stringtranslate.com

canal de potasio KcsA

KcsA ( canal K de streptomyces A ) es un canal de potasio procariótico de la bacteria del suelo Streptomyces lividans que se ha estudiado ampliamente en la investigación de canales iónicos . La proteína activada por pH [1] posee dos segmentos transmembrana y una región de poros altamente selectiva, responsable de la entrada y salida de los iones K + fuera de la célula. [2] La secuencia de aminoácidos que se encuentra en el filtro de selectividad de KcsA está altamente conservada entre los canales de voltaje de K + tanto procarióticos como eucariotas ; [1] [3] Como resultado, la investigación sobre KcsA ha proporcionado importantes conocimientos estructurales y mecanicistas sobre las bases moleculares para la selección y conducción de iones K + . Como uno de los canales iónicos más estudiados hasta el día de hoy, KcsA es un modelo para la investigación sobre la función del canal de K + y su estructura dilucidada subyace al modelado computacional de la dinámica del canal para especies tanto procarióticas como eucariotas. [4]

Historia

KcsA fue el primer canal iónico de potasio caracterizado mediante cristalografía de rayos X por Roderick MacKinnon y sus colegas en 1998. En los años previos, la investigación sobre la estructura de los canales de K + se centró en el uso de pequeñas toxinas que se unen a revelar la ubicación del filtro de poros y selectividad entre los residuos del canal. El grupo de MacKinnon teorizó la disposición tetramérica de los segmentos transmembrana , e incluso sugirió la presencia de “bucles” formadores de poros en la región del filtro hechos de segmentos cortos de aminoácidos que interactuaban con iones K + que pasaban a través del canal [5] . La homología de secuencia entre KcsA y otros canales de la familia Kv, incluida la proteína Shaker , atrajo la atención de la comunidad científica, especialmente cuando la secuencia característica del canal K + comenzó a aparecer en otros genes procarióticos . La simplicidad de las dos hélices transmembrana en KcsA, a diferencia de las seis en muchos canales iónicos eucariotas , también proporcionó un método para comprender los mecanismos de conducción de los canales de K + a un nivel más rudimentario, proporcionando así un gran impulso al estudio de KcsA. .

La estructura cristalina de KcsA fue resuelta por el grupo MacKinnon en 1998 después del descubrimiento de que la eliminación del dominio citoplásmico del extremo C de la proteína nativa (residuos 126-158) aumenta la estabilidad de las muestras cristalizadas. Se produjo un modelo de KcsA con una resolución de 3,2 A que confirmó la disposición tetramérica de la proteína alrededor de un poro central, con una hélice de cada subunidad mirando hacia el eje interior y la otra hacia afuera. [6] Tres años más tarde, Morais-Cabral y Zhou produjeron un modelo de mayor resolución después de que se unieran fragmentos Fab monoclonales a cristales de KcsA para estabilizar aún más el canal. [7] A principios de la década de 2000, surgió evidencia de la ocupación del filtro de selectividad por dos átomos de K + durante el proceso de transporte, basada en cálculos electrostáticos y de energía realizados para modelar la región de los poros. Desde entonces , la investigación continua de las diversas conformaciones abiertas y cerradas, inactivas y activas de KcsA mediante otros métodos de obtención de imágenes como ssNMR y EPR ha proporcionado aún más información sobre la estructura del canal y las fuerzas que activan el cambio de la inactivación del canal a la conducción.

En 2007, Riek et al. demostraron que la apertura del canal que resulta de titular el canal iónico de pH 7 a pH 4, corresponde a cambios conformacionales en dos regiones: la transición al estado de intercambio iónico del filtro de selectividad y la apertura de la disposición de TM2 en el C -terminal . [8] Este modelo explica la capacidad de KcsA para seleccionar simultáneamente iones K + y al mismo tiempo controlar la conductancia eléctrica. En 2011, se resolvió la estructura cristalina de KcsA de longitud completa para revelar que el obstáculo de los residuos previamente truncados solo permite una expansión sencilla de la región de paso de iones intercelular de la proteína. Esta investigación proporciona una visión más detallada del movimiento de regiones de canales separados durante la conducción de iones. [9] En la actualidad, los estudios de KcsA se centran en el uso del canal procariótico como modelo para la dinámica de canales de K + eucarióticos más grandes , incluido hERG .

Estructura

La estructura cristalina de KcsA. Aquí sólo se muestran dos de las cuatro subunidades. La proteína se muestra en verde, los grupos carbonilo de la columna vertebral (oxígeno = rojo, carbono = verde) y los iones de potasio (que ocupan los sitios S2 y S4) y los átomos de oxígeno de las moléculas de agua (S1 y S3) son esferas moradas y rojas respectivamente.

La estructura de KcsA es la de un cono invertido , con un poro central que recorre el centro formado por dos hélices transmembrana (la hélice externa M1 y la hélice interna M2), que atraviesan la bicapa lipídica . El canal en sí es un tetrámero compuesto por cuatro subunidades idénticas de dominio único (cada una con dos hélices α) dispuestas de manera que una hélice M2 mira hacia el poro central, mientras que la otra hélice M1 mira hacia la membrana lipídica . Las hélices internas están inclinadas aproximadamente 25° en relación con la membrana lipídica y están ligeramente retorcidas, abriéndose para mirar hacia el exterior de la célula como una flor. [6] Estas dos hélices TM están unidas por un bucle reentrante, dispersos simétricamente alrededor de un eje común correspondiente al poro central . La región del poro abarca aproximadamente 30 residuos de aminoácidos y se puede dividir en tres partes: un filtro de selectividad cerca del lado extracelular, una cavidad dilatada llena de agua en el centro y una puerta cerrada cerca del lado citoplasmático formada por cuatro hélices M2 empaquetadas. [6] Se encuentra que esta arquitectura está altamente conservada en la familia de canales de potasio [10] [11] tanto en eucariotas como en procariotas.

La longitud total del poro es de 45 Å y su diámetro varía considerablemente dentro de las distintas regiones del túnel interior. Viajando desde la región intracelular hacia afuera (de abajo hacia arriba en la imagen), el poro comienza con una región de puerta formada por hélices M2 de 18 Å de diámetro y luego se abre en una cavidad ancha (~10 Å de ancho) cerca de la mitad de la membrana. . [6] En estas regiones, los iones K + están en contacto con las moléculas de agua circundantes, pero cuando ingresan al canal desde el filtro de selectividad en la parte superior, la cavidad es tan estrecha que los iones K + deben eliminar el agua hidratante para poder ingresar. celúla. [6] Con respecto a la composición de aminoácidos de los residuos que recubren los poros dentro de KcsA, las cadenas laterales que recubren el poro interno y la cavidad son predominantemente hidrofóbicas , pero dentro del filtro de selectividad hay aminoácidos polares que entran en contacto con los iones K + deshidratados .

Filtro de selectividad

El extremo más ancho del cono corresponde a la boca extracelular del canal conformado por hélices de poros, más un filtro de selectividad que está formado por una secuencia TVGYG , (Treonina, Valina, Glicina, Tirosina, Glicina), característica de los canales de potasio. [12] Dentro de esta región, la coordinación entre los aminoácidos TVGYG y los iones K + entrantes permite la conducción de iones a través del canal. El filtro de selectividad de KcsA contiene cuatro sitios de unión de iones, aunque se propone que sólo dos de estas cuatro posiciones estén ocupadas al mismo tiempo. El filtro de selectividad tiene aproximadamente 3 Å de diámetro. [13] aunque las simulaciones de dinámica molecular sugieren que el filtro es flexible. [14] La presencia de TVGYG en la región del filtro de KcsA se conserva incluso en canales eucariotas más complejos, lo que convierte a KcsA en un sistema óptimo para estudiar la conductancia del canal de K + entre especies.

Función

KcsA pasa de una conformación cerrada a una abierta tras la protonación de la hélice M2 a pH bajo. La activación de voltaje produce el colapso del filtro de selectividad y su posterior inactivación. La imagen está adaptada de Thompson et al. 2008.

El canal KcsA se considera un canal modelo porque la estructura de KcsA proporciona un marco para comprender la conducción del canal K + , que tiene tres partes: selectividad de potasio , activación del canal por sensibilidad al pH e inactivación del canal dependiente de voltaje. La permeación de iones K + ocurre en la región superior del filtro de selectividad del poro, mientras que la regulación del pH aumenta a partir de la protonación de hélices transmembrana al final del poro. A pH bajo, la hélice M2 se protona, cambiando el canal iónico de una conformación cerrada a una abierta. [15] A medida que los iones fluyen a través del canal, se cree que los mecanismos de activación de voltaje inducen interacciones entre Glu71 y Asp80 en el filtro de selectividad, que desestabilizan la conformación conductora y facilitan la entrada a un estado no conductor de larga duración que se asemeja a la inactivación de tipo C. de canales dependientes de voltaje . [dieciséis]

En la conformación no conductora de KcsA a pH 7, el K + está fuertemente unido a los oxígenos coordinadores del filtro de selectividad y las cuatro hélices TM2 convergen cerca de la unión citoplasmática para bloquear el paso de cualquier ion potasio. [8] Sin embargo, a pH 4, KcsA sufre intercambios conformacionales en escalas de tiempo de milisegundos, estados permeantes y no permeantes del filtro y entre las conformaciones abierta y cerrada de las hélices M2. [8] Si bien estos distintos cambios conformacionales ocurren en regiones separadas del canal, el comportamiento molecular de cada región está vinculado tanto por interacciones electrostáticas como por alosterio . [8] La dinámica de este intercambio de configuraciones estereoquímicas en el filtro proporciona la base física para la conductancia y activación simultáneas de K + .

k+selectividad

La secuencia TVGYG es especialmente importante para mantener la especificidad por potasio de KcsA. Las glicinas en esta secuencia de filtro de selectividad tienen ángulos diédricos que permiten que los átomos de oxígeno del carbonilo en la estructura proteica del filtro apunten en una dirección, hacia los iones a lo largo del poro. [5] Las glicinas y la treonina se coordinan con el ion K + , mientras que las cadenas laterales de valina y tirosina se dirigen al núcleo de la proteína para imponer una restricción geométrica al filtro. Como resultado, el tetrámero KcsA alberga cuatro sitios de unión de K + igualmente espaciados , con cada lado compuesto por una jaula formada por ocho átomos de oxígeno que se asientan en los vértices de un cubo. Los átomos de oxígeno que rodean los iones K + en el filtro están dispuestos como las moléculas de agua que rodean los iones K + hidratados en la cavidad del canal; esto sugiere que los sitios de coordinación y unión del oxígeno en el filtro de selectividad están pagando el costo energético de la deshidratación de K + . [5] Debido a que el ion Na+ es demasiado pequeño para estos sitios de unión del tamaño de K + , la energía de deshidratación no se compensa y, por lo tanto, el filtro selecciona contra otros iones extraños. [5] Además, el canal KcsA está bloqueado por iones Cs + y la activación requiere la presencia de iones Mg 2+ . [1]

Sensibilidad al pH

La conductancia dependiente del pH de KcsA indica que la apertura del canal iónico ocurre cuando la proteína se expone a un ambiente más ácido. Los estudios de RMN realizados por el grupo de Riek muestran que la sensibilidad al pH se produce tanto en la región TM2 C-terminal de la proteína como en los residuos Tyr78 y Gly79 en el filtro de selectividad. Hay evidencia que sugiere que el sensor de pH principal está en el dominio citoplasmático. El intercambio de aminoácidos cargados negativamente por neutros hizo que el canal KcsA fuera insensible al pH a pesar de que no hubo cambios de aminoácidos en la región transmembrana. [17] [18] Además, entre el pH de 6 y 7, la histidina es una de las pocas cadenas laterales titulables de las histidinas; están ausentes en los segmentos transmembrana y extracelular de TM2, pero están presentes en el extremo C terminal de KcsA. Esto resalta un posible mecanismo para la apertura lenta de KcsA que es particularmente sensible al pH, especialmente porque la propagación conformacional de la señal de apertura del canal desde el extremo C al filtro de selectividad podría ser importante para coordinar los cambios estructurales necesarios para la conductancia a lo largo de todo el poro. .

Los estudios de RMN también sugieren que existe una red compleja de enlaces de hidrógeno entre Tyr78, Gly79, Glu71 y Asp80 en la región del filtro KcsA, y además actúa como un desencadenante de conductancia sensible al pH. La mutación de residuos clave en la región, incluido E71A, resulta en un gran costo energético de 4 kcal mol −1 , equivalente a la pérdida del enlace de hidrógeno entre Glu71 y Tyr78 y el enlace de hidrógeno mediado por agua entre Glu71 y Asp80 en KcsA. (E71A). Estos estudios resaltan aún más el papel de la activación del pH en la función del canal KcsA.

Puerta de voltaje

En 2006, el grupo Perozo propuso una explicación mecanicista de los efectos de los campos de voltaje en la activación de KcsA. Después de agregar una corriente despolarizante al canal, se produce la reorientación de Glu71 hacia el poro intracelular, interrumpiendo así el par carboxilo-carboxilato Glu71-Asp80 que inicialmente estabiliza el filtro de selectividad. El colapso de la región del filtro impide la entrada o facilita la salida del estado inactivado. [16] Glu71, una parte clave de la secuencia de firma del filtro de selectividad que se conserva entre los canales iónicos K + , desempeña un papel fundamental en la activación, ya que su capacidad para reorientarse en la dirección del campo de voltaje transmembrana puede proporcionar una explicación para eventos de activación de voltaje en KcsA. La orientación de los aminoácidos en la región del filtro podría desempeñar un papel fisiológico importante en la modulación de los flujos de potasio en eucariotas y procariotas en condiciones de estado estacionario. [dieciséis]

Investigación

Función

El mecanismo preciso de la selectividad del canal de potasio continúa estudiándose y debatiéndose y se utilizan múltiples modelos para describir diferentes aspectos de la selectividad. Se han aplicado a KcsA modelos que explican la selectividad basados ​​en el concepto de intensidad de campo desarrollado por George Eisenman [19] basado en la ley de Coulomb . [14] [20] Una explicación alternativa para la selectividad de KcsA se basa en el modelo de ajuste perfecto (también conocido como modelo de ajuste perfecto) desarrollado por Francisco Bezanilla y Armstrong . [21] Los átomos de oxígeno del carbonilo de la cadena principal que componen el filtro de selectividad se mantienen en una posición precisa que les permite sustituir las moléculas de agua en la capa hidratada del ion potasio , pero están demasiado lejos de un ion sodio . Trabajos posteriores han estudiado las diferencias termodinámicas en la unión de iones, [22] consideraciones topológicas, [23] [24] y el número de sitios de unión de iones continuos. [25]

Además, aún no se ha discutido una limitación importante del estudio y las simulaciones de la estructura cristalina : la estructura cristalina mejor resuelta y más aplicada de KcsA parece ser la de la forma "cerrada" del canal. Esto es razonable ya que el estado cerrado del canal se ve favorecido a pH neutro , en el que la estructura cristalina se resolvió mediante cristalografía de rayos X. Sin embargo, el comportamiento dinámico de KcsA dificulta el análisis del canal, ya que una estructura cristalina inevitablemente proporciona una imagen estática, promediada espacial y temporalmente de un canal. Para cerrar la brecha entre la estructura molecular y el comportamiento fisiológico, se requiere una comprensión de la dinámica de resolución atómica de los canales de potasio.

Aplicaciones

Debido a la alta similitud de secuencia entre el poro de KcsA y otras proteínas del canal iónico K + eucariótico , KcsA ha proporcionado información importante sobre el comportamiento de otras proteínas conductoras de voltaje importantes, como el Shaker derivado de drosophila y el canal de potasio hERG humano . KcsA se ha utilizado en estudios de mutagénesis para modelar las interacciones entre hERG y varios compuestos farmacológicos. Estas pruebas pueden detectar interacciones fármaco-canal hERG que causan el síndrome de QT largo adquirido y son esenciales para determinar la seguridad cardíaca de nuevos medicamentos. [26] Además, se han generado computacionalmente modelos de homología basados ​​en la estructura cristalina de KcsA en estado cerrado para construir una representación de estados múltiples del canal de K + cardíaco hERG . Dichos modelos revelan la flexibilidad del canal hERG y pueden predecir consistentemente la afinidad de unión de un conjunto de diversos ligandos que interactúan con el canal iónico. El análisis de las estructuras complejas de ligando-hERG se puede utilizar para guiar la síntesis de análogos de fármacos con responsabilidad reducida de hERG, según la estructura del fármaco y el potencial de acoplamiento. [27]

Ver también

Referencias

  1. ^ abc Schrempf H, Schmidt O, Kümmerlen R, Hinnah S, Müller D, Betzler M, Steinkamp T, Wagner R (noviembre de 1995). "Un canal de iones de potasio procariótico con dos segmentos transmembrana predichos de Streptomyces lividans". La Revista EMBO . 14 (21): 5170–8. doi :10.1002/j.1460-2075.1995.tb00201.x. PMC  394625 . PMID  7489706.
  2. ^ Meuser D, Splitt H, Wagner R, Schrempf H (1999). "Explorando el poro abierto del canal de potasio de Streptomyces lividans". Cartas FEBS . 462 (3): 447–452. Código Bib : 1999FEBSL.462..447M. doi : 10.1016/S0014-5793(99)01579-3 . PMID  10622743. S2CID  6231397.
  3. ^ Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (diciembre de 2005). "Descripción general de las relaciones moleculares en la superfamilia de canales iónicos dependientes de voltaje". Revisiones farmacológicas . 57 (4): 387–95. doi :10.1124/pr.57.4.13. PMID  16382097. S2CID  2643413.
  4. ^ Roux B (2005). "Conducción de iones y selectividad en canales de K (+)". Revista Anual de Biofísica y Estructura Biomolecular . 34 : 153–71. doi : 10.1146/annurev.biophys.34.040204.144655. PMID  15869387.
  5. ^ abcd Roderick MacKinnon. "Conferencia Nobel: canales de potasio y la base atómica de la conducción selectiva de iones". Premio Nobel.org . Nobel Media AB.
  6. ^ abcde Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (abril de 1998). "La estructura del canal de potasio: bases moleculares de la conducción y selectividad de K + ". Ciencia . 280 (5360): 69–77. Código Bib : 1998 Ciencia... 280... 69D. doi : 10.1126/ciencia.280.5360.69. PMID  9525859.
  7. ^ Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (noviembre de 2001). "Química de la coordinación e hidratación de iones revelada por un complejo canal K + -Fab con una resolución de 2,0 A". Naturaleza . 414 (6859): 43–8. Código Bib :2001Natur.414...43Z. doi :10.1038/35102009. PMID  11689936. S2CID  205022645.
  8. ^ abcd Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R (noviembre de 2007). "La dinámica conformacional del canal de potasio KcsA gobierna las propiedades de activación". Naturaleza Biología estructural y molecular . 14 (11): 1089–95. doi :10.1038/nsmb1311. PMC 3525321 . PMID  17922011. 
  9. ^ Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, Perozo E (julio de 2011). "Mecanismo de activación en el canal KcsA K + de longitud completa". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 108 (29): 11896–9. Código bibliográfico : 2011PNAS..10811896U. doi : 10.1073/pnas.1105112108 . PMC 3141920 . PMID  21730186. 
  10. ^ Lu Z, Klem AM, Ramu Y (octubre de 2001). "El poro de conducción de iones se conserva entre los canales de potasio". Naturaleza . 413 (6858): 809–13. Código Bib :2001Natur.413..809L. doi :10.1038/35101535. PMID  11677598. S2CID  4364245.
  11. ^ Choe S (febrero de 2002). "Estructuras de canales de potasio". Reseñas de la naturaleza. Neurociencia . 3 (2): 115–21. doi :10.1038/nrn727. PMID  11836519. S2CID  825973.
  12. ^ Hille B, Armstrong CM, MacKinnon R (octubre de 1999). "Canales iónicos: de la idea a la realidad". Medicina de la Naturaleza . 5 (10): 1105–9. doi :10.1038/13415. PMID  10502800. S2CID  5216271.
  13. ^ Hille B (junio de 1973). "Canales de potasio en nervio mielinizado. Permeabilidad selectiva a pequeños cationes". La Revista de Fisiología General . 61 (6): 669–86. doi :10.1085/jgp.61.6.669. PMC 2203488 . PMID  4541077. 
  14. ^ ab Noskov SY, Roux B (diciembre de 2006). "Selectividad iónica en canales de potasio". Química Biofísica . 124 (3): 279–91. doi :10.1016/j.bpc.2006.05.033. PMID  16843584.
  15. ^ Thompson AN, Posson DJ, Parsa PV, Nimigean CM (mayo de 2008). "Mecanismo molecular de detección de pH en los canales de potasio KcsA". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 105 (19): 6900–5. Código Bib : 2008PNAS..105.6900T. doi : 10.1073/pnas.0800873105 . PMC 2383984 . PMID  18443286. 
  16. ^ abc Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (abril de 2006). "Determinantes moleculares de la activación del filtro de selectividad del canal de potasio". Naturaleza Biología estructural y molecular . 13 (4): 311–8. doi :10.1038/nsmb1069. PMID  16532009. S2CID  20765018.
  17. ^ Hirano M, Onishi Y, Yanagida T, Ide T (noviembre de 2011). "Papel del dominio citoplásmico del canal KcsA en la activación dependiente del pH". Revista Biofísica . 101 (9): 2157–62. Código Bib : 2011BpJ...101.2157H. doi :10.1016/j.bpj.2011.09.024. PMC 3207171 . PMID  22067153. 
  18. ^ Yuchi Z, Pau vicepresidente, Yang DS (diciembre de 2008). "GCN4 mejora la estabilidad del dominio de poros del canal de potasio KcsA". El Diario FEBS . 275 (24): 6228–36. doi : 10.1111/j.1742-4658.2008.06747.x . PMID  19016844.
  19. ^ Eisenman G (marzo de 1962). "Electrodos de vidrio selectivos de cationes y su modo de funcionamiento". Revista Biofísica . 2 (2 partes 2): 259–323. Código bibliográfico : 1962BpJ......2..259E. doi :10.1016/S0006-3495(62)86959-8. PMC 1366487 . PMID  13889686. 
  20. ^ Noskov SY, Bernèche S, Roux B (octubre de 2004). "Control de la selectividad iónica en canales de potasio mediante propiedades electrostáticas y dinámicas de ligandos carbonilo". Naturaleza . 431 (7010): 830–4. Código Bib :2004Natur.431..830N. doi : 10.1038/naturaleza02943. PMID  15483608. S2CID  4414885.
  21. ^ Bezanilla F, Armstrong CM (noviembre de 1972). "Conductancia negativa provocada por la entrada de iones de sodio y cesio en los canales de potasio de los axones de calamar". La Revista de Fisiología General . 60 (5): 588–608. doi :10.1085/jgp.60.5.588. PMC 2226091 . PMID  4644327. 
  22. ^ Varma S, Rempe SB (agosto de 2007). "Ajuste de las arquitecturas de coordinación de iones para permitir la partición selectiva". Revista Biofísica . 93 (4): 1093–9. arXiv : física/0608180 . Código Bib : 2007BpJ....93.1093V. doi :10.1529/biophysj.107.107482. PMC 1929028 . PMID  17513348. 
  23. ^ Thomas M, Jayatilaka D, Corry B (octubre de 2007). "El papel predominante del número de coordinación en la selectividad del canal de potasio". Revista Biofísica . 93 (8): 2635–43. Código Bib : 2007BpJ....93.2635T. doi :10.1529/biophysj.107.108167. PMC 1989715 . PMID  17573427. 
  24. ^ Bostick DL, Brooks CL (mayo de 2007). "La selectividad en los canales de K+ se debe al control topológico del estado coordinado del ion permeante". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 104 (22): 9260–5. Código Bib : 2007PNAS..104.9260B. doi : 10.1073/pnas.0700554104 . PMC 1890482 . PMID  17519335. 
  25. ^ Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, Jiang Y (enero de 2011). "Ajustar la selectividad iónica de los canales catiónicos tetraméricos cambiando el número de sitios de unión iónica". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 108 (2): 598–602. Código Bib : 2011PNAS..108..598D. doi : 10.1073/pnas.1013636108 . PMC 3021048 . PMID  21187421. 
  26. ^ Sanguinetti MC, Mitcheson JS (marzo de 2005). "Predicción de las interacciones fármaco-canal hERG que causan el síndrome de QT largo adquirido". Tendencias en Ciencias Farmacológicas . 26 (3): 119–24. doi :10.1016/j.tips.2005.01.003. PMID  15749156.
  27. ^ Rajamani R, Tounge BA, Li J, Reynolds CH (marzo de 2005). "Un modelo de homología de dos estados del canal hERG K + : aplicación a la unión del ligando". Cartas de química bioorgánica y medicinal . 15 (6): 1737–41. doi :10.1016/j.bmcl.2005.01.008. PMID  15745831.