En una elección , un candidato se denomina ganador de la mayoría o candidato preferido por la mayoría [1] [2] [3] si más de la mitad de todos los votantes lo apoyarían en una carrera uno a uno contra cualquiera de sus oponentes. Se dice que los sistemas de votación en los que siempre ganará un ganador por mayoría satisfacen el principio de la regla de la mayoría , [4] [5] porque extienden el principio de la regla de la mayoría a elecciones con múltiples candidatos.
En situaciones en las que se permiten rangos iguales o empatados, un candidato que gana una mayoría simple o relativa —más votos a favor que en contra, ignorando las abstenciones— se llama Condorcet ( en francés: [kɔ̃dɔʁsɛ] , en inglés: / kɒndɔːrˈseɪ / ) , [2] vence a todos o ganador del torneo ( por analogía con los torneos de todos contra todos ) . Sin embargo, la terminología precisa sobre el tema es inconsistente. Sorprendentemente, una elección puede no tener un ganador que venza a todos: es posible tener un ciclo al estilo piedra, papel o tijera , cuando varios candidatos se derrotan entre sí (piedra < papel < tijera < piedra). Esto se llama paradoja de votación de Condorcet , [6] y es análoga al fenómeno contraintuitivo de los dados intransitivos conocido en probabilidad .
Sin embargo, si los votantes están organizados en un espectro político de izquierda-derecha y prefieren candidatos que sean más similares a ellos, siempre existe un ganador por regla de mayoría y es el candidato cuya ideología es más representativa del electorado, un resultado conocido como el teorema del votante mediano . [7] Sin embargo, si los candidatos políticos difieren sustancialmente en formas no relacionadas con la ideología de izquierda-derecha o la competencia general , esto puede conducir a paradojas de votación. [8] [9] Investigaciones anteriores han encontrado que los ciclos son algo raros en las elecciones reales, con estimaciones de su prevalencia que varían entre el 1 y el 10% de las contiendas. [10]
Los sistemas que eligen a los ganadores por mayoría incluyen el método de pares clasificados , el método de Schulze y el método alternativo de Tideman . Los métodos que no incluyen la votación por segunda vuelta (a menudo llamada elección por orden de preferencia en los Estados Unidos ), la pluralidad de primera preferencia y el sistema de dos vueltas . La mayoría de los sistemas de votación por puntaje y la mediana más alta no cumplen el criterio de ganador por mayoría intencionalmente (ver tiranía de la mayoría ).
Los métodos de Condorcet fueron estudiados en detalle por primera vez por el filósofo y teólogo español Ramon Llull en el siglo XIII, durante sus investigaciones sobre el gobierno de la iglesia . Debido a que su manuscrito Ars Electionis se perdió poco después de su muerte, sus ideas fueron ignoradas durante los siguientes 500 años. [11]
La primera revolución en la teoría del voto coincidió con el redescubrimiento de estas ideas durante la Era de la Ilustración por parte de Nicolas de Caritat, marqués de Condorcet , matemático y filósofo político .
Supongamos que el gobierno encuentra una fuente inesperada de fondos . Hay tres opciones para qué hacer con el dinero: el gobierno puede gastarlo, usarlo para reducir impuestos o usarlo para pagar la deuda. El gobierno realiza una votación en la que pregunta a los ciudadanos cuál de las dos opciones preferirían y tabula los resultados de la siguiente manera:
En este caso, la opción de saldar la deuda es la ganadora, ya que pagar la deuda es más popular que las otras dos opciones. Pero vale la pena señalar que no siempre habrá un ganador así. En este caso, las soluciones del torneo buscan al candidato que esté más cerca de ser un campeón invicto.
Los ganadores del sistema de mayoría pueden determinarse a partir de clasificaciones , contando el número de votantes que calificaron a cada candidato mejor que a otro.
El criterio de Condorcet está relacionado con varios otros criterios del sistema de votación .
Los métodos Condorcet son muy resistentes a los efectos de los saboteadores . Intuitivamente, esto se debe a que la única forma de desbancar a un ganador de Condorcet es derrotándolo, lo que implica que los saboteadores solo pueden existir si no hay un ganador por mayoría.
Una desventaja de los métodos de regla de mayoría es que todos ellos pueden fallar teóricamente en el criterio de participación en ejemplos construidos. Sin embargo, los estudios sugieren que esto es empíricamente poco común para los sistemas de regla de mayoría modernos, como los pares clasificados . Un estudio que examinó 306 conjuntos de datos electorales disponibles públicamente no encontró ejemplos de fallas de participación para los métodos de la familia de pares clasificados - minimax . [12]
El criterio del ciclo superior garantiza un tipo de regla de mayoría aún más fuerte. Dice que si no hay un ganador según la regla de mayoría, el ganador debe pertenecer al ciclo superior , que incluye a todos los candidatos que pueden vencer a todos los demás candidatos, ya sea directa o indirectamente . La mayoría de los sistemas Condorcet, pero no todos, satisfacen el criterio del ciclo superior.
Las soluciones de torneo más sensatas satisfacen el criterio de Condorcet. Otros métodos que satisfacen el criterio son:
Consulte la Categoría:Métodos Condorcet para obtener más información.
Los siguientes métodos de votación ordinal no satisfacen el criterio de Condorcet.
No está clara la aplicabilidad del criterio de Condorcet a los métodos de votación por puntuación . Según la definición tradicional del criterio de Condorcet (si la mayoría de los votos prefiere A a B, entonces A debería derrotar a B (a menos que esto genere una contradicción)), estos métodos no cumplen con el criterio de Condorcet, porque otorgan a los votantes con preferencias más fuertes una mayor participación en el resultado de la elección.
El recuento de Borda es un sistema de votación en el que los votantes clasifican a los candidatos en un orden de preferencia. Se otorgan puntos por la posición que ocupa un candidato en el orden de preferencia de los votantes. El candidato con más puntos gana.
El recuento de Borda no cumple el criterio de Condorcet en el siguiente caso. Consideremos una elección que consta de cinco votantes y tres alternativas, en la que tres votantes prefieren A a B y B a C, mientras que dos de los votantes prefieren B a C y C a A. El hecho de que A sea preferida por tres de los cinco votantes a todas las demás alternativas la convierte en la ganadora. Sin embargo, el recuento de Borda otorga 2 puntos por la primera opción, 1 punto por la segunda y 0 puntos por la tercera. Por lo tanto, de tres votantes que prefieren A, A recibe 6 puntos (3 × 2) y 0 puntos de los otros dos votantes, para un total de 6 puntos. B recibe 3 puntos (3 × 1) de los tres votantes que prefieren A a B a C, y 4 puntos (2 × 2) de los otros dos votantes que prefieren B a C a A. Con 7 puntos, B es el ganador de Borda.
En la votación por segunda vuelta, los votantes ordenan a los candidatos del primero al último. El candidato que ocupa el último lugar (el que tiene menos votos en el primer lugar) es eliminado; los votos se reasignan al candidato no eliminado que el votante hubiera elegido si el candidato no hubiera estado presente.
La segunda vuelta no cumple el criterio de Condorcet, es decir, no elige a candidatos con el apoyo de la mayoría. Por ejemplo, el siguiente recuento de votos de preferencias con tres candidatos {A, B, C}:
En este caso, B es preferido a A por 65 votos a 35, y B es preferido a C por 66 a 34, por lo que B es preferido tanto a A como a C. B debe ganar según el criterio de Condorcet. Según el IRV, B ocupa el primer lugar por el menor número de votantes y es eliminado, y luego C gana con los votos transferidos de B.
La mediana más alta es un sistema en el que el votante otorga a todos los candidatos una calificación de entre un conjunto predeterminado (por ejemplo, {"excelente", "buena", "regular", "mala"}). El ganador de la elección sería el candidato con la mejor calificación mediana. Consideremos una elección con tres candidatos A, B, C.
B es preferido a A por 65 votos contra 35, y B es preferido a C por 66 votos contra 34. Por lo tanto, B es el campeón absoluto. Pero B solo obtiene la calificación media de "regular", mientras que C tiene la calificación media de "bueno"; como resultado, C es elegido como el ganador por las medianas más altas.
La votación por pluralidad es un sistema de votación por orden de preferencia en el que los votantes clasifican a los candidatos del primero al último, y el mejor candidato obtiene un punto (mientras que las preferencias posteriores se ignoran). La votación por pluralidad no cumple el criterio de Condorcet debido a los efectos de división de votos . Un ejemplo sería la elección de 2000 en Florida , donde la mayoría de los votantes prefirieron a Al Gore antes que a George Bush , pero Bush ganó como resultado del candidato que supuso un obstáculo para la candidatura, Ralph Nader .
La votación por puntaje es un sistema en el que el votante otorga a todos los candidatos una puntuación en una escala predeterminada (por ejemplo, de 0 a 5). El ganador de la elección es el candidato con la puntuación total más alta. La votación por puntaje no cumple el criterio de mayoría de Condorcet. Por ejemplo:
Aquí, C es declarado ganador, aunque la mayoría de los votantes preferiría a B; esto se debe a que los partidarios de C son mucho más entusiastas con su candidato favorito que los partidarios de B. El mismo ejemplo también muestra que agregar una segunda vuelta no siempre hace que el puntaje cumpla con el criterio (ya que el ganador de Condorcet, B, no está entre los dos primeros según el puntaje).
{{citation}}
: CS1 maint: location missing publisher (link)El análisis revela que los paisajes políticos subyacentes... son inherentemente multidimensionales y no pueden reducirse a una única dimensión izquierda-derecha, o incluso a un espacio bidimensional.
si las preferencias se distribuyen espacialmente, sólo es necesario que haya dos o más dimensiones en el espacio alternativo para que las preferencias cíclicas sean casi inevitables.