (9): 3566–3573. Bibcode:1990PNAS...87.3566H. doi:10.1073/pnas.87.9.3566. PMC 53943. PMID 2185476.
  111. ^ Ebert, Dieter; Hamilton, William D. (1996). "Sex against virulence: the coevolution of parasitic diseases". Trends in Ecology & Evolution. 11 (2): 79–82. doi:10.1016/0169-5347(96)81047-0. PMID 21237766.
  112. ^ Folstad, Ivar; Karter, Andrew John (1992). "Parasites, Bright Males, and the Immunocompetence Handicap". The American Naturalist. 139 (3): 603–622. doi:10.1086/285346. S2CID 85266542.[permanent dead link]
  113. ^ a b Thaler, Jennifer S.; Karban, Richard; Ullman, Diane E.; Boege, Karina; Bostock, Richard M. (2002). "Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites". Oecologia. 131 (2): 227–235. Bibcode:2002Oecol.131..227T. doi:10.1007/s00442-002-0885-9. PMID 28547690. S2CID 25912204.
  114. ^ a b c Frank, S. A. (2000). "Specific and non-specific defense against parasitic attack" (PDF). J. Theor. Biol. 202 (4): 283–304. Bibcode:2000JThBi.202..283F. CiteSeerX 10.1.1.212.7024. doi:10.1006/jtbi.1999.1054. PMID 10666361. Archived (PDF) from the original on 14 June 2001.
  115. ^ Paré, Paul W.; Tumlinson, James H. (1 October 1999). "Plant Volatiles as a Defense against Insect Herbivores". Plant Physiology. 121 (2): 325–332. doi:10.1104/pp.121.2.325. PMC 1539229. PMID 10517823.
  116. ^ a b Poulin 2007, pp. x, 1–2.
  117. ^ Blakeslee, April M. H.; Keogh, Carolyn L.; Fowler, Amy E.; Griffen, Blaine D.; Todd, Peter Alan (1 June 2015). "Assessing the Effects of Trematode Infection on Invasive Green Crabs in Eastern North America". PLOS ONE. 10 (6): e0128674. Bibcode:2015PLoSO..1028674B. doi:10.1371/journal.pone.0128674. PMC 4451766. PMID 26030816. Open access icon
  118. ^ Eberhard, M. L. (August 2016). "Possible Role of Fish and Frogs as Paratenic Hosts of Dracunculus medinensis, Chad". Emerging Infectious Diseases. 22 (8): 1428–1430. doi:10.3201/eid2208.160043. PMC 4982183. PMID 27434418.
  119. ^ Holt, R. D. (2010). "IJEE Soapbox: World free of parasites and vectors: Would it be heaven, or would it be hell?" (PDF). Israel Journal of Ecology and Evolution. 56 (3): 239–250. doi:10.1560/IJEE.56.3-4.239. Archived (PDF) from the original on 8 September 2015.
  120. ^ Combes, Claude (2005). The Art of being a Parasite. University of Chicago Press. ISBN 978-0-226-11438-5.
  121. ^ Hudson, Peter J.; Dobson, Andrew P.; Lafferty, Kevin D. (2006). "Is a healthy ecosystem one that is rich in parasites?" (PDF). Trends in Ecology & Evolution. 21 (7): 381–385. doi:10.1016/j.tree.2006.04.007. PMID 16713014. Archived from the original (PDF) on 10 August 2017.
  122. ^ Stringer, Andrew Paul; Linklater, Wayne (2014). "Everything in Moderation: Principles of Parasite Control for Wildlife Conservation". BioScience. 64 (10): 932–937. doi:10.1093/biosci/biu135.
  123. ^ Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; et al. (2008). "Parasites in food webs: the ultimate missing links". Ecology Letters. 11 (6): 533–546. Bibcode:2008EcolL..11..533L. doi:10.1111/j.1461-0248.2008.01174.x. PMC 2408649. PMID 18462196.
  124. ^ Chase, Jonathan (2013). "Parasites in Food Webs: Untangling the Entangled Bank". PLOS Biology. 11 (6): e1001580. doi:10.1371/journal.pbio.1001580. PMC 3678997. PMID 23776405.
  125. ^ Rózsa, L.; Reiczigel, J.; Majoros, G. (2000). "Quantifying parasites in samples of hosts" (PDF). J. Parasitol. 86 (2): 228–32. doi:10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2. PMID 10780537. S2CID 16228008. Archived from the original (PDF) on 19 June 2018.
  126. ^ a b c d e f Cox, Francis E. G. (June 2004). "History of human parasitic diseases". Infectious Disease Clinics of North America. 18 (2): 173–174. doi:10.1016/j.idc.2004.01.001. PMID 15145374.
  127. ^ a b c Cheng, Thomas C. (1973). General Parasitology. Academic Press. pp. 120–134. ISBN 978-0-12-170750-7. The 19th century might be thought of as the genesis of modern parasitology.
  128. ^ Humphrey-Smith, Ian, ed. (1993). Sept siècles de parasitologie en France [The French School of Parasitology] (in French). Société Française de Parasitologie. pp. 26–29.
  129. ^ a b Ioli, A.; Petithory, J. C.; Theodorides, J. (1997). "Francesco Redi and the birth of experimental parasitology". Hist Sci Med. 31 (1): 61–66. PMID 11625103.
  130. ^ Bush, A. O.; Fernández, J. C.; Esch, G. W.; Seed, J. R. (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press. p. 4. ISBN 978-0-521-66447-9.
  131. ^ "Acarus as the cause of scabies". University of Cagliari. Retrieved 11 April 2018.
  132. ^ "Parasitology". Merriam-Webster. Retrieved 13 April 2018.
  133. ^ Ellis, Harold (March 2006). "Sir David Bruce, a pioneer of tropical medicine". British Journal of Hospital Medicine. 67 (3): 158. doi:10.12968/hmed.2006.67.3.20624. PMID 16562450.
  134. ^ "Malaria and Malaria Vaccine Candidates". The College of Physicians of Philadelphia. 19 April 2017. Retrieved 11 February 2018.
  135. ^ Walsh, Fergus (24 July 2015). "Malaria vaccine gets 'green light'". BBC. Retrieved 25 July 2015.
  136. ^ Hoddle, M. S.; Van Driesche, R. G.; Sanderson, J. P. (1998). "Biology and Use of the Whitefly Parasitoid Encarsia Formosa". Annual Review of Entomology. 43: 645–669. doi:10.1146/annurev.ento.43.1.645. PMID 15012401.
  137. ^ "Parasitoid Wasps (Hymenoptera)". University of Maryland. Archived from the original on 27 August 2016. Retrieved 6 June 2016.
  138. ^ Encouraging innovation in biopesticide development. Archived 15 May 2012 at the Wayback Machine European Commission (2008). Accessed on 9 January 2017
  139. ^ Poulin 2007, pp. 265–266.
  140. ^ Matyszak, Philip (2017). 24 Hours in Ancient Rome: A Day in the Life of the People Who Lived There. Michael O'Mara. p. 252. ISBN 978-1-78243-857-1.
  141. ^ Damon, Cynthia (1997). "5". The Mask of the Parasite: A Pathology of Roman Patronage. University of Michigan Press. p. 148. ISBN 978-0-472-10760-5. A satirist seeking to portray client misery naturally focuses on the relationship with the greatest dependency, that in which a client gets his food from his patron, and for this the prefabricated persona of the parasite proved itself extremely useful.
  142. ^ a b Playfair, John (2007). Living with Germs: In health and disease. Oxford University Press. p. 19. ISBN 978-0-19-157934-9. Playfair is comparing the popular usage to a biologist's view of parasitism, which he calls (heading the same page) "an ancient and respectable view of life".
  143. ^ Swift, Jonathan (1733). On Poetry: A Rapsody. And sold by J. Huggonson, next to Kent's Coffee-house, near Serjeant's-inn, in Chancery-lane; [and] at the bookseller's and pamphletshops.
  144. ^ Poulin, Robert; McDougall, Cameron; Presswell, Bronwen (11 May 2022). "What's in a name? Taxonomic and gender biases in the etymology of new species names". Proceedings of the Royal Society B: Biological Sciences. 289 (1974). doi:10.1098/rspb.2021.2708. PMC 9091844. PMID 35538778.
  145. ^ Otis, Laura (2001). Networking: Communicating with Bodies and Machines in the Nineteenth Century. University of Michigan Press. p. 216. ISBN 978-0-472-11213-5.
  146. ^ "Parasitism and Symbiosis". The Encyclopedia of Science Fiction. 10 January 2016.
  147. ^ Dove, Alistair (9 May 2011). "This is clearly an important species we're dealing with". Deep Sea News.
  148. ^ Pappas, Stephanie (29 May 2012). "5 Alien Parasites and Their Real-World Counterparts". Live Science.
  149. ^ Sercel, Alex (19 May 2017). "Parasitism in the Alien Movies". Signal to Noise Magazine.
  150. ^ Nordine, Michael (25 April 2017). "'Alien' Evolution: Explore Every Stage in the Xenomorph's Gruesome Life Cycle. Celebrate Alien Day with a look at the past, present and future of cinema's most terrifying extraterrestrial". IndieWire.

Sources

Further reading

External links