Concepto en estadística
En estadística , un parámetro de ubicación de una distribución de probabilidad es un parámetro de valor escalar o vectorial que determina la "ubicación" o desplazamiento de la distribución. En la literatura sobre estimación de parámetros de ubicación, las distribuciones de probabilidad con dicho parámetro se definen formalmente de una de las siguientes maneras equivalentes:
- ya sea como si tuviera una función de densidad de probabilidad o una función de masa de probabilidad ; [1] o
- que tiene una función de distribución acumulativa ; [2] o
- se define como el resultado de la transformación de la variable aleatoria , donde es una variable aleatoria con una distribución determinada, posiblemente desconocida [3] (véase también #Ruido_aditivo).
Un ejemplo directo de un parámetro de ubicación es el parámetro de la distribución normal . Para comprobarlo, observe que la función de densidad de probabilidad de una distribución normal puede tener el parámetro extraído y escribirse como:
Cumpliéndose así la primera de las definiciones dadas anteriormente.
La definición anterior indica, en el caso unidimensional, que si aumenta, la densidad de probabilidad o función de masa se desplaza rígidamente hacia la derecha, manteniendo su forma exacta.
También se puede encontrar un parámetro de ubicación en familias que tienen más de un parámetro, como las familias de ubicación-escala . En este caso, la función de densidad de probabilidad o la función de masa de probabilidad serán un caso especial de la forma más general
donde es el parámetro de ubicación, θ representa parámetros adicionales y es una función parametrizada en los parámetros adicionales.
Definición[4]
Sea cualquier función de densidad de probabilidad y sean y cualquier constante dada. Entonces la función
es una función de densidad de probabilidad.
La familia de ubicaciones se define entonces de la siguiente manera:
Sea cualquier función de densidad de probabilidad. Entonces, la familia de funciones de densidad de probabilidad se denomina familia de ubicación con función de densidad de probabilidad estándar , donde se denomina parámetro de ubicación para la familia.
Ruido aditivo
Una forma alternativa de pensar en las familias de ubicaciones es a través del concepto de ruido aditivo . Si es una constante y W es ruido aleatorio con densidad de probabilidad , entonces tiene densidad de probabilidad y, por lo tanto, su distribución es parte de una familia de ubicaciones.
Pruebas
Para el caso univariado continuo, considere una función de densidad de probabilidad , donde es un vector de parámetros. Se puede agregar un parámetro de ubicación definiendo:
se puede demostrar que es una función de densidad de probabilidad verificando si respeta las dos condiciones [5] y . integra a 1 porque:
Ahora, al realizar el cambio de variable y actualizar el intervalo de integración en consecuencia, obtenemos:
porque es un pdf por hipótesis. se deduce de compartir la misma imagen de , que es un pdf por lo que su imagen está contenida en .
Véase también
Referencias
- ^ Takeuchi, Kei (1971). "Un estimador uniformemente asintóticamente eficiente de un parámetro de ubicación". Revista de la Asociación Estadounidense de Estadística . 66 (334): 292–301. doi :10.1080/01621459.1971.10482258. S2CID 120949417.
- ^ Huber, Peter J. (1992). "Estimación robusta de un parámetro de ubicación". Avances en estadística . Springer Series in Statistics. Springer: 492–518. doi :10.1007/978-1-4612-4380-9_35. ISBN 978-0-387-94039-7.
- ^ Stone, Charles J. (1975). "Estimadores adaptativos de máxima verosimilitud de un parámetro de ubicación". Anales de estadística . 3 (2): 267–284. doi : 10.1214/aos/1176343056 .
- ^ Casella, George; Berger, Roger (2001). Inferencia estadística (2.ª ed.). pág. 116. ISBN 978-0534243128.
- ^ Ross, Sheldon (2010). Introducción a los modelos de probabilidad . Ámsterdam, Boston: Academic Press. ISBN 978-0-12-375686-2.OCLC 444116127 .