stringtranslate.com

Regular measure

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

Definition

Let (XT) be a topological space and let Σ be a σ-algebra on X. Let μ be a measure on (X, Σ). A measurable subset A of X is said to be inner regular if

This property is sometimes referred to in words as "approximation from within by compact sets." Some authors[1][2] use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure μ is inner regular if and only if, for all ε > 0, there is some compact subset K of X such that μ(X \ K) < ε. This is precisely the condition that the singleton collection of measures {μ} is tight.

It is said to be outer regular if

Examples

Regular measures

Inner regular measures that are not outer regular

Outer regular measures that are not inner regular

Measures that are neither inner nor outer regular

See also

References

  1. ^ Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: ETH Zürich, Birkhäuser Verlag. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. xii+276. ISBN 0-8218-3889-X. MR2169627

Bibliography