stringtranslate.com

Longitud de tirada limitada

La codificación RLL o de longitud de ejecución limitada es una técnica de codificación de línea que se utiliza para enviar datos arbitrarios a través de un canal de comunicaciones con límites de ancho de banda . Los códigos RLL están definidos por cuatro parámetros principales: m , n , d , k . Los dos primeros, m / n , se refieren a la velocidad del código, mientras que los dos restantes especifican el número mínimo d y máximo k de ceros entre unos consecutivos. Esto se utiliza tanto en sistemas de telecomunicaciones como de almacenamiento que mueven un medio más allá de un cabezal de grabación fijo . [1]

Específicamente, RLL limita la longitud de tramos (ejecuciones) de bits repetidos durante los cuales la señal no cambia. Si las carreras son demasiado largas, la recuperación del reloj es difícil; si son demasiado cortos, las altas frecuencias podrían verse atenuadas por el canal de comunicación. Al modular los datos , RLL reduce la incertidumbre temporal al decodificar los datos almacenados, lo que conduciría a la posible inserción o eliminación errónea de bits al volver a leer los datos. Este mecanismo garantiza que los límites entre bits siempre se puedan encontrar con precisión (evitando el deslizamiento de bits ), al tiempo que utiliza de manera eficiente los medios para almacenar de manera confiable la máxima cantidad de datos en un espacio determinado.

Las primeras unidades de disco utilizaban esquemas de codificación muy sencillos, como el código RLL (0,1) FM, seguido del código RLL (1,3) MFM, que se utilizaban ampliamente en las unidades de disco duro hasta mediados de los años 1980 y todavía se utilizan en formato digital. Discos ópticos como CD , DVD , MD , Hi-MD y Blu-ray . Los códigos RLL (2,7) y RLL (1,7) de mayor densidad se convirtieron en el estándar industrial de facto para discos duros a principios de la década de 1990.

Necesidad de codificación RLL

En una unidad de disco duro , la información está representada por cambios en la dirección del campo magnético en el disco, y en medios magnéticos, la salida de reproducción es proporcional a la densidad de transición de flujo. En una computadora, la información está representada por el voltaje en un cable. Ningún voltaje en el cable en relación con un nivel de tierra definido sería un cero binario, y un voltaje positivo en el cable en relación con la tierra representa un uno binario. Los medios magnéticos, por el contrario, siempre transportan un flujo magnético, ya sea un polo "norte" o un polo "sur". Para convertir los campos magnéticos en datos binarios, se debe utilizar algún método de codificación para traducir entre los dos.

Uno de los códigos prácticos más simples, modificado sin retorno a cero invertido ( NRZI ), simplemente codifica un 1 como una transición de polaridad magnética, también conocida como "inversión de flujo", y un cero como sin transición. Con el disco girando a una velocidad constante, a cada bit se le asigna un período de tiempo igual, una "ventana de datos", para la señal magnética que representa ese bit, y la inversión de flujo, si la hay, ocurre al comienzo de esta ventana. (Nota: los discos duros más antiguos utilizaban un período de tiempo fijo como ventana de datos en todo el disco, pero los discos modernos son más complicados; para obtener más información sobre esto, consulte grabación de bits por zonas ).

Este método no es tan simple, ya que la salida de reproducción es proporcional a la densidad de unos, una serie larga de ceros significa que no hay salida de reproducción en absoluto.

En un ejemplo sencillo, considere el patrón binario 101 con una ventana de datos de 1 ns (un nanosegundo o una milmillonésima de segundo). Esto se almacenará en el disco como un cambio, seguido de ningún cambio y luego otro cambio. Si la polaridad magnética anterior ya era positiva, el patrón resultante podría verse así: −−+. Un valor de 255, o todos los binarios, se escribiría como −+−+−+−+ o +−+−+−+−. Un byte cero se escribiría como ++++++++ o −−−−−−−−. Un sector de ceros de 512 bytes se escribiría como 4096 bits secuenciales con la misma polaridad.

Dado que una unidad de disco es una pieza física de hardware, la velocidad de rotación de la unidad puede cambiar ligeramente debido a un cambio en la velocidad del motor o a la expansión térmica del plato del disco. Los medios físicos de un disquete también pueden deformarse, provocando errores de sincronización mayores, y el circuito de sincronización en el propio controlador puede tener pequeñas variaciones en la velocidad. El problema es que, con una larga cadena de ceros, no hay forma de que el controlador de la unidad de disco sepa la posición exacta del cabezal de lectura y, por lo tanto, no hay forma de saber exactamente cuántos ceros hay. Una variación de velocidad de incluso el 0,1%, que es más precisa que cualquier unidad de disquete práctica, podría dar como resultado que se agreguen o eliminen 4 bits del flujo de datos de 4096 bits. Sin alguna forma de sincronización y corrección de errores, los datos quedarían completamente inutilizables.

El otro problema se debe a los límites de los medios magnéticos en sí: solo es posible escribir tantos cambios de polaridad en una cierta cantidad de espacio, por lo que hay un límite superior en cuanto a la cantidad de unidades que también se pueden escribir secuencialmente, esto depende de la línea lineal. velocidad y la distancia entre cabezas.

Para evitar este problema, los datos se codifican de tal manera que no se produzcan largas repeticiones de un único valor binario. Al limitar el número de ceros escritos consecutivamente a un máximo k , esto hace posible que el controlador de accionamiento permanezca sincronizado. Al limitar el número de ceros escritos en una fila a un mínimo d entre cada uno, se reduce la frecuencia general de los cambios de polaridad, lo que permite que la unidad almacene más datos en la misma cantidad de espacio, lo que resulta en un paquete más pequeño para la misma cantidad de datos o más almacenamiento en el mismo paquete de tamaño.

Historia

Seagate ST11R, un controlador de disco duro ISA RLL ​​de 8 bits producido en 1990.

Todos los códigos utilizados para grabar en discos magnéticos tienen una duración limitada de las ejecuciones sin transición y, por lo tanto, pueden caracterizarse como códigos RLL. Las variantes más antiguas y simples recibieron nombres específicos, como modulación de frecuencia modificada (MFM), y el nombre "RLL" se usa comúnmente solo para las variantes más complejas que no reciben nombres tan específicos, pero el término técnicamente se aplica a todas ellas.

El primer código "RLL" utilizado en discos duros fue RLL (2,7), desarrollado por ingenieros de IBM y utilizado comercialmente por primera vez en 1979 en el IBM 3370 DASD , [2] [3] [4] para su uso con la computadora central de la serie 4300. . A finales de la década de 1980, los discos duros de PC comenzaron a utilizar RLL propiamente dicho (es decir, variantes más complejas que aquellas que habían recibido sus propios nombres propios, como MFM). Los códigos RLL han encontrado una aplicación casi universal en la práctica de grabación de discos ópticos desde 1980. En la electrónica de consumo, los RLL como el código EFM (tasa = 8/17, d  = 2, k  = 10) se emplean en el disco compacto (CD) y MiniDisc (MD) y el código EFMPlus (tasa = 8/16, d  = 2, k  = 10) utilizado en el DVD . Los parámetros d y k son las longitudes de tirada mínima y máxima permitidas. Para obtener más cobertura sobre las tecnologías de almacenamiento, las referencias citadas en este artículo son útiles. [5] [6]

Resumen técnico

Generalmente, la longitud de ejecución es el número de bits durante los cuales la señal permanece sin cambios. Una longitud de ejecución de 3 para el bit 1 representa una secuencia 111. Por ejemplo, el patrón de polarizaciones magnéticas en el disco podría ser +−−−−++−−−++++++, con ejecuciones de longitud 1, 4, 2, 3 y 6. Sin embargo, la terminología de codificación de longitud de ejecución limitada asume codificación NRZI, por lo que 1 bit indica cambios y 0 bits indica la ausencia de cambio, la secuencia anterior se expresaría como 11000101001000001, y solo ejecuciones de cero bits se cuentan.

De manera algo confusa, la longitud de la ejecución es el número de ceros (0, 3, 1, 2 y 5 en el caso anterior) entre los adyacentes, que es uno menos que el número de veces en bits que la señal realmente permanece sin cambios. Las secuencias de longitud de ejecución limitada se caracterizan por dos parámetros, d y k , que estipulan la longitud de ejecución mínima y máxima de cero bits que puede ocurrir en la secuencia. Por lo tanto, los códigos RLL generalmente se especifican como ( d , k ) RLL, por ejemplo: (1,3) RLL.

Codificación

En el formato codificado, un bit "1" indica una transición de flujo, mientras que un "0" indica que el campo magnético en el disco no cambia durante ese intervalo de tiempo.

FM: (0,1) RLL

Generalmente, el término "código RLL" se utiliza para referirse a codificaciones más elaboradas, pero el código de modulación de frecuencia original , también llamado codificación diferencial de Manchester , puede verse como un código RLL de velocidad 1/2 simple. Los 1 bits agregados se denominan bits de reloj.

Ejemplo:

Datos: 0 0 1 0 1 1 0 1 0 0 0 1 1 0Codificado: 1010111011111011101010111110Reloj: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RCG: (0,2) RLL

Al extender la longitud máxima de ejecución a 2 bits 0 adyacentes, la velocidad de datos se puede mejorar a 4/5. Esta es la variante de grabación codificada del grupo original de IBM.

Siempre que sea posible (11 de 16 códigos), el patrón de bits abcdse codifica prefijándolo con el complemento de a : aabcd. En los 5 casos en los que esto violaría una de las reglas ( 000do ab00), se sustituye un código que comienza con 11 ( , donde e = ad ).11bea

Ejemplo:

Datos: 0010 1101 0001 1000Codificado: 10010011011101111010

Tenga en cuenta que para cumplir con la definición de (0,2) RLL, no es suficiente sólo que cada código de 5 bits contenga no más de dos ceros consecutivos, sino que también es necesario que cualquier par de códigos de 5 bits combinados secuencialmente no contener más de dos ceros consecutivos. Es decir, no debe haber más de dos ceros entre el último bit del primer código y el primer bit del segundo código, para dos códigos cualesquiera elegidos arbitrariamente. Esto es necesario porque para cualquier código RLL, los límites de longitud de ejecución (0 y 2 en este caso) se aplican al flujo de bits modulado general, no solo a los componentes del mismo que representan secuencias discretas de bits de datos simples. (Esta regla debe ser válida para cualquier par arbitrario de códigos, sin excepción, porque los datos de entrada pueden ser cualquier secuencia arbitraria de bits). El código IBM GCR anterior cumple esta condición, ya que la longitud máxima de ejecución es ceros al comienzo de cualquier 5 El código de bits es uno y, de la misma manera, la longitud máxima de ejecución al final de cualquier código es uno, lo que hace una longitud total de dos en la unión entre códigos adyacentes. (Se puede ver un ejemplo de la longitud máxima de ejecución entre códigos en el ejemplo anterior, donde el código para los datos "0010" termina con un cero y el código para los siguientes datos, "1101", comienza con un cero. formando una serie de dos ceros en la unión de estos dos códigos de 5 bits).

MFM: (1,3) RLL

La modulación de frecuencia modificada comienza a ser interesante, porque sus propiedades especiales permiten que sus bits se escriban en un medio magnético con el doble de densidad que un flujo de bits arbitrario. Hay un límite en cuanto a qué tan cerca pueden estar las transiciones de flujo de tiempo para que los equipos de lectura las detecten, y eso limita la cercanía con la que se pueden grabar los bits en el medio: en el peor de los casos, con un flujo de bits arbitrario, hay dos consecutivos, lo que produce dos transiciones de flujo consecutivas en el tiempo, por lo que los bits deben estar lo suficientemente separados como para que haya tiempo suficiente entre esas transiciones de flujo para que el lector las detecte. Pero este código impone una restricción de d  = 1, es decir, hay un mínimo de un cero entre cada dos unos. Esto significa que, en el peor de los casos, las transiciones de flujo están separadas por dos bits, por lo que los bits pueden estar dos veces más juntos que con el flujo de bits arbitrario sin exceder las capacidades del lector.

Esta densidad de grabación duplicada compensa la tasa de codificación 1/2 de este código (se necesitan dos bits para representar un bit de información real) y lo hace equivalente a un código de tasa 1.

La codificación es muy similar a la codificación FM.

Donde "x" es el complemento del bit previamente codificado de la secuencia.

Excepto que los bits de reloj no siempre son uno, esto es lo mismo que la tabla FM, y así es como este código recibe su nombre. Los bits de reloj insertados son 0 excepto entre dos bits de datos 0.

Cuando se combina con el bit n-1 anterior , la tabla de codificación resultante para cada bit de datos n se convierte efectivamente en.

Ejemplo:

Datos: 0 0 1 0 1 1 0 1 0 0 0 1 1 0Codificado: x010010001010001001010010100Reloj: x 1 0 0 0 0 0 0 0 1 1 0 0 0

(1,7) RLL

(1,7) RLL asigna 2 bits de datos a 3 bits en el disco y la codificación se realiza en grupos de 2 o 4 bits. Las reglas de codificación son: ( x , y ) se convierte en (NO x , x Y y , NO y ), excepto ( x , 0, 0, y ) se convierte en (NO x , x Y y , NO y , 0, 0, 0 ). [7] Al codificar según la siguiente tabla, se debe utilizar la coincidencia más larga (la última en la tabla); esas son excepciones que manejan situaciones en las que la aplicación de las reglas anteriores conduciría a una violación de las restricciones del código.

Ejemplo:

Datos: 0 0 1 0 1 1 0 1 0 0 0 1 1 0Codificado: 101 001 010 100 100 000 001

(2,7) RLL

(2,7) RLL es un código de velocidad 12 , que asigna n bits de datos a 2 n bits en el disco, como MFM, pero debido a que la longitud mínima de ejecución es un 50% más larga (3 veces en lugar de 2), el Los bits se pueden escribir más rápido, logrando una densidad de datos efectiva un 50% mayor. La codificación se realiza en grupos de 2, 3 o 4 bits.

Western Digital WD5010A, WD5011A, WD50C12

Seagate ST11R, IBM

Sistemas Perstor ADRC

Las formas codificadas comienzan con como máximo 4 y terminan con como máximo 3 bits cero, lo que da una longitud de ejecución máxima de 7.

Ejemplo:

Datos: 1 1 0 1 1 0 0 1 1Codificado: 1000 001000 00001000

HHH(1,13)

El código HHH(1,13) es un código de velocidad 2/3 desarrollado por tres investigadores de IBM (Hirt, Hassner y Heise) para su uso en la capa física IrDA VFIR de 16 MB/s. [8] A diferencia de la codificación magnética, esta está diseñada para un transmisor de infrarrojos, donde un bit 0 representa "apagado" y un bit 1 representa "encendido". Debido a que 1 bit consume más energía para transmitir, esto está diseñado para limitar la densidad de 1 bit a menos del 50%. En particular, es un código RLL (1,13|5), donde el 5 final indica la restricción adicional de que hay como máximo 5 pares de "10" bits consecutivos.

Las primeras ocho filas describen un código (1,7)-RLL estándar. Las seis excepciones adicionales aumentan la serie máxima de ceros a 13 (en el patrón legal 100 000 000 000 001, que representa 10 11 10 11, seguido de 01), pero limitan la densidad máxima promedio de unos a 13 . El tramo más largo de pares 1-0 es 000 101 010 101 000.

Este código limita la densidad de las unidades entre 112 y 13 , con una media del 25,8%.

Ejemplos

Por ejemplo, codifiquemos la secuencia de bits 10110010 con diferentes codificaciones.

Densidades

Supongamos que una cinta magnética puede contener hasta 3200 inversiones de flujo por pulgada. Una modulación de frecuencia modificada, o codificación RLL (1,3), almacena cada bit de datos como dos bits en la cinta, pero como se garantiza que habrá un bit 0 (sin inversión de flujo) entre cualquier bit 1 (inversión de flujo), entonces Es posible almacenar 6400 bits codificados por pulgada en la cinta, o 3200 bits de datos por pulgada. Una codificación RLL (1,7) también puede almacenar 6400 bits codificados por pulgada en la cinta, pero como solo se necesitan 3 bits codificados para almacenar 2 bits de datos, esto es 4267 bits de datos por pulgada. Una codificación RLL (2,7) requiere 2 bits codificados para almacenar cada bit de datos, pero como se garantiza que habrá dos bits 0 entre cualquier bit 1, entonces es posible almacenar 9600 bits codificados por pulgada en la cinta, o 4800 bits de datos por pulgada.

Las densidades de inversión de flujo en los discos duros son significativamente mayores, pero se observan las mismas mejoras en la densidad de almacenamiento al utilizar diferentes sistemas de codificación.

Ver también

Referencias

  1. ^ Kees Schouhamer Immink (octubre de 2022). "Innovación en códigos restringidos". Revista de comunicaciones IEEE . 60 (10): 20–24. doi :10.1109/MCOM.002.2200249. Un sistema restringido se define por un conjunto restringido de secuencias "buenas" o "permisibles" para grabar o transmitir. La codificación restringida se centra en el análisis de sistemas restringidos y el diseño de codificadores y decodificadores eficientes que transforman secuencias de usuario arbitrarias en secuencias restringidas.
  2. ^ Un cuarto de siglo de innovación en archivos de disco, IBM Journal of Research and Development.
  3. ^ P. A. Franaszek (1972), “Codificación de longitud variable limitada por longitud de ejecución con limitación de propagación de errores”, patente estadounidense 3.689.899 .
  4. ^ Cinco décadas de primicias en la industria de unidades de disco, DISK/TREND, Inc., editor de estudios de mercado de las industrias de almacenamiento de datos y unidades de disco en todo el mundo. web.archive.org.
  5. ^ Kees Schouhamer Immink (diciembre de 1990). "Secuencias de duración limitada". Actas del IEEE . 78 (11): 1745-1759. doi :10.1109/5.63306. Se proporciona una descripción detallada de las propiedades limitantes de secuencias de longitud limitada.
  6. ^ Kees A. Schouhamer Immink (noviembre de 2004). Códigos para sistemas de almacenamiento masivo de datos (Segunda edición completamente revisada). Eindhoven, Países Bajos: Editores de la Fundación Shannon. ISBN 90-74249-27-2. Consultado el 23 de agosto de 2015 .
  7. ^ Yo, C. Denis; Daniel, Eric D. (1996). Manual de almacenamiento magnético (2ª ed.). McGraw-Hill. ISBN 0-07-041275-8.
  8. ^ Hirt, Walter; Hassner, Martín; Heise, Nyles (febrero de 2001), "IrDA-VFIr (16 Mb/s): código de modulación y diseño de sistema", IEEE Personal Communications , 8 (1): 58–71, doi :10.1109/98.904900.

enlaces externos