stringtranslate.com

Evento de extinción

Un evento de extinción (también conocido como extinción masiva o crisis biótica ) es una disminución rápida y generalizada de la biodiversidad en la Tierra . Un evento de este tipo se identifica por una caída brusca en la diversidad y abundancia de organismos multicelulares . Ocurre cuando la tasa de extinción aumenta con respecto a la tasa de extinción de fondo [1] y la tasa de especiación . Las estimaciones del número de grandes extinciones masivas en los últimos 540 millones de años varían desde tan solo cinco hasta más de veinte. Estas diferencias se derivan del desacuerdo sobre lo que constituye un evento de extinción "importante" y los datos elegidos para medir la diversidad pasada.

Las "cinco grandes" extinciones masivas

En un artículo de referencia publicado en 1982, Jack Sepkoski y David M. Raup identificaron cinco intervalos geológicos particulares con pérdida excesiva de diversidad. [2] Originalmente fueron identificados como valores atípicos en una tendencia general de tasas de extinción decrecientes durante el Fanerozoico , [3] pero a medida que se han aplicado pruebas estadísticas más estrictas a los datos acumulados, se ha establecido que en el Eón Fanerozoico actual, la vida animal multicelular ha experimentado al menos cinco extinciones masivas importantes y muchas menores. [4] Los "Cinco Grandes" no pueden definirse tan claramente, sino que parecen representar los más grandes (o algunos de los más grandes) de un continuo relativamente suave de eventos de extinción. [3] Todos los cinco en el Eón Fanerozoico fueron precedidos antiguamente por la presunta extinción masiva mucho más extensa de la vida microbiana durante el Gran Evento de Oxidación (también conocido como Catástrofe del Oxígeno) a principios del Eón Proterozoico . Se especula que al final del Ediacárico y justo antes de la explosión del Cámbrico , otro evento de extinción Proterozoico (de magnitud desconocida) marcó el comienzo del Fanerozoico. [5]

Disminución del número de géneros terrestres y acuáticos en épocas de eventos de extinción.

A pesar de la presentación común que se centra sólo en estos cinco eventos, ninguna medida de extinción muestra una línea definida que los separe de los muchos otros eventos de extinción del Fanerozoico que parecen sólo catástrofes ligeramente menores; además, el uso de diferentes métodos para calcular el impacto de una extinción puede llevar a que otros eventos aparezcan entre los cinco primeros. [21]

Los registros fósiles de eventos más antiguos son más difíciles de interpretar. Esto se debe a que:

Se ha sugerido que las aparentes variaciones en la biodiversidad marina pueden ser en realidad un artefacto, con estimaciones de abundancia directamente relacionadas con la cantidad de roca disponible para muestreo en diferentes períodos de tiempo. [23] Sin embargo, el análisis estadístico muestra que esto solo puede explicar el 50% del patrón observado, [ cita requerida ] y otra evidencia como los picos de hongos (aumento geológicamente rápido en la abundancia de hongos ) proporciona la seguridad de que la mayoría de los eventos de extinción ampliamente aceptados son reales. Una cuantificación de la exposición de rocas de Europa occidental indica que muchos de los eventos menores para los que se ha buscado una explicación biológica se explican más fácilmente por el sesgo de muestreo . [24]

Sexta extinción masiva

Las investigaciones realizadas después del artículo seminal de 1982 (Sepkoski y Raup) concluyeron que un sexto evento de extinción masiva está en curso debido a las actividades humanas:

Extinciones por gravedad

Los eventos de extinción pueden rastrearse por varios métodos, incluidos el cambio geológico, el impacto ecológico, las tasas de extinción versus origen ( especiación ) y, más comúnmente, la pérdida de diversidad entre unidades taxonómicas . La mayoría de los primeros artículos utilizaron familias como unidad de taxonomía, basándose en compendios de familias de animales marinos de Sepkoski (1982, 1992). [41] [42] Los artículos posteriores de Sepkoski y otros autores cambiaron a géneros , que son más precisos que las familias y menos propensos al sesgo taxonómico o al muestreo incompleto en relación con las especies. [43] Estos son varios artículos importantes que estiman la pérdida o el impacto ecológico de quince eventos de extinción comúnmente discutidos. Los diferentes métodos utilizados por estos artículos se describen en la siguiente sección. Las "cinco grandes" extinciones masivas están en negrita.

a Graficado pero no analizado por Sepkoski (1996), considerado continuo con la extinción masiva del Devónico tardío b En el momento considerado continuo con la extinción masiva del Pérmico final c Incluye intervalos de tiempo del Noriense tardío d Pérdida de diversidad de ambos pulsos calculados juntos e Los pulsos se extienden sobre intervalos de tiempo adyacentes, calculados por separado f Considerado ecológicamente significativo, pero no analizado directamente g Excluido debido a la falta de consenso sobre la cronología del Triásico tardío





El estudio de los principales eventos de extinción.

Estudios innovadores en los años 1980 y 1990

Luis (izquierda) y Walter Alvarez (derecha) en el límite K-Pg en Gubbio, Italia en 1981. Este equipo descubrió evidencia geológica de un impacto de asteroide que causó la extinción K-Pg, lo que estimuló una ola de interés público y científico en las extinciones masivas y sus causas.

Durante gran parte del siglo XX, el estudio de las extinciones masivas se vio obstaculizado por la falta de datos. Aunque se reconocían, se consideraban excepciones misteriosas a la visión gradualista predominante de la prehistoria, en la que las tendencias evolutivas lentas definen los cambios en la fauna. El primer avance fue publicado en 1980 por un equipo dirigido por Luis Álvarez , quien descubrió evidencia de metales traza de un impacto de asteroide al final del período Cretácico . La hipótesis de Álvarez para la extinción del final del Cretácico dio a las extinciones masivas y a las explicaciones catastróficas una nueva atención popular y científica. [46]

Cambios en la diversidad entre géneros y familias, según Sepkoski (1997). Las "cinco grandes" extinciones masivas están marcadas con flechas y los taxones están segregados en faunas de tipo Cámbrico (Cm), Paleozoico (Pz) y Moderno (Md).

Otro estudio de referencia se produjo en 1982, cuando se publicó un artículo escrito por David M. Raup y Jack Sepkoski en la revista Science . [2] Este artículo, que se originó a partir de un compendio de familias de animales marinos extintos desarrollado por Sepkoski, [41] identificó cinco picos de extinciones de familias marinas que se destacan en un contexto de tasas de extinción decrecientes a través del tiempo. Cuatro de estos picos fueron estadísticamente significativos: el Ashgilliense ( finales del Ordovícico ), el Pérmico tardío , el Noriano ( finales del Triásico ) y el Maastrichtiano (finales del Cretácico). El pico restante fue un amplio intervalo de alta extinción esparcido sobre la última mitad del Devónico , con su ápice en la etapa Frasniana . [2]

Durante la década de 1980, Raup y Sepkoski continuaron elaborando y construyendo sobre sus datos de extinción y origen, definiendo una curva de biodiversidad de alta resolución (la "curva de Sepkoski") y faunas evolutivas sucesivas con sus propios patrones de diversificación y extinción. [47] [48] [49] [50] [51] [52] Aunque estas interpretaciones formaron una base sólida para estudios posteriores de extinciones masivas, Raup y Sepkoski también propusieron una idea más controvertida en 1984: un patrón periódico de 26 millones de años para las extinciones masivas. [53] Dos equipos de astrónomos vincularon esto a una hipotética enana marrón en los confines distantes del sistema solar, inventando la " hipótesis de Némesis ", que ha sido fuertemente cuestionada por otros astrónomos.

Casi al mismo tiempo, Sepkoski comenzó a idear un compendio de géneros de animales marinos , que permitiría a los investigadores explorar la extinción con una resolución taxonómica más fina. Comenzó a publicar los resultados preliminares de este estudio en curso ya en 1986, en un artículo que identificó 29 intervalos de extinción notables. [51] Para 1992, también actualizó su compendio de familias de 1982, encontrando cambios mínimos en la curva de diversidad a pesar de una década de nuevos datos. [42] [54] En 1996, Sepkoski publicó otro artículo que rastreaba la extinción de géneros marinos (en términos de pérdida neta de diversidad) por etapa, similar a su trabajo anterior sobre extinciones de familias. El artículo filtró su muestra de tres maneras: todos los géneros (el tamaño de muestra completo sin filtrar), géneros de intervalo múltiple (solo aquellos encontrados en más de una etapa) y géneros "bien conservados" (excluyendo aquellos de grupos con registros fósiles pobres o poco estudiados). También se revisaron las tendencias de diversidad en las familias de animales marinos con base en su actualización de 1992. [44]

El renovado interés en las extinciones masivas llevó a muchos otros autores a reevaluar los eventos geológicos en el contexto de sus efectos sobre la vida. [55] Un artículo de 1995 de Michael Benton rastreó las tasas de extinción y origen entre las familias marinas y continentales (de agua dulce y terrestres), identificando 22 intervalos de extinción y ningún patrón periódico. [56] Los libros de resumen de OH Walliser (1996) y A. Hallam y PB Wignall (1997) resumieron la nueva investigación sobre extinciones de las dos décadas anteriores. [57] [58] Un capítulo en la fuente anterior enumera más de 60 eventos geológicos que podrían considerarse extinciones globales de diversos tamaños. [59] Estos textos, y otras publicaciones de amplia circulación en la década de 1990, ayudaron a establecer la imagen popular de las extinciones masivas como "cinco grandes" junto con muchas extinciones más pequeñas a lo largo de la prehistoria.

Nuevos datos sobre los géneros: el compendio de Sepkoski

Las principales extinciones del Fanerozoico rastreadas a través de extinciones de géneros proporcionales por Bambach (2006)

Aunque Sepkoski falleció en 1999, su compendio de géneros marinos se publicó formalmente en 2002. Esto impulsó una nueva ola de estudios sobre la dinámica de las extinciones masivas. [43] Estos artículos utilizaron el compendio para rastrear las tasas de origen (la tasa a la que aparecen o se especializan nuevas especies ) en paralelo a las tasas de extinción en el contexto de etapas o subetapas geológicas. [60] Una revisión y reanálisis de los datos de Sepkoski por Bambach (2006) identificó 18 intervalos de extinción masiva distintos, incluidas 4 grandes extinciones en el Cámbrico . Estos se ajustan a la definición de extinción de Sepkoski, como subetapas cortas con gran pérdida de diversidad y tasas de extinción generales altas en relación con su entorno. [45]

Bambach et al. (2004) consideraron que cada uno de los intervalos de extinción de los "Cinco Grandes" tenía un patrón diferente en la relación entre el origen y las tendencias de extinción. Además, las tasas de extinción de fondo fueron muy variables y se podían separar en intervalos de tiempo más y menos severos. Las extinciones de fondo fueron menos severas en relación con la tasa de origen en el Ordovícico medio-Silúrico temprano, Carbonífero tardío-Pérmico y Jurásico-reciente. Esto sugiere que las extinciones del Ordovícico tardío, Pérmico final y Cretácico final fueron valores atípicos estadísticamente significativos en las tendencias de biodiversidad, mientras que las extinciones del Devónico tardío y Triásico final ocurrieron en períodos de tiempo que ya estaban estresados ​​por una extinción relativamente alta y un origen bajo. [61]

Los modelos informáticos ejecutados por Foote (2005) determinaron que los pulsos abruptos de extinción se ajustan al patrón de la biodiversidad prehistórica mucho mejor que una tasa de extinción gradual y continua de fondo con picos y valles suaves. Esto respalda firmemente la utilidad de las extinciones masivas rápidas y frecuentes como un factor importante de los cambios en la diversidad. Los eventos de origen pulsado también están respaldados, aunque en un grado menor, lo que depende en gran medida de las extinciones pulsadas. [62]

De manera similar, Stanley (2007) utilizó datos de extinción y origen para investigar las tasas de recambio y las respuestas a la extinción entre diferentes faunas evolutivas y grupos taxonómicos. A diferencia de autores anteriores, sus simulaciones de diversidad respaldan una tasa exponencial general de crecimiento de la biodiversidad a lo largo de todo el Fanerozoico. [63]

Abordar los sesgos en el registro fósil

Una ilustración del efecto Signor-Lipps , un sesgo geológico que postula que un mayor muestreo de fósiles ayudaría a delimitar mejor el momento exacto en que un organismo se extingue verdaderamente.

A medida que los datos se fueron acumulando, algunos autores comenzaron a reevaluar la muestra de Sepkoski utilizando métodos destinados a tener en cuenta los sesgos de muestreo . Ya en 1982, un artículo de Phillip W. Signor y Jere H. Lipps señaló que la verdadera agudeza de las extinciones se diluía por la incompletitud del registro fósil. [64] Este fenómeno, posteriormente llamado efecto Signor-Lipps , señala que la verdadera extinción de una especie debe ocurrir después de su último fósil, y que el origen debe ocurrir antes de su primer fósil. Por lo tanto, las especies que parecen extinguirse justo antes de un evento de extinción abrupta pueden, en cambio, ser víctimas del evento, a pesar de un aparente declive gradual si se analiza solo el registro fósil. Un modelo de Foote (2007) encontró que muchas etapas geológicas habían inflado artificialmente las tasas de extinción debido al "retroefecto" de Signor-Lipps de etapas posteriores con eventos de extinción. [65]

Tasas de extinción estimadas entre géneros a lo largo del tiempo. De Foote (2007), arriba, y Kocsis et al. (2019), abajo

Otros sesgos incluyen la dificultad de evaluar taxones con altas tasas de recambio o ocurrencias restringidas, que no pueden evaluarse directamente debido a la falta de resolución temporal a escala fina. Muchos paleontólogos optan por evaluar las tendencias de diversidad mediante muestreo aleatorio y rarefacción de abundancias fósiles en lugar de datos de rango temporal brutos, para dar cuenta de todos estos sesgos. Pero esa solución está influenciada por sesgos relacionados con el tamaño de la muestra. Un sesgo importante en particular es el " atractivo de lo reciente ", el hecho de que el registro fósil (y, por lo tanto, la diversidad conocida) generalmente mejora a medida que se acerca a la época moderna. Esto significa que la biodiversidad y la abundancia de períodos geológicos más antiguos pueden subestimarse solo a partir de datos brutos. [60] [65] [3]

Alroy (2010) intentó evitar los sesgos relacionados con el tamaño de la muestra en las estimaciones de diversidad utilizando un método que llamó " submuestreo de quórum de accionistas " (SQS). En este método, los fósiles se muestrean de una "colección" (como un intervalo de tiempo) para evaluar la diversidad relativa de esa colección. Cada vez que una nueva especie (u otro taxón ) entra en la muestra, trae todos los demás fósiles pertenecientes a esa especie en la colección (su " porción " de la colección). Por ejemplo, una colección sesgada con la mitad de sus fósiles de una especie alcanzará inmediatamente una participación de muestra del 50% si esa especie es la primera en ser muestreada. Esto continúa, sumando las participaciones de muestra hasta que se alcanza una "cobertura" o " quórum ", refiriéndose a una suma deseada preestablecida de porcentajes de participación. En ese punto, se cuenta el número de especies en la muestra. Se espera que una colección con más especies alcance un quórum de muestra con más especies, comparando así con precisión el cambio de diversidad relativa entre dos colecciones sin depender de los sesgos inherentes al tamaño de la muestra. [66]

Alroy también elaboró ​​algoritmos de tres tiempos, que tienen como objetivo contrarrestar los sesgos en las estimaciones de las tasas de extinción y de origen. Un taxón determinado es un "tres tiempos" si se puede encontrar antes, después y dentro de un intervalo de tiempo determinado, y un "dos tiempos" si se superpone con un intervalo de tiempo en un lado. El conteo de "tres tiempos" y "dos tiempos" en cada extremo de un intervalo de tiempo, y el muestreo de intervalos de tiempo en secuencia, se pueden combinar en ecuaciones para predecir la extinción y el origen con menos sesgo. [66] En artículos posteriores, Alroy continuó refinando sus ecuaciones para mejorar los problemas persistentes con la precisión y las muestras inusuales. [67] [68]

McGhee et al. (2013), un artículo que se centró principalmente en los efectos ecológicos de las extinciones masivas, también publicó nuevas estimaciones de la gravedad de las extinciones basadas en los métodos de Alroy. Muchas extinciones tuvieron un impacto significativamente mayor según estas nuevas estimaciones, aunque algunas fueron menos prominentes. [12]

Stanley (2016) fue otro artículo que intentó eliminar dos errores comunes en estimaciones previas de la gravedad de la extinción. El primer error fue la eliminación injustificada de "singletons", géneros únicos en un solo intervalo de tiempo. Su eliminación enmascararía la influencia de grupos con altas tasas de rotación o linajes interrumpidos al principio de su diversificación. El segundo error fue la dificultad de distinguir las extinciones de fondo de los breves eventos de extinción masiva dentro del mismo intervalo de tiempo corto. Para evitar este problema, se estimaron las tasas de fondo de cambio de diversidad (extinción/origen) para etapas o subetapas sin extinciones masivas, y luego se supuso que se aplicaban a etapas posteriores con extinciones masivas. Por ejemplo, las etapas Santoniana y Campaniana se utilizaron para estimar los cambios de diversidad en el Maastrichtiano antes de la extinción masiva K-Pg. Restar las extinciones de fondo de los recuentos de extinción tuvo el efecto de reducir la gravedad estimada de los seis eventos de extinción masiva muestreados. Este efecto fue más fuerte en el caso de las extinciones masivas que ocurrieron en períodos con altas tasas de extinción de fondo, como el Devónico. [14]

Incertidumbre en el Proterozoico y eones anteriores

Debido a que la mayor parte de la diversidad y biomasa en la Tierra es microbiana y, por lo tanto, difícil de medir a través de fósiles, los eventos de extinción registrados son aquellos que afectan al componente biológicamente complejo y de fácil observación de la biosfera en lugar de la diversidad y abundancia total de la vida. [69] Por esta razón, los eventos de extinción bien documentados se limitan al eón Fanerozoico , con la única excepción de la Catástrofe del Oxígeno en el Proterozoico , ya que antes del Fanerozoico, todos los organismos vivos eran microbianos o, si eran multicelulares, tenían un cuerpo blando. Tal vez debido a la ausencia de un registro fósil microbiano sólido, las extinciones en masa podrían parecer solo un fenómeno principalmente fanerozoico, y las tasas de extinción observables parecen bajas antes de que surgieran los grandes organismos complejos con partes corporales duras. [70]

La extinción se produce a un ritmo desigual. Según el registro fósil , la tasa de extinción en la Tierra es de aproximadamente dos a cinco familias taxonómicas de animales marinos cada millón de años. [c]

La catástrofe del oxígeno, que ocurrió hace unos 2.450 millones de años en el Paleoproterozoico , es plausiblemente la primera gran extinción de la historia. Tal vez también haya sido la peor de la historia, en cierto sentido, pero como la ecología de la Tierra justo antes de esa época era tan poco conocida y el concepto de géneros procariotas era tan diferente del de géneros de vida compleja, sería difícil compararla de manera significativa con cualquiera de los "Cinco Grandes", incluso si la vida del Paleoproterozoico fuera mejor conocida. [71]

Desde la explosión cámbrica , otras cinco grandes extinciones masivas han superado significativamente la tasa de extinción de fondo. La más reciente y mejor conocida, la extinción masiva del Cretácico-Paleógeno , que ocurrió aproximadamente hace 66 Ma (millones de años), fue una extinción masiva a gran escala de especies animales y vegetales en un período de tiempo geológicamente corto. [72] Además de las cinco grandes extinciones masivas del Fanerozoico, hay numerosas extinciones menores, y la extinción masiva en curso causada por la actividad humana a veces se denomina la sexta extinción masiva . [73]

Importancia evolutiva

Las extinciones masivas han acelerado en ocasiones la evolución de la vida en la Tierra . Cuando el dominio de nichos ecológicos particulares pasa de un grupo de organismos a otro, rara vez se debe a que el nuevo grupo dominante sea "superior" al anterior, sino que suele deberse a que un evento de extinción elimina al antiguo grupo dominante y deja paso al nuevo, un proceso conocido como radiación adaptativa . [74] [75]

Por ejemplo, los mamíferos y luego los mamíferos existieron durante todo el reinado de los dinosaurios , pero no pudieron competir en los grandes nichos de vertebrados terrestres que monopolizaban los dinosaurios. La extinción masiva del final del Cretácico eliminó a los dinosaurios no aviares y permitió que los mamíferos se expandieran hacia los grandes nichos de vertebrados terrestres. Los dinosaurios mismos habían sido beneficiarios de una extinción masiva anterior, la del final del Triásico , que eliminó a la mayoría de sus principales rivales, los crurotarsos . De manera similar, dentro de Synapsida , el reemplazo de los taxones que se originaron en la radiación evolutiva más temprana, Pensilvánica y Cisuraliana (a menudo todavía llamados " pelicosaurios ", aunque este es un grupo parafilético ) por terápsidos ocurrió alrededor de la transición Kunguriana / Roadiana , que a menudo se llama extinción de Olson [76] [77] (que puede ser un declive lento durante 20 Ma [78] en lugar de un evento dramático y breve).

Otro punto de vista propuesto en la hipótesis de la escalada predice que las especies en nichos ecológicos con más conflictos entre organismos tendrán menos probabilidades de sobrevivir a las extinciones. Esto se debe a que los mismos rasgos que mantienen a una especie numerosa y viable en condiciones relativamente estáticas se convierten en una carga una vez que los niveles de población caen entre los organismos en competencia durante la dinámica de un evento de extinción.

Además, muchos grupos que sobreviven a las extinciones masivas no se recuperan en número o diversidad, y muchos de ellos entran en un declive a largo plazo, y a estos a menudo se los denomina " clados muertos caminando ". [79] Sin embargo, los clados que sobreviven durante un período considerable de tiempo después de una extinción masiva, y que se redujeron a solo unas pocas especies, es probable que hayan experimentado un efecto de rebote llamado el " empuje del pasado ". [80]

Darwin estaba firmemente convencido de que las interacciones bióticas, como la competencia por el alimento y el espacio –la “lucha por la existencia”– eran mucho más importantes para promover la evolución y la extinción que los cambios en el entorno físico. Así lo expresó en El origen de las especies :

"Las especies son producidas y exterminadas por causas que actúan lentamente... y la más importante de todas las causas de cambio orgánico es una que es casi independiente de la alteración de las condiciones físicas, a saber, la relación mutua entre organismos: la mejora de un organismo implica la mejora o exterminio de otros". [81]

Patrones en frecuencia

Varios autores han sugerido que los eventos de extinción ocurrieron periódicamente, cada 26 a 30 millones de años, [82] [53] o que la diversidad fluctúa episódicamente aproximadamente cada 62 millones de años. [83] Varias ideas, principalmente relacionadas con influencias astronómicas , intentan explicar el supuesto patrón, incluida la presencia de una estrella compañera hipotética del Sol, [84] [85] oscilaciones en el plano galáctico o el paso a través de los brazos espirales de la Vía Láctea. [86] Sin embargo, otros autores han concluido que los datos sobre extinciones masivas marinas no encajan con la idea de que las extinciones masivas son periódicas, o que los ecosistemas se acumulan gradualmente hasta un punto en el que una extinción masiva es inevitable. [3] Se ha argumentado que muchas de las correlaciones propuestas son espurias o carecen de significación estadística. [87] [88] [89] Otros han argumentado que hay evidencia sólida que respalda la periodicidad en una variedad de registros, [90] y evidencia adicional en forma de variación periódica coincidente en variables geoquímicas no biológicas como los isótopos de estroncio, [91] basaltos de inundación, eventos anóxicos, orogenias y deposición de evaporitas. Una explicación para este ciclo propuesto es el almacenamiento y liberación de carbono por la corteza oceánica, que intercambia carbono entre la atmósfera y el manto. [92]

Se cree que las extinciones masivas se producen cuando un estrés a largo plazo se ve agravado por un shock a corto plazo. [93] A lo largo del Fanerozoico , los taxones individuales parecen haberse vuelto menos propensos a sufrir extinción, [94] lo que puede reflejar redes alimentarias más robustas, así como menos especies propensas a la extinción y otros factores como la distribución continental. [94] Sin embargo, incluso después de tener en cuenta el sesgo de muestreo, parece haber una disminución gradual en las tasas de extinción y origen durante el Fanerozoico. [3] Esto puede representar el hecho de que los grupos con tasas de rotación más altas tienen más probabilidades de extinguirse por casualidad; o puede ser un artefacto de la taxonomía: las familias tienden a volverse más específicas, por lo tanto menos propensas a la extinción, con el tiempo; [3] y los grupos taxonómicos más grandes (por definición) aparecen antes en el tiempo geológico. [95]

También se ha sugerido que los océanos se han vuelto gradualmente más hospitalarios para la vida durante los últimos 500 millones de años, y por lo tanto menos vulnerables a las extinciones masivas, [d] [96] [97] pero la susceptibilidad a la extinción a nivel taxonómico no parece hacer que las extinciones masivas sean más o menos probables. [94]

Causas

Todavía se debate sobre las causas de todas las extinciones masivas. En general, las grandes extinciones pueden producirse cuando una biosfera sometida a estrés a largo plazo sufre un shock a corto plazo. [93] Parece haber un mecanismo subyacente en la correlación entre las tasas de extinción y de origen y la diversidad. Una alta diversidad conduce a un aumento persistente de la tasa de extinción; una baja diversidad, a un aumento persistente de la tasa de origen. Estas relaciones, presumiblemente controladas ecológicamente, probablemente amplifiquen perturbaciones más pequeñas (impactos de asteroides, etc.) para producir los efectos globales observados. [3]

Identificación de causas de extinciones masivas específicas

Una buena teoría para una extinción masiva particular debería:

Puede ser necesario considerar combinaciones de causas. Por ejemplo, el aspecto marino de la extinción del Cretácico final parece haber sido causado por varios procesos que se superpusieron parcialmente en el tiempo y pueden haber tenido diferentes niveles de importancia en diferentes partes del mundo. [98]

Arens y West (2006) propusieron un modelo de "presión/pulso" en el que las extinciones masivas generalmente requieren dos tipos de causa: una presión a largo plazo sobre el ecosistema ("presión") y una catástrofe repentina ("pulso") hacia el final del período de presión. [99] Su análisis estadístico de las tasas de extinción marina a lo largo del Fanerozoico sugirió que ni la presión a largo plazo por sí sola ni una catástrofe por sí sola fueron suficientes para causar un aumento significativo en la tasa de extinción.

Explicaciones más ampliamente apoyadas

MacLeod (2001) [100] resumió la relación entre las extinciones masivas y los eventos que se citan con mayor frecuencia como causas de extinciones masivas, utilizando datos de Courtillot, Jaeger y Yang et al. (1996), [101] Hallam (1992) [102] y Grieve y Pesonen (1992): [103]

A continuación se enumeran las causas de extinciones masivas sugeridas con mayor frecuencia.

Eventos de inundación basáltica

El consenso científico es que la causa principal de la extinción masiva del final del Pérmico fue la gran cantidad de dióxido de carbono emitida por las erupciones volcánicas que crearon las Trampas Siberianas , que elevaron las temperaturas globales.

La formación de grandes provincias ígneas por eventos de inundación basáltica podría haber:

Los fenómenos de inundación basáltica se producen como pulsos de actividad interrumpidos por períodos de inactividad. Como resultado, es probable que provoquen una oscilación del clima entre el enfriamiento y el calentamiento, pero con una tendencia general hacia el calentamiento, ya que el dióxido de carbono que emiten puede permanecer en la atmósfera durante cientos de años.

Los fenómenos de inundación basáltica se han considerado como la causa de muchos eventos de extinción importantes. [108] [109] Se especula que el vulcanismo masivo causó o contribuyó al Evento Kellwasser , [110] [111] [112] el Evento de Extinción del Final del Guadalupiano , [113] [114] [115] el Evento de Extinción del Final del Pérmico , [116] [117] [118] la Extinción Smithiense-Espática , [119] [120] [121] el Evento de Extinción Triásico-Jurásico , [122] [123] [124] el Evento Anóxico Oceánico Toarciense , [125] [126] [127] el Evento Anóxico Oceánico Cenomaniano-Turoniano , [128] [129] [130] el Evento de Extinción Cretácico-Paleógeno , [131] [132] [133] y el Máximo Térmico del Paleoceno-Eoceno . [134] [135] [136] La correlación entre eventos volcánicos gigantescos expresados ​​en las grandes provincias ígneas y extinciones masivas se demostró durante los últimos 260 millones de años. [137] [138] Recientemente, tal posible correlación se extendió a todo el Eón Fanerozoico . [139]

Caída del nivel del mar

Estos fenómenos suelen estar claramente marcados por secuencias mundiales de sedimentos contemporáneos que muestran total o parcialmente una transición desde el lecho marino a la zona de mareas, a la playa y a la tierra firme, y donde no hay evidencia de que las rocas en las áreas relevantes hayan sido levantadas por procesos geológicos como la orogenia . Las caídas del nivel del mar podrían reducir el área de la plataforma continental (la parte más productiva de los océanos) lo suficiente como para causar una extinción masiva marina, y podrían alterar los patrones climáticos lo suficiente como para causar extinciones en la tierra. Pero las caídas del nivel del mar son muy probablemente el resultado de otros eventos, como el enfriamiento global sostenido o el hundimiento de las dorsales oceánicas .

Las caídas del nivel del mar están asociadas con la mayoría de las extinciones masivas, incluidas las "Cinco Grandes": Finales del Ordovícico , Devónico tardío , Finales del Pérmico , Finales del Triásico y Finales del Cretácico , junto con la extinción masiva del Capitaniano, reconocida más recientemente, de gravedad comparable a las Cinco Grandes. [140] [141]

Un estudio de 2008, publicado en la revista Nature , estableció una relación entre la velocidad de los eventos de extinción masiva y los cambios en el nivel del mar y los sedimentos. [142] El estudio sugiere que los cambios en los entornos oceánicos relacionados con el nivel del mar ejercen una influencia impulsora en las tasas de extinción y, en general, determinan la composición de la vida en los océanos. [143]

Amenazas extraterrestres

Eventos de impacto
Meteorito entrando a la atmósfera con bola de fuego.
Representación artística de un asteroide de varios kilómetros de diámetro que choca contra la Tierra. Un impacto de este tipo puede liberar la energía equivalente a la de varios millones de armas nucleares que detonen simultáneamente.

El impacto de un asteroide o un cometa de tamaño suficiente podría haber provocado el colapso de las cadenas alimentarias tanto en tierra como en el mar, al producir polvo y aerosoles de partículas , inhibiendo así la fotosíntesis. [144] Los impactos sobre rocas ricas en azufre podrían haber emitido óxidos de azufre que precipitarían en forma de lluvia ácida venenosa , lo que contribuiría aún más al colapso de las cadenas alimentarias. Dichos impactos también podrían haber causado megatsunamis y/o incendios forestales globales .

La mayoría de los paleontólogos ahora coinciden en que un asteroide golpeó la Tierra hace unos 66 Ma, pero existe una disputa persistente sobre si el impacto fue la única causa del evento de extinción masiva del Cretácico-Paleógeno . [145] [146] No obstante, en octubre de 2019, los investigadores informaron que el impacto del asteroide Chicxulub del Cretácico que resultó en la extinción de los dinosaurios no aviares hace 66 Ma, también acidificó rápidamente los océanos , produciendo un colapso ecológico y efectos duraderos en el clima, y ​​fue una razón clave para la extinción masiva del Cretácico final. [147] [148]

También se ha planteado la hipótesis de que el evento de extinción del Pérmico-Triásico fue causado por el impacto de un asteroide que formó el cráter Araguainha debido a que la fecha estimada de formación del cráter se superpone con el evento de extinción del final del Pérmico. [149] [150] [151] Sin embargo, esta hipótesis ha sido ampliamente cuestionada y la hipótesis del impacto ha sido rechazada por la mayoría de los investigadores. [152] [153] [154]

Según la hipótesis de Shiva , la Tierra está sujeta a un aumento de impactos de asteroides aproximadamente una vez cada 27 millones de años debido al paso del Sol a través del plano de la galaxia de la Vía Láctea , lo que causa eventos de extinción en intervalos de 27 millones de años. Algunas evidencias de esta hipótesis han surgido tanto en contextos marinos como no marinos. [155] Alternativamente, el paso del Sol a través de los brazos espirales de mayor densidad de la galaxia podría coincidir con la extinción masiva en la Tierra, tal vez debido al aumento de los eventos de impacto . [156] Sin embargo, un nuevo análisis de los efectos del tránsito del Sol a través de la estructura espiral basado en mapas de la estructura espiral de la Vía Láctea en la emisión de líneas moleculares de CO no ha logrado encontrar una correlación. [157]

Una nova, supernova o explosión de rayos gamma cercana

Un estallido de rayos gamma cercano (a menos de 6000 años luz de distancia) sería lo suficientemente potente como para destruir la capa de ozono de la Tierra , dejando a los organismos vulnerables a la radiación ultravioleta del Sol . [158] Los estallidos de rayos gamma son bastante raros, y ocurren solo unas pocas veces en una galaxia determinada por millón de años. [159] Se ha sugerido que un estallido de rayos gamma causó la extinción del Ordovícico final , [160] [161] mientras que se ha propuesto que una supernova fue la causa del evento de Hangenberg . [162] Una supernova a 25 años luz de distancia despojaría a la Tierra de su atmósfera. Hoy en día, en las cercanías del Sistema Solar no hay ninguna estrella crítica capaz de producir una supernova peligrosa para la vida en la Tierra. [163]

Enfriamiento global

Un enfriamiento global sostenido y significativo podría matar a muchas especies polares y templadas y obligar a otras a migrar hacia el ecuador ; reducir el área disponible para las especies tropicales ; a menudo hacer que el clima de la Tierra sea más árido en promedio, principalmente al retener más agua del planeta en hielo y nieve. Se cree que los ciclos de glaciación de la era glacial actual han tenido solo un impacto muy leve en la biodiversidad, por lo que la mera existencia de un enfriamiento significativo no es suficiente por sí sola para explicar una extinción masiva.

Se ha sugerido que el enfriamiento global causó o contribuyó a las extinciones del final del Ordovícico , el Pérmico-Triásico , el Devónico tardío y posiblemente otras. El enfriamiento global sostenido se distingue de los efectos climáticos temporales de los eventos o impactos de inundaciones basálticas.

Calentamiento global

Esto tendría efectos opuestos: expandiría el área disponible para las especies tropicales ; mataría especies templadas o las obligaría a migrar hacia los polos ; posiblemente causaría graves extinciones de especies polares; a menudo haría que el clima de la Tierra fuera más húmedo en promedio, principalmente por el derretimiento del hielo y la nieve y, por lo tanto, aumentaría el volumen del ciclo del agua . También podría causar eventos anóxicos en los océanos (ver más abajo).

El calentamiento global como causa de extinción masiva está respaldado por varios estudios recientes. [164]

El ejemplo más dramático de calentamiento sostenido es el Máximo Térmico del Paleoceno-Eoceno , que estuvo asociado con una de las extinciones masivas más pequeñas. También se ha sugerido que causó la extinción masiva del Triásico-Jurásico , durante la cual se extinguió el 20% de todas las familias marinas. Además, se ha sugerido que la extinción masiva del Pérmico-Triásico fue causada por el calentamiento. [165] [166] [167]

Hipótesis del cañón de clatrato

Los clatratos son compuestos en los que una red de una sustancia forma una jaula alrededor de otra. Los clatratos de metano (en los que las moléculas de agua son la jaula) se forman en las plataformas continentales . Estos clatratos probablemente se descompongan rápidamente y liberen el metano si la temperatura aumenta rápidamente o la presión sobre ellos disminuye rápidamente, por ejemplo, en respuesta a un calentamiento global repentino o una caída repentina del nivel del mar o incluso terremotos . El metano es un gas de efecto invernadero mucho más potente que el dióxido de carbono, por lo que una erupción de metano ("cañón de clatrato") podría causar un calentamiento global rápido o hacerlo mucho más severo si la erupción fuera causada por el calentamiento global.

La señal más probable de una erupción de metano de este tipo sería una disminución repentina en la proporción de carbono-13 a carbono-12 en los sedimentos, ya que los clatratos de metano son bajos en carbono-13; pero el cambio tendría que ser muy grande, ya que otros eventos también pueden reducir el porcentaje de carbono-13. [168]

Se ha sugerido que las erupciones de metano "de cañones de clatrato" estuvieron implicadas en la extinción del final del Pérmico ("la Gran Mortandad") y en el Máximo Térmico del Paleoceno-Eoceno , que estuvo asociado con una de las extinciones masivas más pequeñas.

Eventos anóxicos

Los fenómenos anóxicos son situaciones en las que las capas medias e incluso superiores del océano se quedan sin oxígeno o sin ninguno. Sus causas son complejas y controvertidas, pero todos los casos conocidos están asociados a un calentamiento global grave y sostenido, causado principalmente por un vulcanismo masivo y sostenido. [169]

Se ha sugerido que los eventos anóxicos causaron o contribuyeron a las extinciones del Ordovícico-Silúrico , [170] [171] [172] Devónico tardío , [173] [174] [175] Capitaniano , [176] [177] [178] Pérmico-Triásico , [179] [180] [181] y Triásico-Jurásico , [182] así como a una serie de extinciones menores (como los eventos Ireviken , Lundgreni , Mulde , Lau , Smithiense-Espático , Toarciense y Cenomaniano-Turoniense ). Por otro lado, hay capas generalizadas de esquisto negro del Cretácico medio que indican eventos anóxicos pero no están asociadas con extinciones masivas.

Se ha demostrado que la biodisponibilidad de oligoelementos esenciales (en particular selenio ) hasta niveles potencialmente letales coincidió con, y probablemente contribuyó a, al menos tres eventos de extinción masiva en los océanos, es decir, al final del Ordovícico, durante el Devónico medio y tardío, y al final del Triásico. Durante los períodos de bajas concentraciones de oxígeno, el selenato muy soluble (Se 6+ ) se convierte en seleniuro mucho menos soluble (Se 2- ), Se elemental y complejos de organoselenio. La biodisponibilidad del selenio durante estos eventos de extinción cayó a aproximadamente el 1% de la concentración oceánica actual, un nivel que se ha demostrado letal para muchos organismos actuales . [183]

El oceanólogo y científico atmosférico británico , Andrew Watson , explicó que, si bien la época del Holoceno exhibe muchos procesos que recuerdan a los que han contribuido a eventos anóxicos pasados, la anoxia oceánica a gran escala tardaría "miles de años en desarrollarse". [184]

Emisiones de sulfuro de hidrógeno de los mares

Kump, Pavlov y Arthur (2005) han propuesto que durante el evento de extinción del Pérmico-Triásico el calentamiento también alteró el equilibrio oceánico entre el plancton fotosintético y las bacterias reductoras de sulfato de aguas profundas , causando emisiones masivas de sulfuro de hidrógeno , que envenenaron la vida tanto en la tierra como en el mar y debilitaron gravemente la capa de ozono , exponiendo gran parte de la vida que aún quedaba a niveles letales de radiación UV . [185] [186] [72]

Vuelco oceánico

El vuelco oceánico es una alteración de la circulación termohalina que permite que el agua superficial (que es más salina que el agua profunda debido a la evaporación) se hunda directamente, llevando el agua profunda anóxica a la superficie y, por lo tanto, matando a la mayoría de los organismos que respiran oxígeno que habitan la superficie y las profundidades medias. Puede ocurrir al principio o al final de una glaciación , aunque un vuelco al comienzo de una glaciación es más peligroso porque el período cálido anterior habrá creado un mayor volumen de agua anóxica. [187]

A diferencia de otras catástrofes oceánicas, como las regresiones (caídas del nivel del mar) y los eventos anóxicos, los vuelcos no dejan "firmas" fácilmente identificables en las rocas y son consecuencias teóricas de las conclusiones de los investigadores sobre otros eventos climáticos y marinos.

Se ha sugerido que el vuelco oceánico causó o contribuyó a las extinciones del Devónico tardío y del Pérmico-Triásico .

Inversión geomagnética

Una teoría es que los períodos de mayores inversiones geomagnéticas debilitarán el campo magnético de la Tierra el tiempo suficiente para exponer la atmósfera a los vientos solares , causando que los iones de oxígeno escapen de la atmósfera a un ritmo aumentado en 3-4 órdenes de magnitud, lo que resultará en una disminución desastrosa del oxígeno. [188]

Tectónica de placas

El movimiento de los continentes hacia ciertas configuraciones puede causar o contribuir a las extinciones de varias maneras: iniciando o terminando eras de hielo ; cambiando las corrientes oceánicas y de viento y alterando así el clima; abriendo vías marítimas o puentes terrestres que exponen especies previamente aisladas a una competencia para la que están mal adaptadas (por ejemplo, la extinción de la mayoría de los ungulados nativos de América del Sur y todos sus grandes metaterios después de la creación de un puente terrestre entre América del Norte y del Sur ). Ocasionalmente, la deriva continental crea un supercontinente que incluye la gran mayoría de la superficie terrestre de la Tierra, lo que, además de los efectos enumerados anteriormente, es probable que reduzca el área total de la plataforma continental (la parte más rica en especies del océano) y produzca un vasto y árido interior continental que puede tener variaciones estacionales extremas.

Otra teoría es que la creación del supercontinente Pangea contribuyó a la extinción masiva del final del Pérmico . Pangea se formó casi por completo en la transición del Pérmico medio al Pérmico tardío, y el diagrama de "Diversidad de géneros marinos" en la parte superior de este artículo muestra un nivel de extinción que comenzó en ese momento, que podría haber calificado para su inclusión en los "Cinco Grandes" si no hubiera sido eclipsado por la "Gran Mortandad" al final del Pérmico. [189]

Otras hipótesis

Muchas especies de plantas y animales corren un alto riesgo de extinción debido a la destrucción de la selva amazónica.

Se han propuesto muchas otras hipótesis, como la propagación de una nueva enfermedad o la simple competencia después de una innovación biológica especialmente exitosa. Pero todas han sido rechazadas, generalmente por una de las siguientes razones: requieren eventos o procesos para los cuales no hay evidencia; suponen mecanismos que son contrarios a la evidencia disponible; o se basan en otras teorías que han sido rechazadas o superadas.

A finales del Pleistoceno se produjeron extinciones de numerosas especies, predominantemente megafaunísticas , que coincidieron en el tiempo con las primeras migraciones humanas a través de los continentes. [190]

Los científicos han estado preocupados por la posibilidad de que las actividades humanas puedan causar la extinción de más plantas y animales que en cualquier otro momento del pasado. Además de los cambios provocados por el hombre en el clima (ver arriba), algunas de estas extinciones podrían ser causadas por la caza excesiva, la pesca excesiva, las especies invasoras o la pérdida de hábitat. Un estudio publicado en mayo de 2017 en Proceedings of the National Academy of Sciences sostuvo que una "aniquilación biológica" similar a un sexto evento de extinción masiva está en marcha como resultado de causas antropogénicas, como la superpoblación y el consumo excesivo . El estudio sugirió que hasta el 50% del número de individuos animales que alguna vez vivieron en la Tierra ya estaban extintos, amenazando también la base de la existencia humana. [191] [30]

Futura extinción/esterilización de la biosfera

El calentamiento y la expansión del Sol, combinados con la disminución del dióxido de carbono atmosférico, podrían causar una extinción masiva aún mayor, con el potencial de eliminar incluso los microbios (en otras palabras, la Tierra quedaría completamente esterilizada): el aumento de las temperaturas globales causado por la expansión del Sol aumentaría gradualmente la tasa de erosión, lo que a su vez eliminaría cada vez más CO2 de la atmósfera. Cuando los niveles de CO2 sean demasiado bajos (quizás 50 ppm), la mayor parte de la vida vegetal se extinguirá, aunque las plantas más simples, como las hierbas y los musgos, pueden sobrevivir mucho más tiempo, hasta que los niveles de CO2 caigan a 10 ppm. [192] [193]

Con todos los organismos fotosintéticos desaparecidos, el oxígeno atmosférico ya no puede reponerse, y finalmente se elimina por reacciones químicas en la atmósfera, tal vez por erupciones volcánicas. Finalmente, la pérdida de oxígeno hará que toda la vida aeróbica restante muera por asfixia, dejando atrás solo simples procariotas anaeróbicos . Cuando el Sol se vuelva un 10% más brillante en aproximadamente mil millones de años, [192] la Tierra sufrirá un efecto invernadero húmedo que resultará en que sus océanos hiervan, mientras que el núcleo externo líquido de la Tierra se enfría debido a la expansión del núcleo interno y hace que el campo magnético de la Tierra se apague. En ausencia de un campo magnético, las partículas cargadas del Sol agotarán la atmósfera y aumentarán aún más la temperatura de la Tierra a un promedio de alrededor de 420 K (147 °C, 296 °F) en 2.8 mil millones de años, causando que la última vida restante en la Tierra muera. Este es el ejemplo más extremo de un evento de extinción causado por el clima. Dado que esto sólo ocurrirá al final de la vida del Sol, representaría la extinción masiva final en la historia de la Tierra (aunque un evento de extinción muy largo). [192] [193]

Efectos y recuperación

Los efectos de los eventos de extinción masiva varían ampliamente. Después de un evento de extinción importante, por lo general solo sobreviven las especies de maleza debido a su capacidad de vivir en hábitats diversos. [194] Más tarde, las especies se diversifican y ocupan nichos vacíos. Por lo general, la biodiversidad tarda millones de años en recuperarse después de los eventos de extinción. [195] En las extinciones masivas más graves, puede tardar entre 15 y 30 millones de años. [194]

El peor evento del Fanerozoico , la extinción del Pérmico-Triásico , devastó la vida en la Tierra, matando a más del 90% de las especies. La vida pareció recuperarse rápidamente después de la extinción del Pérmico-Triásico, pero esto fue principalmente en forma de taxones de desastre , como el resistente Lystrosaurus . La investigación más reciente indica que los animales especializados que formaron ecosistemas complejos, con alta biodiversidad, redes alimentarias complejas y una variedad de nichos, tardaron mucho más en recuperarse. Se piensa que esta larga recuperación se debió a sucesivas olas de extinción que inhibieron la recuperación, así como al estrés ambiental prolongado que continuó hasta el Triásico Temprano. Investigaciones recientes indican que la recuperación no comenzó hasta principios del Triásico medio, de cuatro a seis millones de años después de la extinción; [196] y algunos escritores estiman que la recuperación no fue completa hasta 30 millones de años después de la extinción del Pérmico-Triásico, es decir, en el Triásico tardío. [197] Después de la extinción del PT, hubo un aumento en la provincialización, con especies que ocupaban rangos más pequeños, tal vez eliminando a los titulares de los nichos y preparando el escenario para una eventual rediversificación. [198]

Los efectos de las extinciones masivas sobre las plantas son algo más difíciles de cuantificar, dados los sesgos inherentes al registro fósil de plantas. Algunas extinciones masivas (como la del final del Pérmico) fueron igualmente catastróficas para las plantas, mientras que otras, como la del final del Devónico, no afectaron a la flora. [199]

En los medios

El término evento de nivel de extinción (ELE) se ha utilizado en los medios. [200] [201] La película de 1998 Deep Impact describe un posible impacto de un cometa contra la Tierra como un ELE [202]

Véase también

Notas al pie

  1. ^ La biodiversidad está disminuyendo más rápido que en cualquier otro momento de la historia de la humanidad. Las tasas de extinción actuales, por ejemplo, son alrededor de 100 a 1.000 veces más altas que la tasa de referencia, y están aumentando. [27]
  2. ^ "La sexta extinción masiva en curso puede ser la amenaza ambiental más grave para la persistencia de la civilización, porque es irreversible. Miles de poblaciones de especies animales vertebradas en peligro crítico se han perdido en un siglo, lo que indica que la sexta extinción masiva es causada por el hombre y se está acelerando. La aceleración de la crisis de extinción es segura debido al crecimiento aún rápido de la población humana y de las tasas de consumo". — Ceballos, Ehrlich y Raven (2020) [32]
  3. ^ Los fósiles marinos se utilizan principalmente para medir las tasas de extinción debido a su registro fósil superior y su rango estratigráfico en comparación con los animales terrestres .
  4. ^ El oxígeno disuelto se hizo más común y penetró a mayores profundidades; el desarrollo de la vida en la tierra redujo la escorrentía de nutrientes y, por ende, el riesgo de eutrofización y eventos anóxicos ; y los ecosistemas marinos se diversificaron más, de modo que las cadenas alimentarias tuvieron menos probabilidades de verse alteradas.
  5. ^ El evento de inundación basáltica más antiguo conocido es el que produjo las Trampas Siberianas y está asociado con la extinción del final del Pérmico .
  6. ^ ab Algunas de las extinciones asociadas con basaltos de inundación y caídas del nivel del mar fueron significativamente más pequeñas que las extinciones "principales", pero aún así mucho mayores que el nivel de extinción de fondo.

Referencias

  1. ^ Sudakow, Ivan; Myers, Corinne; Petrovskii, Sergei; Sumrall, Colin D.; Witts, James (julio de 2022). "Brechas de conocimiento y eslabones perdidos en la comprensión de las extinciones masivas: ¿puede ayudar el modelado matemático?". Physics of Life Reviews . 41 : 22–57. Bibcode :2022PhLRv..41...22S. doi : 10.1016/j.plrev.2022.04.001 . PMID  35523056. S2CID  248215038.
  2. ^ abcdef Raup DM, Sepkoski JJ (marzo de 1982). "Extinciones masivas en el registro fósil marino". Science . 215 (4539): 1501–1503. Bibcode :1982Sci...215.1501R. doi :10.1126/science.215.4539.1501. PMID  17788674. S2CID  43002817.
  3. ^ abcdefg Alroy J (agosto de 2008). «Documento de coloquio: dinámica del origen y la extinción en el registro fósil marino». Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 105 (Suplemento 1): 11536–11542. Bibcode :2008PNAS..10511536A. doi : 10.1073/pnas.0802597105 . PMC 2556405 . PMID  18695240. 
  4. ^ Gould, SJ (octubre de 1994). "La evolución de la vida en la Tierra". Scientific American . Vol. 271, no. 4. págs. 84–91. Bibcode :1994SciAm.271d..84G. doi :10.1038/scientificamerican1094-84. PMID  7939569.
  5. ^ Evans, Scott D.; Tu, Chenyi; Rizzo, Adriana; Droser, Mary L. (7 de noviembre de 2022). "Impulsores ambientales de la primera extinción animal importante en la transición del Mar Blanco-Nama de Ediacara". Actas de la Academia Nacional de Ciencias . 119 (46): e2207475119. Bibcode :2022PNAS..11907475E. doi : 10.1073/pnas.2207475119 . PMC 9674242 . PMID  36343248. 
  6. ^ abcd "extinción". Math.ucr.edu . Consultado el 9 de noviembre de 2008 .
  7. ^ Hall S (10 de junio de 2020). «Un culpable conocido puede haber causado una misteriosa extinción masiva: un planeta calentado por erupciones volcánicas gigantes provocó la primera desaparición conocida de la vida en la Tierra». The New York Times . Consultado el 15 de junio de 2020 .
  8. ^ Bond DP, Grasby SE (18 de mayo de 2020). «Extinción masiva del Ordovícico tardío causada por vulcanismo, calentamiento y anoxia, no por enfriamiento y glaciación». Geología . 48 (8): 777–781. Bibcode :2020Geo....48..777B. doi : 10.1130/G47377.1 . S2CID  234740291.
  9. ^ Harper DA, Hammarlund EU, Rasmussen CM (mayo de 2014). "Extinciones del fin del Ordovícico: una coincidencia de causas". Gondwana Research . 25 (4): 1294–1307. Bibcode :2014GondR..25.1294H. doi :10.1016/j.gr.2012.12.021.
  10. ^ Longman J, Mills BJ, Manners HR, Gernon TM, Palmer MR (diciembre de 2021). "Cambio climático y extinciones del Ordovícico tardío impulsados ​​por el elevado suministro de nutrientes volcánicos" (PDF) . Nature Geoscience . 14 (12): 924–929. Bibcode :2021NatGe..14..924L. doi :10.1038/s41561-021-00855-5. S2CID  244803446.
  11. ^ Briggs D, Crowther PR (2008). Paleobiología. Vol. II. John Wiley & Sons. pág. 223. ISBN 978-0-470-99928-8– a través de Google Books.
  12. ^ abc McGhee Jr GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (enero de 2013). "Una nueva clasificación de severidad ecológica de las principales crisis de biodiversidad del Fanerozoico". Paleogeografía, Paleoclimatología, Paleoecología . 370 : 260–270. Bibcode :2013PPP...370..260M. doi :10.1016/j.palaeo.2012.12.019. ISSN  0031-0182.
  13. ^ St Fleur N (16 de febrero de 2017). «Tras la peor extinción masiva de la Tierra, la vida se recuperó rápidamente, según sugieren los fósiles». The New York Times . Archivado desde el original el 1 de enero de 2022. Consultado el 17 de febrero de 2017 .
  14. ^ abc Stanley SM (octubre de 2016). "Estimaciones de las magnitudes de las principales extinciones masivas marinas en la historia de la Tierra". Actas de la Academia Nacional de Ciencias . 113 (42): E6325–E6334. Bibcode :2016PNAS..113E6325S. doi : 10.1073/pnas.1613094113 . ISSN  0027-8424. PMC 5081622 . PMID  27698119. 
  15. ^ Erwin, Douglas H. (20 de enero de 1994). "La extinción del Pérmico-Triásico". Nature . 367 (6460): 231. Bibcode :1994Natur.367..231E. doi :10.1038/367231a0. S2CID  4328753.
  16. ^ Labandeira CC, Sepkoski JJ (julio de 1993). "Diversidad de insectos en el registro fósil". Science . 261 (5119): 310–315. Bibcode :1993Sci...261..310L. CiteSeerX 10.1.1.496.1576 . doi :10.1126/science.11536548. hdl :10088/6563. PMID  11536548. 
  17. ^ McElwain JC, Punyasena SW (octubre de 2007). "Eventos de extinción masiva y el registro fósil de plantas". Tendencias en ecología y evolución . 22 (10): 548–557. Bibcode :2007TEcoE..22..548M. doi :10.1016/j.tree.2007.09.003. PMID  17919771.
  18. ^ Sahney S, Benton MJ (abril de 2008). "Recuperación de la extinción masiva más profunda de todos los tiempos". Actas. Ciencias biológicas . 275 (1636): 759–765. doi :10.1098/rspb.2007.1370. PMC 2596898. PMID  18198148 . 
  19. ^ Macleod N, Rawson PF, Forey P, Banner F, Boudagher-Fadel M, Bown P, et al. (abril de 1997). "La transición biótica del Cretácico al Terciario". Revista de la Sociedad Geológica . 154 (2): 265–92. Código Bibliográfico :1997JGSoc.154..265M. doi :10.1144/gsjgs.154.2.0265. S2CID  129654916.
  20. ^ Fastovsky DE, Sheehan PM (2005). "La extinción de los dinosaurios en América del Norte". GSA Today . 15 (3): 4–10. Bibcode :2005GSAT...15c...4F. doi :10.1130/1052-5173(2005)15<4:TEOTDI>2.0.CO;2.
  21. ^ McGhee GR, Sheehan PM, Bottjer DJ, Droser ML (2011). "Ranking ecológico de las crisis de biodiversidad del Fanerozoico: la crisis del Serpujoviense (principios del Carbonífero) tuvo un mayor impacto ecológico que la del final del Ordovícico". Geología . 40 (2): 147–50. Bibcode :2012Geo....40..147M. doi :10.1130/G32679.1.
  22. ^ Sole RV, Newman M (2003). "Extinciones y biodiversidad en el registro fósil". En Mooney HA, Canadell JG (eds.). Enciclopedia del cambio ambiental global . Vol. 2: El sistema terrestre: dimensiones biológicas y ecológicas del cambio ambiental global. Wiley. págs. 297–391. ISBN. 978-0-470-85361-0.
  23. ^ Smith AB, McGowan AJ (diciembre de 2005). "La ciclicidad en el registro fósil refleja el área de afloramiento rocoso". Biology Letters . 1 (4): 443–445. doi :10.1098/rsbl.2005.0345. PMC 1626379 . PMID  17148228. 
  24. ^ Smith AB, McGowan AJ (2007). "The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of Western Europe?". Palaeontology. 50 (4): 765–74. Bibcode:2007Palgy..50..765S. doi:10.1111/j.1475-4983.2007.00693.x. S2CID 55728929.
  25. ^ McCallum ML (27 May 2015). "Vertebrate biodiversity losses point to a sixth mass extinction". Biodiversity and Conservation. 24 (10): 2497–2519. Bibcode:2015BiCon..24.2497M. doi:10.1007/s10531-015-0940-6. S2CID 16845698.
  26. ^ Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. (May 2014). "The biodiversity of species and their rates of extinction, distribution, and protection". Science. 344 (6187): 1246752. doi:10.1126/science.1246752. PMID 24876501. S2CID 206552746.
  27. ^ Dasgupta P (2021). "The Economics of biodiversity" (PDF). The Dasgupta Review Headline Messages. UK government. p. 1. Retrieved 9 January 2022.
  28. ^ MacDonald J (3 July 2015). "It's official: A global mass extinction is under way". JSTOR Daily.
  29. ^ Grennan M (24 June 2015). "We're entering a sixth mass extinction, and it's our fault". Popular Science.
  30. ^ a b Sutter JD (11 July 2017). "Sixth mass extinction: The era of 'biological annihilation'". CNN. Retrieved 17 July 2017.
  31. ^ Cowie RH, Bouchet P, Fontaine B (April 2022) [10 January 2022]. "The sixth mass extinction: Fact, fiction or speculation?". Biological Reviews of the Cambridge Philosophical Society (online preprint). 97 (2): 640–663. doi:10.1111/brv.12816. PMC 9786292. PMID 35014169.
  32. ^ Ceballos G, Ehrlich PR, Raven PH (June 2020). "Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction". Proceedings of the National Academy of Sciences. 117 (24): 13596–13602. Bibcode:2020PNAS..11713596C. doi:10.1073/pnas.1922686117. PMC 7306750. PMID 32482862.
  33. ^ Brondizio ES, Settele J, Díaz S, Ngo HT, et al. (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) (25 November 2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity Ecosystem Services. IPBES plenary seventh session. doi:10.5281/zenodo.3553579. ISBN 978-3-947851-13-3.
  34. ^ Watts J (6 May 2019). "Human society under urgent threat from loss of Earth's natural life". The Guardian. London. Retrieved 10 May 2019.
  35. ^ Plumer B (6 May 2019). "Humans are speeding extinction and altering the natural world at an 'unprecedented' pace". The New York Times. Archived from the original on 1 January 2022. Retrieved 10 May 2019.
  36. ^ "Nature's dangerous decline 'unprecedented'; species extinction rates 'accelerating'". Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Press release). 6 May 2019. Retrieved 10 May 2019.
  37. ^ "Looming mass extinction could be biggest 'since the dinosaurs,' says WWF". Deutsche Welle. Germany. 29 December 2021. Retrieved 3 January 2022.
  38. ^ Rozsa, Matthew (19 September 2023). "Experts warn of a "biological holocaust" as human-caused extinction "mutilates" the tree of life". Salon.com. Retrieved 21 September 2023.
  39. ^ Ceballos, Gerardo; Ehrlich, Paul R. (2023). "Mutilation of the tree of life via mass extinction of animal genera". Proceedings of the National Academy of Sciences. 120 (39): e2306987120. Bibcode:2023PNAS..12006987C. doi:10.1073/pnas.2306987120. PMC 10523489. PMID 37722053.
  40. ^ Greenfield, Patrick (19 September 2023). "'Mutilating the tree of life': Wildlife loss accelerating, scientists warn". Environment. The Guardian. London. Retrieved 21 September 2023.
  41. ^ a b Sepkoski, J.J. Jr. (1982). A compendium of fossil marine families (PDF) (Report). Milwaukee Public Museum Contributions in Biology and Geology. Vol. 51. pp. 1–125.
  42. ^ a b Sepkoski Jr JJ (1992). A compendium of fossil marine animal families (PDF) (Report). Milwaukee Public Museum Contributions in Biology and Geology. Vol. 83 (2nd ed.). pp. 1–156. PMID 11542296.
  43. ^ a b Sepkoski Jr JJ (2002). Jablonski D, Foote M (eds.). "A Compendium of Fossil Marine Animal Genera". Bulletins of American Paleontology. 363: 1–560.
  44. ^ a b Sepkoski JJ (1996). "Patterns of Phanerozoic Extinction: A Perspective from Global Data Bases". In Walliser OH (ed.). Global Events and Event Stratigraphy in the Phanerozoic. Berlin & Heidelberg, DE: Springer Berlin Heidelberg. pp. 35–51. doi:10.1007/978-3-642-79634-0_4. ISBN 978-3-642-79636-4. Retrieved 14 August 2022.
  45. ^ a b Bambach RK (May 2006). "Phanerozoic Biodiversity Mass Extinctions". Annual Review of Earth and Planetary Sciences. 34 (1): 127–155. Bibcode:2006AREPS..34..127B. doi:10.1146/annurev.earth.33.092203.122654. ISSN 0084-6597.
  46. ^ Alvarez LW, Alvarez W, Asaro F, Michel HV (June 1980). "Extraterrestrial cause for the cretaceous-tertiary extinction". Science. 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. CiteSeerX 10.1.1.126.8496. doi:10.1126/science.208.4448.1095. PMID 17783054. S2CID 16017767.
  47. ^ Sepkoski, J.J. Jr. (1981). "A factor analytic description of the Phanerozoic marine fossil record" (PDF). Paleobiology. 7 (1): 36–53. Bibcode:1981Pbio....7...36S. doi:10.1017/S0094837300003778. ISSN 0094-8373. S2CID 133114885.
  48. ^ Sepkoski JJ, Bambach RK, Raup DM, Valentine JW (1981). "Phanerozoic marine diversity and the fossil record" (PDF). Nature. 293 (5832): 435–437. Bibcode:1981Natur.293..435S. doi:10.1038/293435a0. ISSN 1476-4687. S2CID 4282371.
  49. ^ Sepkoski JJ (1 January 1982). "Mass extinctions in the Phanerozoic oceans: A review". Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Papers. Vol. 190. Geological Society of America. pp. 283–290. doi:10.1130/SPE190-p283. ISBN 0-8137-2190-3. Special Paper 190.
  50. ^ Sepkoski JJ (1984). "A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions". Paleobiology. 10 (2): 246–267. Bibcode:1984Pbio...10..246S. doi:10.1017/S0094837300008186. ISSN 0094-8373. S2CID 85595559.
  51. ^ a b Sepkoski JJ (1986). "Phanerozoic overview of mass extinction". In Raup DM, Jablonski D (eds.). Patterns and Processes in the History of Life. Dahlem Workshop Reports. Berlin & Heidelberg, DE: Springer Berlin Heidelberg. pp. 277–295. doi:10.1007/978-3-642-70831-2_15. ISBN 978-3-642-70833-6. Retrieved 14 August 2022.
  52. ^ Sepkoski JJ (1989). "Periodicity in extinction and the problem of catastrophism in the history of life". Journal of the Geological Society. 146 (1): 7–19. Bibcode:1989JGSoc.146....7S. doi:10.1144/gsjgs.146.1.0007. PMID 11539792. S2CID 45567004.
  53. ^ a b Raup DM, Sepkoski JJ (February 1984). "Periodicity of extinctions in the geologic past". Proceedings of the National Academy of Sciences. 81 (3): 801–805. Bibcode:1984PNAS...81..801R. doi:10.1073/pnas.81.3.801. PMC 344925. PMID 6583680.
  54. ^ Sepkoski JJ (1993). "Ten years in the library: New data confirm paleontological patterns". Paleobiology. 19 (1): 43–51. Bibcode:1993Pbio...19...43S. doi:10.1017/S0094837300012306. PMID 11538041. S2CID 44295283.
  55. ^ Jablonski D (August 1991). "Extinctions: A paleontological perspective". Science. 253 (5021): 754–757. Bibcode:1991Sci...253..754J. doi:10.1126/science.253.5021.754. PMID 17835491.
  56. ^ Benton MJ (April 1995). "Diversification and extinction in the history of life" (PDF). Science. 268 (5207): 52–58. Bibcode:1995Sci...268...52B. doi:10.1126/science.7701342. PMID 7701342.
  57. ^ Walliser OH, ed. (1996). Global Events and Event Stratigraphy in the Phanerozoic: Results of the International Interdisciplinary Cooperation in the IGCP-Project 216 "Global Biological Events in Earth History". Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-79634-0. ISBN 978-3-642-79636-4.
  58. ^ Hallam A, Wignall PB (1997). Mass Extinctions and Their Aftermath. Oxford: Oxford University Press.
  59. ^ Barnes CR, Hallam A, Kaljo D, Kauffman EG, Walliser OH (1996). "Global Event Stratigraphy". Global Events and Event Stratigraphy in the Phanerozoic. Berlin & Heidelberg, DE: Springer Berlin Heidelberg. pp. 319–333. doi:10.1007/978-3-642-79634-0_16. ISBN 978-3-642-79636-4.
  60. ^ a b Foote M (2000). "Origination and extinction components of taxonomic diversity: General problems". Paleobiology. 26 (S4): 74–102. Bibcode:2000Pbio...26S..74F. doi:10.1017/S0094837300026890. ISSN 0094-8373. S2CID 53341052.
  61. ^ Bambach RK, Knoll AH, Wang SC (2004). "Origination, extinction, and mass depletions of marine diversity". Paleobiology. 30 (4): 522–542. Bibcode:2004Pbio...30..522B. doi:10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2. ISSN 0094-8373. S2CID 17279135.
  62. ^ Foote M (2005). "Pulsed origination and extinction in the marine realm" (PDF). Paleobiology. 31 (1): 6–20. Bibcode:2005Pbio...31....6F. doi:10.1666/0094-8373(2005)031<0006:POAEIT>2.0.CO;2. S2CID 53469954.
  63. ^ Stanley SM (2007). "Memoir 4: An Analysis of the History of Marine Animal Diversity". Paleobiology. 33 (S4): 1–55. Bibcode:2007Pbio...33Q...1S. doi:10.1017/S0094837300019217. ISSN 0094-8373. S2CID 90130435.
  64. ^ Signor III, P. W. and Lipps, J. H. (1982) "Sampling bias, gradual extinction patterns, and catastrophes in the fossil record", in Geological implications of impacts of large asteroids and comets on the Earth (ed. L. T. Silver and P. H. Schultz), Geological Society of America Special Publication, vol. 190, pp. 291–296.
  65. ^ a b Foote M (2007). "Extinction and quiescence in marine animal genera". Paleobiology. 33 (2): 261–272. doi:10.1666/06068.1. ISSN 0094-8373. S2CID 53402257.
  66. ^ a b Alroy J (2010). "Fair Sampling of Taxonomic Richness and Unbiased Estimation of Origination and Extinction Rates". The Paleontological Society Papers. 16: 55–80. doi:10.1017/s1089332600001819. ISSN 1089-3326.
  67. ^ Alroy J (2014). "Accurate and precise estimates of origination and extinction rates". Paleobiology. 40 (3): 374–397. doi:10.1666/13036. ISSN 0094-8373. S2CID 53125415.
  68. ^ Alroy J (2015). "A more precise speciation and extinction rate estimator". Paleobiology. 41 (4): 633–639. Bibcode:2015Pbio...41..633A. doi:10.1017/pab.2015.26. ISSN 0094-8373. S2CID 85842940.
  69. ^ Nee S (August 2004). "Extinction, slime, and bottoms". PLOS Biology. 2 (8): E272. doi:10.1371/journal.pbio.0020272. PMC 509315. PMID 15314670.
  70. ^ Butterfield NJ (2007). "Macroevolution and macroecology through deep time" (PDF). Palaeontology. 50 (1): 41–55. Bibcode:2007Palgy..50...41B. doi:10.1111/j.1475-4983.2006.00613.x. S2CID 59436643. Archived from the original (PDF) on 21 July 2022. Retrieved 6 October 2019.
  71. ^ Plait P (28 July 2014). "Poisoned planet". Slate.com. Retrieved 8 July 2019.
  72. ^ a b Ward PD (October 2006). "Impact from the deep". Scientific American. Vol. 295, no. 4. pp. 64–71. Bibcode:2006SciAm.295d..64W. doi:10.1038/scientificamerican1006-64 (inactive 11 September 2024). PMID 16989482.{{cite magazine}}: CS1 maint: DOI inactive as of September 2024 (link)
  73. ^ Kluger J (25 July 2014). "The sixth great extinction is underway – and we're to blame". Time. Retrieved 14 December 2016.
    Kaplan S (22 June 2015). "Earth is on brink of a sixth mass extinction, scientists say, and it's humans' fault". The Washington Post. Retrieved 14 December 2016.
    Hance J (20 October 2015). "How humans are driving the sixth mass extinction". The Guardian. Retrieved 14 December 2016.
    "Vanishing: The Earth's 6th mass extinction". CNN. Retrieved 19 December 2016.
    Mason R (2015). "The sixth mass extinction and chemicals in the environment: our environmental deficit is now beyond nature's ability to regenerate". J. Biol. Phys. Chem. 15 (3): 160–176. doi:10.4024/10MA15F.jbpc.15.03.
    Sankaran V (17 January 2022). "Study confirms sixth mass extinction is currently underway, caused by humans". The Independent. Retrieved 18 January 2022.
  74. ^ Benton MJ (2004). "6. Reptiles Of the Triassic". Vertebrate Palaeontology. Blackwell. ISBN 978-0-04-566002-5.
  75. ^ van Valkenburgh B (1999). "Major patterns in the history of carnivorous mammals". Annual Review of Earth and Planetary Sciences. 27: 463–93. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.earth.27.1.463.
  76. ^ Brocklehurst, Neil (15 May 2018). "An examination of the impact of Olson's extinction on tetrapods from Texas". PeerJ. 6: e4767. doi:10.7717/peerj.4767. PMC 5958880. PMID 29780669.
  77. ^ Brocklehurst, Neil (10 June 2020). "Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): 20200154. doi:10.1098/rspb.2020.0154. ISSN 0962-8452. PMC 7341920. PMID 32517621.
  78. ^ Didier, Gilles; Laurin, Michel (June 2024). "Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions". Cladistics. 40 (3): 282–306. doi:10.1111/cla.12577. ISSN 0748-3007. PMID 38651531.
  79. ^ Jablonski D (June 2002). "Survival without recovery after mass extinctions". Proceedings of the National Academy of Sciences. 99 (12): 8139–8144. Bibcode:2002PNAS...99.8139J. doi:10.1073/pnas.102163299. PMC 123034. PMID 12060760.
  80. ^ Budd GE, Mann RP (November 2018). "History is written by the victors: The effect of the push of the past on the fossil record". Evolution; International Journal of Organic Evolution. 72 (11): 2276–2291. doi:10.1111/evo.13593. PMC 6282550. PMID 30257040.
  81. ^ Hallam A, Wignall PB (2002). Mass Extinctions and their Aftermath. New York, NY: Oxford University Press.
  82. ^ Beardsley T (1988). "Star-struck?". Scientific American. Vol. 258, no. 4. pp. 37–40. Bibcode:1988SciAm.258d..37B. doi:10.1038/scientificamerican0488-37b.
  83. ^ Different cycle lengths have been proposed; e.g. by Rohde RA, Muller RA (March 2005). "Cycles in fossil diversity". Nature. 434 (7030): 208–210. Bibcode:2005Natur.434..208R. doi:10.1038/nature03339. PMID 15758998. S2CID 32520208.
  84. ^ Muller RA. "Nemesis". Muller.lbl.gov. Lawrence Berkeley Laboratory. Retrieved 19 May 2007.
  85. ^ Melott AL, Bambach RK (July 2010). "Nemesis reconsidered". Monthly Notices of the Royal Astronomical Society. 407 (1): L99–L102. arXiv:1007.0437. Bibcode:2010MNRAS.407L..99M. doi:10.1111/j.1745-3933.2010.00913.x. S2CID 7911150. Retrieved 2 July 2010.
  86. ^ Gillman M, Erenler H (2008). "The galactic cycle of extinction" (PDF). International Journal of Astrobiology. 7 (1): 17–26. Bibcode:2008IJAsB...7...17G. CiteSeerX 10.1.1.384.9224. doi:10.1017/S1473550408004047. ISSN 1475-3006. S2CID 31391193. Retrieved 2 April 2018.
  87. ^ Bailer-Jones CA (July 2009). "The evidence for and against astronomical impacts on climate change and mass extinctions: A review". International Journal of Astrobiology. 8 (3): 213–219. arXiv:0905.3919. Bibcode:2009IJAsB...8..213B. doi:10.1017/S147355040999005X. ISSN 1475-3006. S2CID 2028999.
  88. ^ Overholt AC, Melott AL, Pohl M (2009). "Testing the link between terrestrial climate change and galactic spiral arm transit". The Astrophysical Journal. 705 (2): L101–03. arXiv:0906.2777. Bibcode:2009ApJ...705L.101O. doi:10.1088/0004-637X/705/2/L101. S2CID 734824.
  89. ^ Erlykin AD, Harper DA, Sloan T, Wolfendale AW (2017). Smith A (ed.). "Mass extinctions over the last 500 myr: an astronomical cause?". Palaeontology. 60 (2): 159–167. Bibcode:2017Palgy..60..159E. doi:10.1111/pala.12283. S2CID 133407217.
  90. ^ Melott AL, Bambach RK (2011). "A[n] ubiquitous ~62 Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation". Paleobiology. 37: 92–112. arXiv:1005.4393. doi:10.1666/09054.1. S2CID 1905891.
  91. ^ Melott AL, Bambach RK, Petersen KD, McArthur JM, et al. (2012). "A ~60 Myr periodicity is common to marine-87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect?". Journal of Geology. 120 (2): 217–226. arXiv:1206.1804. Bibcode:2012JG....120..217M. doi:10.1086/663877. S2CID 18027758.
  92. ^ Müller RD, Dutkiewicz A (February 2018). "Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities". Science Advances. 4 (2): eaaq0500. Bibcode:2018SciA....4..500M. doi:10.1126/sciadv.aaq0500. PMC 5812735. PMID 29457135.
  93. ^ a b Arens NC, West ID (2008). "Press-pulse: a general theory of mass extinction?" (PDF). Paleobiology. 34 (4): 456–471. Bibcode:2008Pbio...34..456A. doi:10.1666/07034.1. S2CID 56118514.
  94. ^ a b c Wang SC, Bush AM (2008). "Adjusting global extinction rates to account for taxonomic susceptibility". Paleobiology. 34 (4): 434–55. doi:10.1666/07060.1. S2CID 16260671.
  95. ^ Budd GE (February 2003). "The Cambrian fossil record and the origin of the phyla". Integrative and Comparative Biology. 43 (1): 157–165. doi:10.1093/icb/43.1.157. PMID 21680420.
  96. ^ Martin RE (1995). "Cyclic and secular variation in microfossil biomineralization: Clues to the biogeochemical evolution of Phanerozoic oceans". Global and Planetary Change. 11 (1): 1–23. Bibcode:1995GPC....11....1M. doi:10.1016/0921-8181(94)00011-2.
  97. ^ Martin RE (1996). "Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere". PALAIOS. 11 (3): 209–219. Bibcode:1996Palai..11..209M. doi:10.2307/3515230. JSTOR 3515230.
  98. ^ Marshall CR, Ward PD (November 1996). "Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys". Science. 274 (5291): 1360–1363. Bibcode:1996Sci...274.1360M. doi:10.1126/science.274.5291.1360. PMID 8910273. S2CID 1837900.
  99. ^ Arens NC, West ID (2006). Press/pulse: A general theory of mass extinction?. Geological Society of America. Archived from the original on 18 January 2017.
  100. ^ MacLeod N (6 January 2001). "Extinction!". firstscience.com.
  101. ^ Courtillot V, Jaeger JJ, Yang Z, Feraud G, Hofmann C (1996). "The influence of continental flood basalts on mass extinctions: Where do we stand?". The Cretaceous-Tertiary Event and other Catastrophes in Earth History. doi:10.1130/0-8137-2307-8.513. ISBN 9780813723075.
  102. ^ Hallam A (1992). Phanerozoic sea-level changes. New York, NY: Columbia University Press. ISBN 978-0-231-07424-7.
  103. ^ Grieve RA, Pesonen LJ (December 1992). "The Terrestrial Impact Cratering Record". Tectonophysics. 216 (1–2): 1–30. Bibcode:1992Tectp.216....1G. doi:10.1016/0040-1951(92)90152-V.
  104. ^ Wignall PB (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53 (1–2): 1–33. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.
  105. ^ Brannen P (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. p. 336. ISBN 978-0-06-236480-7.
  106. ^ Morrow JR, Sandberg CA (2005). Revised Dating Of Alamo And Some Other Late Devonian Impacts In Relation To Resulting Mass Extinction (PDF). 68th Annual Meteoritical Society Meeting.
  107. ^ Courtillot VE (1990). "A volcanic eruption". Scientific American. Vol. 263, no. 4. pp. 85–93. Bibcode:1990SciAm.263d..85C. doi:10.1038/scientificamerican1090-85. JSTOR 24997065. PMID 11536474.
  108. ^ Rampino, Michael R. (13 de abril de 2010). "Extinciones masivas de vida y vulcanismo basáltico catastrófico por inundación". Actas de la Academia Nacional de Ciencias . 107 (15): 6555–6556. Bibcode :2010PNAS..107.6555R. doi : 10.1073/pnas.1002478107 . PMC 2872464 . PMID  20360556. 
  109. ^ Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, JS (Goonie); Miller, Jodie A. (octubre de 2010). "Las mayores erupciones volcánicas de la Tierra". Earth-Science Reviews . 102 (3–4): 207–229. Bibcode :2010ESRv..102..207B. doi :10.1016/j.earscirev.2010.07.001 . Consultado el 11 de enero de 2023 .
  110. ^ Ricci, J.; et al. (2013). "Nuevas edades 40 Ar/ 39 Ar y K–Ar de las trampas de Viluy (Siberia oriental): más evidencia de una relación con la extinción masiva del Frasniense-Famenniense". Paleogeografía, Paleoclimatología, Paleoecología . 386 : 531–540. Bibcode :2013PPP...386..531R. doi :10.1016/j.palaeo.2013.06.020.
  111. ^ Bond, DPG; Wignall, PB (2014). "Grandes provincias ígneas y extinciones masivas: una actualización". Documentos especiales de la GSA . 505 : 29–55. doi :10.1130/2014.2505(02). ISBN 9780813725055. Recuperado el 23 de diciembre de 2022 .
  112. ^ Kaiho, Kunio; Miura, Mami; Tezuka, Mio; Hayashi, Naohiro; Jones, David S.; Oikawa, Kazuma; Casier, Jean-Georges; Fujibayashi, Megumu; Chen, Zhong-Qiang (abril de 2021). "Los datos de coroneno, mercurio y biomarcadores respaldan un vínculo entre la magnitud de la extinción y la intensidad volcánica en el Devónico tardío". Cambio global y planetario . 199 : 103452. Bibcode :2021GPC...19903452K. doi :10.1016/j.gloplacha.2021.103452. S2CID  234364043 . Consultado el 11 de enero de 2023 .
  113. ^ Jerram, Dougal A.; Widdowson, Mike; Wignall, Paul B.; Sun, Yadong; Lai, Xulong; Bond, David PG; Torsvik, Trond H. (1 de enero de 2016). "Paleoambientes submarinos durante el vulcanismo basáltico de inundación de Emeishan, suroeste de China: implicaciones para la interacción pluma-litosfera durante el evento de extinción del Capitaniano, Pérmico medio ("finales del Guadalupiano")". Paleogeografía, Paleoclimatología, Paleoecología . 441 : 65–73. Bibcode :2016PPP...441...65J. doi :10.1016/j.palaeo.2015.06.009 . Consultado el 11 de enero de 2023 .
  114. ^ Retallack, Gregory J.; Jahren, A. Hope (1 de octubre de 2007). "Liberación de metano de la intrusión ígnea de carbón durante los eventos de extinción del Pérmico tardío". The Journal of Geology . 116 (1): 1–20. doi :10.1086/524120. S2CID  46914712 . Consultado el 11 de enero de 2023 .
  115. ^ Sheldon, Nathan D.; Chakrabarti, Ramananda; Retallack, Gregory J.; Smith, Roger MH (20 de febrero de 2014). "Contrastando firmas geoquímicas en tierra de los eventos de extinción del Pérmico Medio y Tardío". Sedimentology . 61 (6): 1812–1829. doi :10.1111/sed.12117. hdl : 2027.42/108696 . S2CID  129862176 . Consultado el 11 de enero de 2023 .
  116. ^ Kamo, SL (2003). "Erupción rápida de rocas volcánicas de inundación siberianas y evidencia de coincidencia con el límite Pérmico-Triásico y extinción masiva a 251 Ma". Earth and Planetary Science Letters . 214 (1–2): 75–91. Código Bibliográfico :2003E&PSL.214...75K. doi :10.1016/S0012-821X(03)00347-9.
  117. ^ Jurikova, Hana; Gutjahr, Marcus; Wallmann, Klaus; Flögel, Sascha; Liebetrau, Volker; Posenato, Renato; et al. (noviembre de 2020). "Pulsos de extinción masiva del Pérmico-Triásico impulsados ​​por importantes perturbaciones del ciclo del carbono marino". Nature Geoscience . 13 (11): 745–750. Bibcode :2020NatGe..13..745J. doi :10.1038/s41561-020-00646-4. hdl : 11573/1707839 . ISSN  1752-0908. S2CID  224783993 . Consultado el 11 de enero de 2023 .
  118. ^ Burgess, SD; Muirhead, JD; Bowring, SA (31 de julio de 2017). "El pulso inicial de los sillines de las Traps siberianas como desencadenante de la extinción masiva del final del Pérmico". Nature Communications . 8 (1): 164. Bibcode :2017NatCo...8..164B. doi :10.1038/s41467-017-00083-9. PMC 5537227 . PMID  28761160. S2CID  3312150. 
  119. ^ Paton, MT; Ivanov, AV; Fiorentini, ML; McNaughton, MJ; Mudrovska, I.; Reznitskii, LZ; Demonterova, EI (1 de septiembre de 2010). "Pulsos magmáticos del Pérmico Tardío y Triásico Temprano en el sinclinal Angara-Taseeva, Trampas del Sur de Siberia y su posible influencia en el medio ambiente". Geología y geofísica rusa . 51 (9): 1012–1020. Código Bibliográfico :2010RuGG...51.1012P. doi :10.1016/j.rgg.2010.08.009 . Consultado el 11 de enero de 2023 .
  120. ^ Song, Haijin; Song, Huyue; Tong, Jinnan; Gordon, Gwyneth W.; Wignall, Paul B.; Tian, ​​Li; Zheng, Wang; Algeo, Thomas J.; Liang, Lei; Bai, Ruoyu; Wu, Kui; Anbar, Ariel D. (20 de febrero de 2021). "Evidencia isotópica de calcio de conodontes para múltiples eventos de acidificación de la plataforma durante el Triásico Temprano". Chemical Geology . 562 : 120038. Bibcode :2021ChGeo.56220038S. doi :10.1016/j.chemgeo.2020.120038. S2CID  233915627 . Consultado el 11 de enero de 2023 .
  121. ^ Romano, Carlo; Goudemand, Nicolas; Vennemann, Torsten W.; Ware, David; Schneebeli-Hermann, Elke; Hochuli, Peter A.; Brühwiler, Thomas; Brinkmann, Winand; Bucher, Hugo (21 de diciembre de 2012). "Agitaciones climáticas y bióticas tras la extinción masiva del final del Pérmico". Nature Geoscience . 6 (1): 57–60. doi :10.1038/ngeo1667. S2CID  129296231.
  122. ^ Davies, JHFL; Marzoli, Andrea; Bertrand, H.; Youbi, Nasrrddine; Ernesto, M.; Schaltegger, U. (31 de mayo de 2017). "Extinción masiva del Triásico final iniciada por actividad intrusiva de CAMP". Nature Communications . 8 : 15596. Bibcode :2017NatCo...815596D. doi :10.1038/ncomms15596. PMC 5460029 . PMID  28561025. S2CID  13323882. 
  123. ^ Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province" (PDF). Science. 340 (6135): 941–945. Bibcode:2013Sci...340..941B. CiteSeerX 10.1.1.1019.4042. doi:10.1126/science.1234204. PMID 23519213. S2CID 15895416.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  124. ^ Capriolo, Manfredo; Mills, Benjamin J. W.; Newton, Robert J.; Corso, Jacobo Dal; Dunhill, Alexander M.; Wignall, Paul B.; Marzoli, Andrea (February 2022). "Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction". Global and Planetary Change. 209: 103731. Bibcode:2022GPC...20903731C. doi:10.1016/j.gloplacha.2021.103731. hdl:10852/91551. S2CID 245530815.
  125. ^ McElwain, Jennifer C.; Wade-Murphy, Jessica; Hesselbo, Stephen P. (26 May 2005). "Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals". Nature. 435 (7041): 479–482. Bibcode:2005Natur.435..479M. doi:10.1038/nature03618. PMID 15917805. S2CID 4339259. Retrieved 11 January 2023.
  126. ^ Them, T.R.; Gill, B.C.; Caruthers, A.H.; Gröcke, D.R.; Tulsky, E.T.; Martindale, R.C.; Poulton, T.P.; Smith, P.L. (February 2017). "High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle". Earth and Planetary Science Letters. 459: 118–126. Bibcode:2017E&PSL.459..118T. doi:10.1016/j.epsl.2016.11.021.
  127. ^ Reolid, Matías; Mattioli, Emanuela; Duarte, Luís V.; Ruebsam, Wolfgang (22 September 2021). "The Toarcian Oceanic Anoxic Event: where do we stand?". Geological Society, London, Special Publications. 514 (1): 1–11. Bibcode:2021GSLSP.514....1R. doi:10.1144/SP514-2021-74. ISSN 0305-8719. S2CID 238683028. Retrieved 11 January 2023.
  128. ^ Kuroda, J; Ogawa, N; Tanimizu, M; Coffin, M; Tokuyama, H; Kitazato, H; Ohkouchi, N (15 April 2007). "Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2". Earth and Planetary Science Letters. 256 (1–2): 211–223. Bibcode:2007E&PSL.256..211K. doi:10.1016/j.epsl.2007.01.027. ISSN 0012-821X. S2CID 129546012.
  129. ^ Flögel, S.; Wallmann, K.; Poulsen, C.J.; Zhou, J.; Oschlies, A.; Voigt, S.; Kuhnt, W. (May 2011). "Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2)". Earth and Planetary Science Letters. 305 (3–4): 371–384. Bibcode:2011E&PSL.305..371F. doi:10.1016/j.epsl.2011.03.018. ISSN 0012-821X.
  130. ^ Ernst, Richard E.; Youbi, Nasrrddine (July 2017). "How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record". Palaeogeography, Palaeoclimatology, Palaeoecology. 478: 30–52. Bibcode:2017PPP...478...30E. doi:10.1016/j.palaeo.2017.03.014.
  131. ^ Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C. (2016). "End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change". Nature Communications. 7: 12079. Bibcode:2016NatCo...712079P. doi:10.1038/ncomms12079. PMC 4935969. PMID 27377632.
  132. ^ Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S. (2008). "Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India". Earth and Planetary Science Letters. 268 (3–4): 293–311. Bibcode:2008E&PSL.268..293K. doi:10.1016/j.epsl.2008.01.015.
  133. ^ "Causes of the Cretaceous Extinction". park.org/Canada.
  134. ^ Gutjahr, Marcus; Ridgwell, Andy; Sexton, Philip F.; Anagnostou, Eleni; Pearson, Paul N.; Pälike, Heiko; Norris, Richard D.; Thomas, Ellen; Foster, Gavin L. (August 2017). "Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum". Nature. 548 (7669): 573–577. Bibcode:2017Natur.548..573G. doi:10.1038/nature23646. ISSN 1476-4687. PMC 5582631. PMID 28858305.
  135. ^ Kender, Sev; Bogus, Kara; Pedersen, Gunver K.; Dybkjær, Karen; Mather, Tamsin A.; Mariani, Erica; Ridgwell, Andy; Riding, James B.; Wagner, Thomas; Hesselbo, Stephen P.; Leng, Melanie J. (31 August 2021). "Paleocene/Eocene carbon feedbacks triggered by volcanic activity". Nature Communications. 12 (1): 5186. Bibcode:2021NatCo..12.5186K. doi:10.1038/s41467-021-25536-0. hdl:10871/126942. ISSN 2041-1723. PMC 8408262. PMID 34465785.
  136. ^ Jones, Sarah M.; Hoggett, Murray; Greene, Sarah E.; Jones, Tom Dunkley (5 December 2019). "Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change". Nature Communications. 10 (1): 5547. Bibcode:2019NatCo..10.5547J. doi:10.1038/s41467-019-12957-1. PMC 6895149. PMID 31804460.
  137. ^ Courtillot V (1994). "Mass extinctions in the last 300 million years: one impact and seven flood basalts?". Israel Journal of Earth Sciences. 43: 255–266.
  138. ^ Courtillot VE, Renne PR (January 2003). "On the ages of flood basalt events". Comptes Rendus Geoscience. 335 (1): 113–140. Bibcode:2003CRGeo.335..113C. doi:10.1016/S1631-0713(03)00006-3.
  139. ^ Kravchinsky VA (2012). "Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events" (PDF). Global and Planetary Change. 86: 31–36. Bibcode:2012GPC....86...31K. doi:10.1016/j.gloplacha.2012.01.007.
  140. ^ Weidlich, O. (2002). "Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution". Geobios. 35 (1): 287–294. Bibcode:2002Geobi..35..287W. doi:10.1016/S0016-6995(02)00066-9. Retrieved 8 November 2022.
  141. ^ Wang, X.-D. & Sugiyama, T. (December 2000). "Diversity and extinction patterns of Permian coral faunas of China". Lethaia. 33 (4): 285–294. Bibcode:2000Letha..33..285W. doi:10.1080/002411600750053853. Retrieved 8 November 2022.
  142. ^ Peters SE (July 2008). "Environmental determinants of extinction selectivity in the fossil record" (PDF). Nature. 454 (7204): 626–629. Bibcode:2008Natur.454..626P. doi:10.1038/nature07032. PMID 18552839. S2CID 205213600.
  143. ^ "Ebb and flow of the sea drives world's big extinction events". Newswise. Madison, WI: University of Wisconsin. 13 June 2008. Retrieved 15 June 2008.
  144. ^ Alvarez W, Kauffman EG, Surlyk F, Alvarez LW, Asaro F, Michel HV (March 1984). "Impact theory of mass extinctions and the invertebrate fossil record". Science. 223 (4641): 1135–1141. Bibcode:1984Sci...223.1135A. doi:10.1126/science.223.4641.1135. JSTOR 1692570. PMID 17742919. S2CID 24568931.
  145. ^ Keller G, Abramovich S, Berner Z, Adatte T (1 January 2009). "Biotic effects of the Chicxulub impact, K–T catastrophe and sea level change in Texas". Palaeogeography, Palaeoclimatology, Palaeoecology. 271 (1–2): 52–68. Bibcode:2009PPP...271...52K. doi:10.1016/j.palaeo.2008.09.007.
  146. ^ Morgan J, Lana C, Kersley A, Coles B, Belcher C, Montanari S, Diaz-Martinez E, Barbosa A, Neumann V (2006). "Analyses of shocked quartz at the global K-P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub" (PDF). Earth and Planetary Science Letters. 251 (3–4): 264–279. Bibcode:2006E&PSL.251..264M. doi:10.1016/j.epsl.2006.09.009. hdl:10044/1/1208.
  147. ^ Joel L (21 October 2019). "The dinosaur-killing asteroid acidified the ocean in a flash: The Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows". The New York Times. Archived from the original on 1 January 2022. Retrieved 22 October 2019.
  148. ^ Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, et al. (November 2019). "Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact". Proceedings of the National Academy of Sciences. 116 (45): 22500–22504. Bibcode:2019PNAS..11622500H. doi:10.1073/pnas.1905989116. PMC 6842625. PMID 31636204.
  149. ^ Tohver, Eric; Cawood, P. A.; Riccomini, Claudio; Lana, Cris; Trindade, R. I. F. (1 October 2013). "Shaking a methane fizz: Seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record". Palaeogeography, Palaeoclimatology, Palaeoecology. 387: 66–75. Bibcode:2013PPP...387...66T. doi:10.1016/j.palaeo.2013.07.010. Retrieved 12 January 2023.
  150. ^ Tohver, Eric; Schmieder, Martin; Lana, Cris; Mendes, Pedro S. T.; Jourdan, Fred; Warren, Lucas; Riccomini, Claudio (2 January 2018). "End-Permian impactogenic earthquake and tsunami deposits in the intracratonic Paraná Basin of Brazil". GSA Bulletin. 130 (7–8): 1099–1120. Bibcode:2018GSAB..130.1099T. doi:10.1130/B31626.1. Retrieved 12 January 2023.
  151. ^ Tohver, Eric; Lana, Cris; Cawood, P.A.; Fletcher, I.R.; Jourdan, F.; Sherlock, S.; et al. (1 June 2012). "Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar / 39Ar results for the 40 km Araguainha structure of central Brazil". Geochimica et Cosmochimica Acta. 86: 214–227. Bibcode:2012GeCoA..86..214T. doi:10.1016/j.gca.2012.03.005.
  152. ^ Farley KA, Mukhopadhyay S, Isozaki Y, Becker L, Poreda RJ (2001). "An extraterrestrial impact at the Permian–Triassic boundary?". Science. 293 (5539): 2343a–2343. doi:10.1126/science.293.5539.2343a. PMID 11577203.
  153. ^ Koeberl K, Farley KA, Peucker-Ehrenbrink B, Sephton MA (2004). "Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component". Geology. 32 (12): 1053–1056. Bibcode:2004Geo....32.1053K. doi:10.1130/G20907.1.
  154. ^ Romano, Marco; Bernardi, Massimo; Petti, Fabio Massimo; Rubidge, Bruce; Hancox, John; Benton, Michael James (November 2020). "Early Triassic terrestrial tetrapod fauna: a review". Earth-Science Reviews. 210: 103331. Bibcode:2020ESRv..21003331R. doi:10.1016/j.earscirev.2020.103331. S2CID 225066013. Retrieved 12 January 2023.
  155. ^ Rampino M, Caldeira K, Zhu Y (December 2020). "A 27.5 My underlying periodicity detected in extinction episodes of non-marine tetrapods". Historical Biology. 33 (11): 3084–3090. doi:10.1080/08912963.2020.1849178. S2CID 230580480.
  156. ^ Gillman M, Erenler H (2008). "The galactic cycle of extinction" (PDF). International Journal of Astrobiology. 7 (1): 17–26. Bibcode:2008IJAsB...7...17G. CiteSeerX 10.1.1.384.9224. doi:10.1017/S1473550408004047. S2CID 31391193.
  157. ^ Overholt AC, Melott AL, Pohl M (10 November 2009). "Testing the Link Between Terrestrial Climate Change and Galactic Spiral Arm Transit". The Astrophysical Journal. 705 (2): L101–L103. arXiv:0906.2777. Bibcode:2009ApJ...705L.101O. doi:10.1088/0004-637X/705/2/L101. S2CID 734824.
  158. ^ Powell CS (1 October 2001). "20 Ways the World Could End". Discover Magazine. Retrieved 29 March 2011.
  159. ^ Podsiadlowski P, Mazzali PA, Nomoto K, Lazzati D, Cappellaro E (2004). "The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors". Astrophysical Journal Letters. 607 (1): L17. arXiv:astro-ph/0403399. Bibcode:2004ApJ...607L..17P. doi:10.1086/421347. S2CID 119407415.
  160. ^ Melott, Adrian L.; Lieberman, B. S.; Laird, Claude M.; Martin, L. D.; Medvedev, M. V.; Thomas, Brian C.; Cannizzo, John K.; Gehrels, Neil; Jackman, Charles H. (5 August 2004). "Did a gamma-ray burst initiate the late Ordovician mass extinction?". International Journal of Astrobiology. 3 (2): 55–61. arXiv:astro-ph/0309415. Bibcode:2004IJAsB...3...55M. doi:10.1017/S1473550404001910. hdl:1808/9204. S2CID 13124815. Retrieved 27 December 2022.
  161. ^ Melott AL, Thomas BC (2009). "Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage". Paleobiology. 35 (3): 311–20. arXiv:0809.0899. Bibcode:2009Pbio...35..311M. doi:10.1666/0094-8373-35.3.311. S2CID 11942132.
  162. ^ Fields, Brian D.; Melott, Adrian L.; Ellis, John; Ertel, Adrienne F.; Fry, Brian J.; Lieberman, Bruce S.; Liu, Zhenghai; Miller, Jesse A.; Thomas, Brian C. (1 September 2020). "Supernova triggers for end-Devonian extinctions". Proceedings of the National Academy of Sciences. 117 (35): 21008–21010. arXiv:2007.01887. Bibcode:2020PNAS..11721008F. doi:10.1073/pnas.2013774117. ISSN 0027-8424. PMC 7474607. PMID 32817482.
  163. ^ "ESO Supernova". ESO Supernova Exhibition. Retrieved 8 April 2024.
  164. ^ Mayhew PJ, Jenkins GB, Benton TG (January 2008). "A long-term association between global temperature and biodiversity, origination and extinction in the fossil record". Proceedings. Biological Sciences. 275 (1630): 47–53. doi:10.1098/rspb.2007.1302. PMC 2562410. PMID 17956842.
  165. ^ Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (July 1996). "Comparative Earth History and Late Permian Mass Extinction". Science. 273 (5274): 452–457. Bibcode:1996Sci...273..452K. doi:10.1126/science.273.5274.452. PMID 8662528. S2CID 35958753.
  166. ^ Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, et al. (February 2005). "Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo basin, South Africa". Science. 307 (5710): 709–714. Bibcode:2005Sci...307..709W. CiteSeerX 10.1.1.503.2065. doi:10.1126/science.1107068. PMID 15661973. S2CID 46198018.
  167. ^ Kiehl JT, Shields CA (September 2005). "Climate simulation of the latest Permian: Implications for mass extinction". Geology. 33 (9): 757–760. Bibcode:2005Geo....33..757K. doi:10.1130/G21654.1.
  168. ^ Hecht J (26 March 2002). "Methane prime suspect for greatest mass extinction". New Scientist.
  169. ^ Jenkyns HC (1 March 2010). "Geochemistry of oceanic anoxic events". Geochemistry, Geophysics, Geosystems. 11 (3): Q03004. Bibcode:2010GGG....11.3004J. doi:10.1029/2009GC002788. ISSN 1525-2027. S2CID 128598428.
  170. ^ Qiu, Zhen; Zou, Caineng; Mills, Benjamin J. W.; Xiong, Yijun; Tao, Huifei; Lu, Bin; Liu, Hanlin; Xiao, Wenjiao; Poulton, Simon W. (5 April 2022). "A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction". Communications Earth & Environment. 3 (1): 82. Bibcode:2022ComEE...3...82Q. doi:10.1038/s43247-022-00412-x. S2CID 247943064.
  171. ^ Zou, Caineng; Qiu, Zhen; Poulton, Simon W.; Dong, Dazhong; Wang, Hongyan; Chen, Daizhou; Lu, Bin; Shi, Zhensheng; Tao, Huifei (2018). "Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction" (PDF). Geology. 46 (6): 535–538. Bibcode:2018Geo....46..535Z. doi:10.1130/G40121.1. S2CID 135039656.
  172. ^ Men, Xin; Mou, Chuanlong; Ge, Xiangying (1 August 2022). "Changes in palaeoclimate and palaeoenvironment in the Upper Yangtze area (South China) during the Ordovician–Silurian transition". Scientific Reports. 12 (1): 13186. Bibcode:2022NatSR..1213186M. doi:10.1038/s41598-022-17105-2. PMC 9343391. PMID 35915216.
  173. ^ Bond, David P. G.; Zatoń, Michał; Wignall, Paul B.; Marynowski, Leszek (11 March 2013). "Evidence for shallow-water 'Upper Kellwasser' anoxia in the Frasnian–Famennian reefs of Alberta, Canada". Lethaia. 46 (3): 355–368. Bibcode:2013Letha..46..355B. doi:10.1111/let.12014. Retrieved 12 January 2023.
  174. ^ Algeo, T.J.; Scheckler, S. E. (1998). "Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events". Philosophical Transactions of the Royal Society B: Biological Sciences. 353 (1365): 113–130. doi:10.1098/rstb.1998.0195. PMC 1692181.
  175. ^ David P. G. Bond; Paul B. Wignalla (2008). "The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 263 (3–4): 107–118. Bibcode:2008PPP...263..107B. doi:10.1016/j.palaeo.2008.02.015.
  176. ^ Zhang, Bolin; Wignall, Paul B.; Yao, Suping; Hu, Wenxuan; Liu, Biao (January 2021). "Collapsed upwelling and intensified euxinia in response to climate warming during the Capitanian (Middle Permian) mass extinction". Gondwana Research. 89: 31–46. Bibcode:2021GondR..89...31Z. doi:10.1016/j.gr.2020.09.003. S2CID 224981591. Retrieved 30 September 2022.
  177. ^ Zhang, Bolin; Yao, Suping; Hu, Wenxuan; Ding, Hai; Liu, Bao; Ren, Yongle (1 October 2019). "Development of a high-productivity and anoxic-euxinic condition during the late Guadalupian in the Lower Yangtze region: Implications for the mid-Capitanian extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 531: 108630. Bibcode:2019PPP...53108630Z. doi:10.1016/j.palaeo.2018.01.021. S2CID 133916878. Retrieved 17 November 2022.
  178. ^ Bond, David P. G.; Wignall, Paul B.; Grasby, Stephen E. (30 August 2019). "The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia". Geological Society of America Bulletin. 132 (5–6): 931–942. doi:10.1130/B35281.1. S2CID 199104686.
  179. ^ Kump, Lee; Alexander Pavlov; Michael A. Arthur (2005). "Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia". Geology. 33 (5): 397–400. Bibcode:2005Geo....33..397K. doi:10.1130/G21295.1.
  180. ^ Hülse, Dominik; Lau, Kimberly V.; Van de Velde, Sebastiaan J.; Arndt, Sandra; Meyer, Katja M.; Ridgwell, Andy (28 October 2021). "End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia". Nature Geoscience. 14 (11): 862–867. Bibcode:2021NatGe..14..862H. doi:10.1038/s41561-021-00829-7. S2CID 240076553. Retrieved 12 January 2023.
  181. ^ Schobben, Martin; Foster, William J.; Sleveland, Arve R. N.; Zuchuat, Valentin; Svensen, Henrik H.; Planke, Sverre; Bond, David P. G.; Marcelis, Fons; Newton, Robert J.; Wignall, Paul B.; Poulton, Simon W. (17 August 2020). "A nutrient control on marine anoxia during the end-Permian mass extinction". Nature Geoscience. 13 (9): 640–646. Bibcode:2020NatGe..13..640S. doi:10.1038/s41561-020-0622-1. hdl:1874/408736. S2CID 221146234. Retrieved 12 January 2023.
  182. ^ Atkinson, J. W.; Wignall, Paul B. (15 August 2019). "How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play?". Palaeogeography, Palaeoclimatology, Palaeoecology. 528: 99–119. Bibcode:2019PPP...528...99A. doi:10.1016/j.palaeo.2019.05.011. S2CID 164911938. Retrieved 20 December 2022.
  183. ^ Long JA, Large RR, Lee MS, Benton MJ, Danyushevsky LV, Chiappe LM, et al. (2015). "Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events". Gondwana Research. 36: 209–218. Bibcode:2016GondR..36..209L. doi:10.1016/j.gr.2015.10.001. hdl:1983/68e97709-15fb-496b-b28d-f8ea9ea9b4fc. S2CID 129753283.
  184. ^ Watson AJ (December 2016). "Oceans on the edge of anoxia". Science. 354 (6319): 1529–1530. Bibcode:2016Sci...354.1529W. doi:10.1126/science.aaj2321. hdl:10871/25100. PMID 28008026. S2CID 206653923.
  185. ^ Berner RA, Ward PD (1 January 2006). "Positive Reinforcement, H2S, and the Permo-Triassic Extinction: Comment and Reply: COMMENT". Geology. 34 (1): e100. Bibcode:2006Geo....34E.100B. doi:10.1130/G22641.1.
  186. ^ Kump LR, Pavlov A, Arthur MA (2005). "Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia". Geology. 33 (5): 397–400. Bibcode:2005Geo....33..397K. doi:10.1130/g21295.1. Summarised by Ward (2006).
  187. ^ Wilde P, Berry WB (1984). "Destabilization of the oceanic density structure and its significance to marine "extinction" events". Palaeogeography, Palaeoclimatology, Palaeoecology. 48 (2–4): 143–62. Bibcode:1984PPP....48..143W. doi:10.1016/0031-0182(84)90041-5.
  188. ^ Wei Y, Pu Z, Zong Q, Wan W, Ren Z, Fraenz M, et al. (1 May 2014). "Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction". Earth and Planetary Science Letters. 394: 94–98. Bibcode:2014E&PSL.394...94W. doi:10.1016/j.epsl.2014.03.018 – via NASA ADS.
  189. ^ "Speculated Causes of the Permian Extinction". Hooper Virtual Paleontological Museum. Retrieved 16 July 2012.
  190. ^ Smith, Felisa A.; et al. (20 April 2018). "Body size downgrading of mammals over the late Quaternary". Science. 360 (6386): 310–313. Bibcode:2018Sci...360..310S. doi:10.1126/science.aao5987. PMID 29674591.
  191. ^ Ceballos G, Ehrlich PR, Dirzo R (July 2017). "Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines". Proceedings of the National Academy of Sciences. 114 (30): E6089–E6096. Bibcode:2017PNAS..114E6089C. doi:10.1073/pnas.1704949114. PMC 5544311. PMID 28696295.
  192. ^ a b c Franck S, Bounama C, von Bloh W (2006). "Causes and Timing of Future Biosphere Extinction" (PDF). Biogeosciences. 3 (1): 85–92. Bibcode:2006BGeo....3...85F. doi:10.5194/bg-3-85-2006. S2CID 129600368.
  193. ^ a b Ward P, Brownlee D (December 2003). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World. Henry Holt and Co. pp. 132, 139, 141. ISBN 978-0-8050-7512-0 – via Google Books.
  194. ^ a b Quammen D (October 1998). "Planet of Weeds" (PDF). Harper's Magazine. Retrieved 15 November 2012.
  195. ^ "Evolution imposes 'speed limit' on recovery after mass extinctions". ScienceDaily. 8 April 2019. Retrieved 7 September 2019.
  196. ^ Lehrmann DJ, Ramezani J, Bowring SA, Martin MW, Montgomery P, Enos P, et al. (December 2006). "Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China". Geology. 34 (12): 1053–1056. Bibcode:2006Geo....34.1053L. doi:10.1130/G22827A.1.
  197. ^ Sahney S, Benton MJ (April 2008). "Recovery from the most profound mass extinction of all time". Proceedings. Biological Sciences. 275 (1636): 759–765. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  198. ^ Sidor CA, Vilhena DA, Angielczyk KD, Huttenlocker AK, Nesbitt SJ, Peecook BR, et al. (May 2013). "Provincialization of terrestrial faunas following the end-Permian mass extinction". Proceedings of the National Academy of Sciences. 110 (20): 8129–8133. Bibcode:2013PNAS..110.8129S. doi:10.1073/pnas.1302323110. PMC 3657826. PMID 23630295.
  199. ^ Cascales-Miñana B, Cleal CJ (2011). "Plant fossil record and survival analyses". Lethaia. 45: 71–82. doi:10.1111/j.1502-3931.2011.00262.x.
  200. ^ Lowry, B. (2016) ‘You, Me and the Apocalypse’, Variety, 330(16), pp. 84-.
  201. ^ Andrews, R.G. (2019) ‘If We Blow Up an Asteroid, It Might Put Itself Back Together: Trilobites’, New York Times (Online).
  202. ^ Deep Impact. Roger Ebert. 8 May 1998. Retrieved 14 May 2024.

Further reading

External links