stringtranslate.com

Estrógeno

El estrógeno ( inglés británico : estrógeno ; ver diferencias ortográficas ) es una categoría de hormona sexual responsable del desarrollo y regulación del sistema reproductor femenino y las características sexuales secundarias . [1] [2] Hay tres estrógenos endógenos principales que tienen actividad hormonal estrogénica: estrona (E1), estradiol (E2) y estriol (E3). [1] [3] El estradiol, un estrano , es el más potente y prevalente. [1] Otro estrógeno llamado estetrol (E4) se produce solo durante el embarazo.

Los estrógenos se sintetizan en todos los vertebrados [4] y en algunos insectos [5] . Cuantitativamente, los estrógenos circulan en niveles más bajos que los andrógenos tanto en hombres como en mujeres [6 ]. Si bien los niveles de estrógeno son significativamente más bajos en los hombres que en las mujeres, los estrógenos tienen, no obstante, funciones fisiológicas importantes en los hombres [7] .

Al igual que todas las hormonas esteroides , los estrógenos se difunden fácilmente a través de la membrana celular . Una vez dentro de la célula, se unen a los receptores de estrógeno (RE) y los activan, los cuales a su vez modulan la expresión de muchos genes . [8] Además, los estrógenos se unen a los receptores de estrógeno de membrana de señalización rápida (REm), y los activan , [9] [10] como el GPER (GPR30). [11]

Además de su función como hormonas naturales, los estrógenos se utilizan como medicamentos , por ejemplo, en la terapia hormonal para la menopausia , la anticoncepción hormonal y la terapia hormonal feminizante para mujeres transgénero , personas intersexuales y personas no binarias .

Se han encontrado estrógenos sintéticos y naturales en el medio ambiente y se los conoce como xenoestrógenos . Los estrógenos se encuentran entre la amplia gama de compuestos disruptores endocrinos (EDC) y pueden causar problemas de salud y disfunción reproductiva tanto en la vida silvestre como en los seres humanos. [12] [13]

Tipos y ejemplos

Los cuatro principales estrógenos naturales que se producen en las mujeres son la estrona (E1), el estradiol (E2), el estriol (E3) y el estetrol (E4). El estradiol (E2) es el estrógeno predominante durante los años reproductivos tanto en términos de niveles séricos absolutos como en términos de actividad estrogénica. Durante la menopausia , la estrona es el estrógeno circulante predominante y durante el embarazo el estriol es el estrógeno circulante predominante en términos de niveles séricos. Administrado por inyección subcutánea en ratones, el estradiol es aproximadamente 10 veces más potente que la estrona y aproximadamente 100 veces más potente que el estriol. [14] Por lo tanto, el estradiol es el estrógeno más importante en mujeres no embarazadas que se encuentran entre las etapas de la menarquia y la menopausia de la vida. Sin embargo, durante el embarazo este papel cambia al estriol, y en las mujeres posmenopáusicas la estrona se convierte en la forma primaria de estrógeno en el cuerpo. Otro tipo de estrógeno, llamado estetrol (E4), se produce únicamente durante el embarazo. Todas las diferentes formas de estrógeno se sintetizan a partir de los andrógenos , específicamente la testosterona y la androstenediona , por la enzima aromatasa .

Los estrógenos endógenos menores, cuya biosíntesis no involucra a la aromatasa , incluyen 27-hidroxicolesterol , dehidroepiandrosterona (DHEA), 7-oxo-DHEA , 7α-hidroxi-DHEA , 16α-hidroxi-DHEA , 7β-hidroxiepiandrosterona , androstenediona (A4), androstenediol (A5), 3α-androstanediol y 3β-androstanediol . [15] [16] Algunos metabolitos de estrógeno, como los estrógenos catecol 2-hidroxiestradiol , 2-hidroxiestrona , 4-hidroxiestradiol y 4-hidroxiestrona , así como 16α-hidroxiestrona , también son estrógenos con diferentes grados de actividad. [17] La ​​importancia biológica de estos estrógenos menores no está del todo clara.

Función biológica

Rangos de referencia para el contenido sanguíneo de estradiol, el principal tipo de estrógeno, durante el ciclo menstrual [18]

Las acciones del estrógeno están mediadas por el receptor de estrógeno (RE), una proteína nuclear dimérica que se une al ADN y controla la expresión génica . Al igual que otras hormonas esteroides, el estrógeno ingresa pasivamente a la célula, donde se une al receptor de estrógeno y lo activa. El complejo estrógeno:RE se une a secuencias específicas de ADN llamadas elemento de respuesta hormonal para activar la transcripción de genes objetivo (en un estudio que utilizó una línea celular de cáncer de mama dependiente de estrógeno como modelo, se identificaron 89 de estos genes). [19] Dado que el estrógeno ingresa a todas las células, sus acciones dependen de la presencia del RE en la célula. El RE se expresa en tejidos específicos, incluidos el ovario, el útero y la mama. Los efectos metabólicos del estrógeno en mujeres posmenopáusicas se han relacionado con el polimorfismo genético del RE. [20]

Si bien los estrógenos están presentes tanto en hombres como en mujeres , suelen estar presentes en niveles significativamente más altos en las mujeres en edad reproductiva. Promueven el desarrollo de las características sexuales secundarias femeninas , como los senos , el oscurecimiento y agrandamiento de los pezones , [21] y el engrosamiento del endometrio y otros aspectos de la regulación del ciclo menstrual. En los hombres, el estrógeno regula ciertas funciones del sistema reproductivo importantes para la maduración de los espermatozoides [22] [23] [24] y puede ser necesario para una libido saludable . [25]

Resumen de acciones

Desarrollo puberal femenino

Los estrógenos son responsables del desarrollo de las características sexuales secundarias femeninas durante la pubertad , incluyendo el desarrollo de los senos , el ensanchamiento de las caderas y la distribución de la grasa femenina . Por el contrario, los andrógenos son responsables del crecimiento del vello púbico y corporal , así como del acné y del olor axilar .

Desarrollo de los senos

El estrógeno, junto con la hormona del crecimiento (GH) y su producto secretor, el factor de crecimiento similar a la insulina 1 (IGF-1), es fundamental para mediar el desarrollo mamario durante la pubertad , así como la maduración mamaria durante el embarazo en preparación para la lactancia y el amamantamiento . [48] [49] El estrógeno es principal y directamente responsable de inducir el componente ductal del desarrollo mamario, [50] [51] [52] así como de causar la deposición de grasa y el crecimiento del tejido conectivo . [50] [51] También está indirectamente involucrado en el componente lobuloalveolar, al aumentar la expresión del receptor de progesterona en los senos [50] [52] [53] e inducir la secreción de prolactina . [54] [55] Permitido por el estrógeno, la progesterona y la prolactina trabajan juntas para completar el desarrollo lobuloalveolar durante el embarazo. [51] [56]

Los andrógenos como la testosterona se oponen poderosamente a la acción del estrógeno en los senos, por ejemplo, reduciendo la expresión del receptor de estrógeno en ellos. [57] [58]

Sistema reproductor femenino

Los estrógenos son responsables de la maduración y el mantenimiento de la vagina y el útero , y también están involucrados en la función ovárica , como la maduración de los folículos ováricos . Además, los estrógenos juegan un papel importante en la regulación de la secreción de gonadotropinas . Por estas razones, los estrógenos son necesarios para la fertilidad femenina .

Neuroprotección y reparación del ADN

Los mecanismos de reparación del ADN regulados por estrógenos en el cerebro tienen efectos neuroprotectores. [59] El estrógeno regula la transcripción de los genes de reparación por escisión de bases del ADN , así como la translocación de las enzimas de reparación por escisión de bases entre diferentes compartimentos subcelulares.

Cerebro y comportamiento

Impulso sexual

Los estrógenos intervienen en la libido (deseo sexual) tanto en mujeres como en hombres.

Cognición

Las puntuaciones de memoria verbal se utilizan con frecuencia como una medida de cognición de nivel superior . Estas puntuaciones varían en proporción directa a los niveles de estrógeno a lo largo del ciclo menstrual, el embarazo y la menopausia. Además, los estrógenos cuando se administran poco después de la menopausia natural o quirúrgica previenen la disminución de la memoria verbal. Por el contrario, los estrógenos tienen poco efecto sobre la memoria verbal si se administran por primera vez años después de la menopausia. [60] Los estrógenos también tienen influencias positivas en otras medidas de la función cognitiva. [61] Sin embargo, el efecto de los estrógenos sobre la cognición no es uniformemente favorable y depende del momento de la dosis y del tipo de habilidad cognitiva que se mide. [62]

Los efectos protectores de los estrógenos sobre la cognición pueden estar mediados por los efectos antiinflamatorios del estrógeno en el cerebro. [63] Los estudios también han demostrado que el gen del alelo Met y el nivel de estrógeno median la eficiencia de las tareas de memoria de trabajo dependientes de la corteza prefrontal . [64] [65] Los investigadores han instado a que se realicen más investigaciones para arrojar luz sobre el papel del estrógeno y su potencial para mejorar la función cognitiva. [66]

Salud mental

Se considera que el estrógeno desempeña un papel importante en la salud mental de las mujeres . La retirada repentina de estrógenos, los estrógenos fluctuantes y los períodos de niveles bajos sostenidos de estrógenos se correlacionan con una disminución significativa del estado de ánimo. Se ha demostrado que la recuperación clínica de la depresión posparto , perimenopáusica y posmenopáusica es eficaz después de que los niveles de estrógeno se estabilizan y/o se restablecen. [67] [68] [69] La exacerbación menstrual (incluida la psicosis menstrual) generalmente se desencadena por niveles bajos de estrógenos, [70] y a menudo se confunde con el trastorno disfórico premenstrual . [71]

Las compulsiones en ratones de laboratorio macho, como las que padecen trastorno obsesivo-compulsivo (TOC), pueden estar causadas por niveles bajos de estrógeno. Cuando los niveles de estrógeno aumentaron a través del aumento de la actividad de la enzima aromatasa en ratones de laboratorio macho, los rituales del TOC disminuyeron drásticamente. Los niveles de proteína hipotalámica en el gen COMT se mejoran al aumentar los niveles de estrógeno, lo que se cree que hace que los ratones que mostraron rituales del TOC vuelvan a la actividad normal. En última instancia, se sospecha que la deficiencia de aromatasa está involucrada en la síntesis de estrógeno en humanos y tiene implicaciones terapéuticas en humanos que padecen trastorno obsesivo-compulsivo. [72]

Se ha demostrado que la aplicación local de estrógeno en el hipocampo de ratas inhibe la recaptación de serotonina . Por el contrario, se ha demostrado que la aplicación local de estrógeno bloquea la capacidad de la fluvoxamina para retardar la depuración de serotonina, lo que sugiere que las mismas vías que intervienen en la eficacia de los ISRS también pueden verse afectadas por componentes de las vías de señalización local de los estrógenos. [73]

Paternidad

Los estudios también han descubierto que los padres tenían niveles más bajos de cortisol y testosterona, pero niveles más altos de estrógeno (estradiol) que los no padres. [74]

Atracones alimentarios

El estrógeno puede desempeñar un papel en la supresión de los atracones . La terapia de reemplazo hormonal con estrógenos puede ser un posible tratamiento para los comportamientos de atracones en mujeres. Se ha demostrado que el reemplazo de estrógenos suprime los comportamientos de atracones en ratones hembra. [75] El mecanismo por el cual el reemplazo de estrógenos inhibe los atracones implica el reemplazo de neuronas serotoninérgicas (5-HT). Se ha descubierto que las mujeres que presentan comportamientos de atracones tienen una mayor captación cerebral de la neurona 5-HT y, por lo tanto, menos del neurotransmisor serotonina en el líquido cefalorraquídeo. [76] El estrógeno actúa para activar las neuronas 5-HT, lo que lleva a la supresión de los comportamientos de atracones. [75]

También se sugiere que existe una interacción entre los niveles hormonales y la alimentación en diferentes puntos del ciclo menstrual femenino . Las investigaciones han predicho un aumento de la alimentación emocional durante el flujo hormonal, que se caracteriza por altos niveles de progesterona y estradiol que ocurren durante la fase lútea media . Se plantea la hipótesis de que estos cambios ocurren debido a cambios cerebrales a lo largo del ciclo menstrual que probablemente sean un efecto genómico de las hormonas. Estos efectos producen cambios en el ciclo menstrual, que dan lugar a la liberación de hormonas que conducen a cambios de comportamiento, en particular atracones y alimentación emocional. Estos ocurren especialmente de forma destacada entre las mujeres que son genéticamente vulnerables a los fenotipos de atracones. [77]

Los atracones se asocian con una disminución de estradiol y un aumento de progesterona. [78] Klump et al. [79] La progesterona puede moderar los efectos de un nivel bajo de estradiol (como durante una conducta alimentaria desregulada), pero esto puede ser cierto solo en mujeres que han tenido episodios de atracones (EA) diagnosticados clínicamente. La alimentación desregulada está más fuertemente asociada con dichas hormonas ováricas en mujeres con EA que en mujeres sin EA. [79]

La implantación de pellets de 17β-estradiol en ratones ovariectomizados redujo significativamente las conductas de atracones y las inyecciones de GLP-1 en ratones ovariectomizados disminuyeron las conductas de atracones. [75]

Las asociaciones entre los atracones, la fase del ciclo menstrual y las hormonas ováricas se correlacionaron. [78] [80] [81]

Masculinización en roedores

En los roedores, los estrógenos (que se aromatizan localmente a partir de los andrógenos en el cerebro) desempeñan un papel importante en la diferenciación psicosexual, por ejemplo, al masculinizar el comportamiento territorial; [82] lo mismo no es cierto en los seres humanos. [83] En los seres humanos, los efectos masculinizantes de los andrógenos prenatales sobre el comportamiento (y otros tejidos, con la posible excepción de los efectos sobre los huesos) parecen actuar exclusivamente a través del receptor de andrógenos. [84] En consecuencia, se ha cuestionado la utilidad de los modelos de roedores para estudiar la diferenciación psicosexual humana. [85]

Sistema esquelético

Los estrógenos son responsables tanto del estirón puberal, que provoca una aceleración del crecimiento lineal, como del cierre epifisario , que limita la altura y la longitud de las extremidades , tanto en mujeres como en hombres. Además, los estrógenos son responsables de la maduración ósea y del mantenimiento de la densidad mineral ósea a lo largo de la vida. Debido al hipoestrogenismo, el riesgo de osteoporosis aumenta durante la menopausia .

Sistema cardiovascular

Las mujeres se ven menos afectadas por las enfermedades cardíacas debido a la acción vasculoprotectora del estrógeno, que ayuda a prevenir la aterosclerosis. [86] También ayuda a mantener el delicado equilibrio entre la lucha contra las infecciones y la protección de las arterias contra daños, reduciendo así el riesgo de enfermedades cardiovasculares. [87] Durante el embarazo , los altos niveles de estrógenos aumentan la coagulación y el riesgo de tromboembolia venosa . Se ha demostrado que el estrógeno regula positivamente la hormona peptídica adropina . [35]

Sistema inmunitario

El efecto del estrógeno sobre el sistema inmunológico se describe en general como favorable a Th2 , en lugar de supresor, como es el caso del efecto de la hormona sexual masculina, la testosterona. [89] De hecho, las mujeres responden mejor a las vacunas , las infecciones y generalmente tienen menos probabilidades de desarrollar cáncer , la contrapartida de esto es que tienen más probabilidades de desarrollar una enfermedad autoinmune . [90] El cambio de Th2 se manifiesta en una disminución de la inmunidad celular y el aumento de la inmunidad humoral ( producción de anticuerpos ) la cambia de celular a humoral al regular negativamente la inmunidad mediada por células y mejorar la respuesta inmune Th2 al estimular la producción de IL-4 y la diferenciación Th2. [89] [91] Las respuestas inmunes de tipo 1 y tipo 17 se regulan negativamente, probablemente debido al menos parcialmente a IL-4 , que inhibe Th1. El efecto del estrógeno sobre los tipos de células de diferentes células inmunes está en línea con su sesgo Th2. La actividad de los basófilos , eosinófilos , macrófagos M2 y linfocitos B se ve aumentada, mientras que la actividad de las células NK se ve disminuida. Las células dendríticas convencionales están sesgadas hacia Th2 bajo la influencia del estrógeno, mientras que las células dendríticas plasmocitoides, actores clave en la defensa antiviral, han aumentado la secreción de IFN-g . [91] El estrógeno también influye en las células B al aumentar su supervivencia, proliferación, diferenciación y función, lo que se corresponde con un mayor recuento de anticuerpos y células B generalmente detectado en mujeres. [92]

A nivel molecular, el estrógeno induce los efectos mencionados anteriormente sobre la célula al actuar sobre receptores intracelulares denominados ER α y ER β, que al unirse forman homo o heterodímeros. Los objetivos genéticos y no genéticos de los receptores difieren entre homo y heterodímeros. [93] La unión de estos receptores les permite translocarse al núcleo y actuar como factores de transcripción ya sea uniendo elementos de respuesta al estrógeno (ERE) en el ADN o uniendo el ADN junto con otros factores de transcripción, por ejemplo, Nf-kB o AP-1 , los cuales dan como resultado el reclutamiento de la ARN polimerasa y una mayor remodelación de la cromatina. [93] También se documentó una respuesta no transcripcional a la estimulación con estrógenos (denominada señalización de esteroides iniciada por membrana, MISS). Esta vía estimula las vías ERK y PI3K/AKT, que se sabe que aumentan la proliferación celular y afectan la remodelación de la cromatina. [93]

Condiciones asociadas

Los investigadores han implicado a los estrógenos en varias condiciones dependientes de estrógenos , como el cáncer de mama ER-positivo , así como una serie de condiciones genéticas que involucran la señalización o el metabolismo de los estrógenos, como el síndrome de insensibilidad a los estrógenos , la deficiencia de aromatasa y el síndrome de exceso de aromatasa .

Los niveles altos de estrógeno pueden amplificar las respuestas de las hormonas del estrés en situaciones estresantes. [94]

Bioquímica

Biosíntesis

Esteroidogénesis , que muestra los estrógenos en la parte inferior derecha como en el triángulo rosa [95]

Los estrógenos, en las mujeres, son producidos principalmente por los ovarios y, durante el embarazo, por la placenta . [96] La hormona folículo estimulante (FSH) estimula la producción ovárica de estrógenos por las células de la granulosa de los folículos ováricos y los cuerpos lúteos . Algunos estrógenos también son producidos en cantidades más pequeñas por otros tejidos como el hígado , el páncreas , los huesos , las glándulas suprarrenales , la piel , el cerebro , el tejido adiposo , [97] y las mamas . [98] Estas fuentes secundarias de estrógenos son especialmente importantes en las mujeres posmenopáusicas. [99] La vía de la biosíntesis de estrógenos en los tejidos extragonadales es diferente. Estos tejidos no pueden sintetizar esteroides C19 y, por lo tanto, dependen de los suministros de C19 de otros tejidos [99] y del nivel de aromatasa. [100]

En las mujeres, la síntesis de estrógenos comienza en las células de la teca interna del ovario, mediante la síntesis de androstenediona a partir del colesterol . La androstenediona es una sustancia de actividad androgénica débil que sirve predominantemente como precursor de andrógenos más potentes, como la testosterona y el estrógeno. Este compuesto atraviesa la membrana basal hacia las células de la granulosa circundantes, donde se convierte inmediatamente en estrona o en testosterona y luego estradiol en un paso adicional. La conversión de androstenediona en testosterona es catalizada por la 17β-hidroxiesteroide deshidrogenasa (17β-HSD), mientras que la conversión de androstenediona y testosterona en estrona y estradiol, respectivamente, es catalizada por la aromatasa, enzimas que se expresan en las células de la granulosa. Por el contrario, las células de la granulosa carecen de 17α-hidroxilasa y 17,20-liasa , mientras que las células de la teca expresan estas enzimas y 17β-HSD, pero carecen de aromatasa. Por lo tanto, tanto las células de la granulosa como las de la teca son esenciales para la producción de estrógeno en los ovarios.

Los niveles de estrógeno varían a lo largo del ciclo menstrual , y alcanzan su punto máximo cerca del final de la fase folicular, justo antes de la ovulación .

Tenga en cuenta que en los hombres, el estrógeno también es producido por las células de Sertoli cuando la FSH se une a sus receptores de FSH.

Distribución

Los estrógenos son proteínas plasmáticas unidas a la albúmina y/o a la globulina transportadora de hormonas sexuales en la circulación.

Metabolismo

Los estrógenos se metabolizan por hidroxilación mediante enzimas del citocromo P450 como CYP1A1 y CYP3A4 y por conjugación mediante sulfotransferasas de estrógeno ( sulfatación ) y UDP-glucuroniltransferasas ( glucuronidación ). Además, el estradiol es deshidrogenado por la 17β-hidroxiesteroide deshidrogenasa en el estrógeno mucho menos potente estrona. Estas reacciones ocurren principalmente en el hígado , pero también en otros tejidos .


Excreción

Los estrógenos se inactivan principalmente en los riñones y el hígado y se excretan a través del tracto gastrointestinal [101] en forma de conjugados , que se encuentran en las heces , la bilis y la orina . [102]

Uso médico

Los estrógenos se utilizan como medicamentos , principalmente en la anticoncepción hormonal , la terapia de reemplazo hormonal , [103] y para tratar la disforia de género en mujeres transgénero y otras personas transfemeninas como parte de la terapia hormonal feminizante. [104]

Química

Las hormonas esteroides estrógeno son esteroides estranos .

Historia

En 1929, Adolf Butenandt y Edward Adelbert Doisy aislaron y purificaron de forma independiente la estrona, el primer estrógeno descubierto. [105] Luego, se descubrieron el estriol y el estradiol en 1930 y 1933, respectivamente. Poco después de su descubrimiento, se introdujeron los estrógenos, tanto naturales como sintéticos, para uso médico. Los ejemplos incluyen glucurónido de estriol ( Emmenin , Progynon ), benzoato de estradiol , estrógenos conjugados ( Premarin ), dietilestilbestrol y etinilestradiol .

La palabra estrógeno deriva del griego antiguo . Se deriva de "oestros" [106] (un estado periódico de actividad sexual en mamíferos hembras) y genos (generación). [106] Se publicó por primera vez a principios de la década de 1920 y se hizo referencia a ella como "oestrin". [107] Con los años, el inglés americano adaptó la ortografía de estrógeno para que se ajustara a su pronunciación fonética.

Sociedad y cultura

Etimología

El nombre estrógeno se deriva del griego οἶστρος ( oîstros ), que literalmente significa "brío" o "inspiración", pero en sentido figurado pasión o deseo sexual, [108] y el sufijo -gen , que significa "productor de".

Ambiente

Se han identificado en el medio ambiente una gama de sustancias sintéticas y naturales que poseen actividad estrogénica y se denominan xenoestrógenos . [109]

Los estrógenos se encuentran entre la amplia gama de compuestos disruptores endocrinos (EDC) porque tienen una alta potencia estrogénica. Cuando un EDC se abre paso al medio ambiente, puede causar disfunción reproductiva masculina en la vida silvestre y los seres humanos. [12] [13] El estrógeno excretado por los animales de granja se abre paso a los sistemas de agua dulce. [110] [111] Durante el período de germinación de la reproducción, los peces están expuestos a niveles bajos de estrógeno que pueden causar disfunción reproductiva en los peces machos. [112] [113]

Productos cosméticos

Algunos champús para el cabello que se comercializan contienen estrógenos y extractos de placenta; otros contienen fitoestrógenos . En 1998, se informaron casos de cuatro niñas afroamericanas prepúberes que desarrollaron senos después de la exposición a estos champús. [114] En 1993, la FDA determinó que no todos los productos farmacéuticos que contienen hormonas de aplicación tópica y que se venden sin receta médica para uso humano son generalmente reconocidos como seguros y efectivos y que están mal etiquetados. Una norma propuesta que acompaña a la norma trata sobre los cosméticos y concluye que cualquier uso de estrógenos naturales en un producto cosmético convierte al producto en un nuevo fármaco no aprobado y que cualquier cosmético que utilice el término "hormona" en el texto de su etiqueta o en su declaración de ingredientes hace una afirmación implícita sobre el fármaco, lo que somete a dicho producto a una acción regulatoria. [115]

Además de considerarse medicamentos mal etiquetados, los productos que afirman contener extracto de placenta también pueden considerarse cosméticos mal etiquetados si el extracto se ha preparado a partir de placentas de las que se han extraído las hormonas y otras sustancias biológicamente activas y la sustancia extraída consiste principalmente en proteínas. La FDA recomienda que esta sustancia se identifique con un nombre distinto de "extracto de placenta" y que se describa su composición con mayor precisión porque los consumidores asocian el nombre "extracto de placenta" con un uso terapéutico de alguna actividad biológica. [115]

Véase también

Referencias

  1. ^ abc Huether SE, McCance KL (2019). Entendiendo la fisiopatología. Elsevier Health Sciences. pág. 767. ISBN 978-0-32-367281-8Estrógeno es un término genérico para cualquiera de las tres hormonas similares derivadas del colesterol: estradiol, estrona y estriol.
  2. ^ Satoskar RS, Rege N, Bhandarkar SD (2017). Farmacología y farmacoterapia. Elsevier Health Sciences. pág. 943. ISBN 978-8-13-124941-3Los estrógenos naturales son esteroides. Sin embargo, la actividad estrogénica típica también se manifiesta por sustancias químicas que no son esteroides. Por lo tanto, el término "estrógeno" se utiliza como término genérico para describir todos los compuestos que tienen actividad estrogénica .
  3. ^ Delgado BJ, Lopez-Ojeda W (20 de diciembre de 2021). "Estrógeno". StatPearls [Internet] . StatPearls Publishing. PMID  30855848. El estrógeno es una hormona esteroide asociada con los órganos reproductores femeninos y es responsable del desarrollo de las características sexuales femeninas. El estrógeno a menudo se conoce como estrona, estradiol y estriol. ... El estrógeno sintético también está disponible para uso clínico, diseñado para aumentar la absorción y la eficacia al alterar la estructura química del estrógeno para la administración tópica u oral. Los estrógenos esteroides sintéticos incluyen etinilestradiol, valerato de estradiol, estropipato, estrógeno esterificado conjugado y quinestrol.
  4. ^ Ryan KJ (agosto de 1982). "Bioquímica de la aromatasa: importancia para la fisiología reproductiva femenina". Cancer Research . 42 (8 Suppl): 3342s–3344s. PMID  7083198.
  5. ^ Mechoulam R, Brueggemeier RW, Denlinger DL (septiembre de 2005). "Estrógenos en insectos". Ciencias de la vida celular y molecular . 40 (9): 942–944. doi :10.1007/BF01946450. S2CID  31950471.
  6. ^ Burger HG (abril de 2002). "Producción de andrógenos en mujeres". Fertility and Sterility . 77 (Supl 4): S3–S5. doi : 10.1016/S0015-0282(02)02985-0 . PMID  12007895.
  7. ^ Lombardi G, Zarrilli S, Colao A, Paesano L, Di Somma C, Rossi F, et al. (junio de 2001). "Estrógenos y salud en el varón". Endocrinología Molecular y Celular . 178 (1–2): 51–55. doi :10.1016/S0303-7207(01)00420-8. PMID  11403894. S2CID  36834775.
  8. ^ Whitehead SA, Nussey S (2001). Endocrinología: un enfoque integrado. Oxford: BIOS: Taylor & Francis. ISBN 978-1-85996-252-7. Número de identificación personal  20821847.
  9. ^ Soltysik K, Czekaj P (abril de 2013). "Receptores de estrógeno de membrana: ¿son una forma alternativa de acción del estrógeno?". Journal of Physiology and Pharmacology . 64 (2): 129–142. PMID  23756388.
  10. ^ Micevych PE, Kelly MJ (2012). "Regulación de la función hipotalámica por el receptor de estrógeno de membrana". Neuroendocrinología . 96 (2): 103–110. doi :10.1159/000338400. PMC 3496782 . PMID  22538318. 
  11. ^ Prossnitz ER, Arterburn JB, Sklar LA (February 2007). "GPR30: A G protein-coupled receptor for estrogen". Molecular and Cellular Endocrinology. 265–266: 138–142. doi:10.1016/j.mce.2006.12.010. PMC 1847610. PMID 17222505.
  12. ^ a b Wang S, Huang W, Fang G, Zhang Y, Qiao H (2008). "Analysis of steroidal estrogen residues in food and environmental samples". International Journal of Environmental Analytical Chemistry. 88 (1): 1–25. Bibcode:2008IJEAC..88....1W. doi:10.1080/03067310701597293. S2CID 93975613.
  13. ^ a b Korach KD (1998). Reproductive and developmental toxicology. New York: Marcel Dekker. ISBN 0-585-15807-X. OCLC 44957536.
  14. ^ A. Labhart (6 December 2012). Clinical Endocrinology: Theory and Practice. Springer Science & Business Media. pp. 548–. ISBN 978-3-642-96158-8.
  15. ^ Baker ME (March 2013). "What are the physiological estrogens?". Steroids. 78 (3): 337–340. doi:10.1016/j.steroids.2012.12.011. PMID 23313336. S2CID 11803629.
  16. ^ Miller KK, Al-Rayyan N, Ivanova MM, Mattingly KA, Ripp SL, Klinge CM, et al. (January 2013). "DHEA metabolites activate estrogen receptors alpha and beta". Steroids. 78 (1): 15–25. doi:10.1016/j.steroids.2012.10.002. PMC 3529809. PMID 23123738.
  17. ^ Bhavnani BR, Nisker JA, Martin J, Aletebi F, Watson L, Milne JK (2000). "Comparison of pharmacokinetics of a conjugated equine estrogen preparation (premarin) and a synthetic mixture of estrogens (C.E.S.) in postmenopausal women". Journal of the Society for Gynecologic Investigation. 7 (3): 175–183. doi:10.1016/s1071-5576(00)00049-6. PMID 10865186.
  18. ^ Häggström M (2014). "Reference ranges for estradiol, progesterone, luteinizing hormone and follicle-stimulating hormone during the menstrual cycle". WikiJournal of Medicine. 1 (1). doi:10.15347/wjm/2014.001. ISSN 2002-4436.
  19. ^ Lin CY, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, et al. (2004). "Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells". Genome Biology. 5 (9): R66. doi:10.1186/gb-2004-5-9-r66. PMC 522873. PMID 15345050.
  20. ^ Darabi M, Ani M, Panjehpour M, Rabbani M, Movahedian A, Zarean E (2011). "Effect of estrogen receptor β A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy". Genetic Testing and Molecular Biomarkers. 15 (1–2): 11–15. doi:10.1089/gtmb.2010.0106. PMID 21117950.
  21. ^ Lauwers J, Shinskie D (2004). Counseling the Nursing Mother: A Lactation Consultant's Guide. Jones & Bartlett Learning, LLC. p. 93. ISBN 978-0-7637-2765-9. Retrieved 12 October 2023.
  22. ^ Raloff J (6 December 1997). "Science News Online (12/6/97): Estrogen's Emerging Manly Alter Ego". Science News. Retrieved 4 March 2008.
  23. ^ Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, et al. (December 1997). "A role for oestrogens in the male reproductive system". Nature. 390 (6659): 509–512. Bibcode:1997Natur.390..509H. doi:10.1038/37352. PMC 5719867. PMID 9393999.
  24. ^ "Estrogen Linked To Sperm Count, Male Fertility". Science Blog. Archived from the original on 7 May 2007. Retrieved 4 March 2008.
  25. ^ Hill RA, Pompolo S, Jones ME, Simpson ER, Boon WC (December 2004). "Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice". Molecular and Cellular Neurosciences. 27 (4): 466–476. doi:10.1016/j.mcn.2004.04.012. PMID 15555924. S2CID 25280077.
  26. ^ Chidi-Ogbolu N, Baar K (2018). "Effect of Estrogen on Musculoskeletal Performance and Injury Risk". Frontiers in Physiology. 9: 1834. doi:10.3389/fphys.2018.01834. PMC 6341375. PMID 30697162.
  27. ^ Lowe DA, Baltgalvis KA, Greising SM (April 2010). "Mechanisms behind estrogen's beneficial effect on muscle strength in females". Exercise and Sport Sciences Reviews. 38 (2): 61–67. doi:10.1097/JES.0b013e3181d496bc. PMC 2873087. PMID 20335737.
  28. ^ Max SR (December 1984). "Androgen-estrogen synergy in rat levator ani muscle: glucose-6-phosphate dehydrogenase". Molecular and Cellular Endocrinology. 38 (2–3): 103–107. doi:10.1016/0303-7207(84)90108-4. PMID 6510548. S2CID 24198956.
  29. ^ Koot RW, Amelink GJ, Blankenstein MA, Bär PR (1991). "Tamoxifen and oestrogen both protect the rat muscle against physiological damage". The Journal of Steroid Biochemistry and Molecular Biology. 40 (4–6): 689–695. doi:10.1016/0960-0760(91)90292-d. PMID 1958566. S2CID 44446541.
  30. ^ Haizlip KM, Harrison BC, Leinwand LA (January 2015). "Sex-based differences in skeletal muscle kinetics and fiber-type composition". Physiology. 30 (1): 30–39. doi:10.1152/physiol.00024.2014. PMC 4285578. PMID 25559153. "Supplementation with estrogen increases the type-IIX percentage composition in the plantaris back to 42%. (70)"
  31. ^ Frank AP, de Souza Santos R, Palmer BF, Clegg DJ (October 2019). "Determinants of body fat distribution in humans may provide insight about obesity-related health risks". Journal of Lipid Research. 60 (10): 1710–1719. doi:10.1194/jlr.R086975. PMC 6795075. PMID 30097511.
  32. ^ Brown LM, Gent L, Davis K, Clegg DJ (September 2010). "Metabolic impact of sex hormones on obesity". Brain Research. 1350: 77–85. doi:10.1016/j.brainres.2010.04.056. PMC 2924463. PMID 20441773.
  33. ^ Janssen I, Powell LH, Kazlauskaite R, Dugan SA (March 2010). "Testosterone and visceral fat in midlife women: the Study of Women's Health Across the Nation (SWAN) fat patterning study". Obesity. 18 (3): 604–610. doi:10.1038/oby.2009.251. PMC 2866448. PMID 19696765.
  34. ^ Rubinow KB (2017). "Estrogens and Body Weight Regulation in Men". Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Advances in Experimental Medicine and Biology. Vol. 1043. Springer. pp. 285–313. doi:10.1007/978-3-319-70178-3_14. ISBN 978-3-319-70177-6. PMC 5835337. PMID 29224100.
  35. ^ a b Stokar J, Gurt I, Cohen-Kfir E, Yakubovsky O, Hallak N, Benyamini H, et al. (June 2022). "Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice". Molecular Metabolism. 60: 101482. doi:10.1016/j.molmet.2022.101482. PMC 9044006. PMID 35364299.
  36. ^ Frysh P. "Reasons Why Your Face Looks Swollen". WebMD.
  37. ^ Stachenfeld NS (July 2008). "Sex hormone effects on body fluid regulation". Exercise and Sport Sciences Reviews. 36 (3): 152–159. doi:10.1097/JES.0b013e31817be928. PMC 2849969. PMID 18580296.
  38. ^ Pawlina W (2023). Histology: A Text and Atlas: With Correlated Cell and Molecular Biology. Wolters Kluwer Health. p. 1481. ISBN 978-1-9751-8152-9. Retrieved 12 October 2023.
  39. ^ Greenberg J, Bruess C, Oswalt S (2014). "Conception, Pregnancy, and Birth". Exploring the Dimensions of Human Sexuality. Jones & Bartlett Learning. p. 248. ISBN 978-1-4496-4851-0. Retrieved 12 October 2023.
  40. ^ "Researchers discover genetic causes of higher melanoma risk in men". ScienceDaily.
  41. ^ Hernando B, Ibarrola-Villava M, Fernandez LP, Peña-Chilet M, Llorca-Cardeñosa M, Oltra SS, et al. (18 March 2016). "Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin". Biology of Sex Differences. 7 (1): 17. doi:10.1186/s13293-016-0070-1. PMC 4797181. PMID 26998216. "The results of this study suggest that there are indeed sex-specific genetic effects in human pigmentation, with larger effects for darker pigmentation in females compared to males. A plausible cause might be the differentially expressed melanogenic genes in females due to higher oestrogen levels. These sex-specific genetic effects would help explain the presence of darker eye and skin pigmentation in females, as well as the well-known higher melanoma risk displayed by males."
  42. ^ Massaro D, Massaro GD (December 2004). "Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice" (PDF). American Journal of Physiology. Lung Cellular and Molecular Physiology. 287 (6): L1154–L1159. doi:10.1152/ajplung.00228.2004. PMID 15298854. S2CID 24642944. Archived from the original (PDF) on 25 February 2019.
  43. ^ Christensen A, Bentley GE, Cabrera R, Ortega HH, Perfito N, Wu TJ, et al. (July 2012). "Hormonal regulation of female reproduction". Hormone and Metabolic Research. 44 (8): 587–591. doi:10.1055/s-0032-1306301. PMC 3647363. PMID 22438212.
  44. ^ Handa RJ, Ogawa S, Wang JM, Herbison AE (January 2012). "Roles for oestrogen receptor β in adult brain function". Journal of Neuroendocrinology. 24 (1): 160–173. doi:10.1111/j.1365-2826.2011.02206.x. PMC 3348521. PMID 21851428.
  45. ^ Kow LM, Pfaff DW (May 1998). "Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system". Behavioural Brain Research. 92 (2): 169–180. doi:10.1016/S0166-4328(97)00189-7. PMID 9638959. S2CID 28276218.
  46. ^ Warnock JK, Swanson SG, Borel RW, Zipfel LM, Brennan JJ (2005). "Combined esterified estrogens and methyltestosterone versus esterified estrogens alone in the treatment of loss of sexual interest in surgically menopausal women". Menopause. 12 (4): 374–384. doi:10.1097/01.GME.0000153933.50860.FD. PMID 16037752. S2CID 24557071.
  47. ^ Heiman JR, Rupp H, Janssen E, Newhouse SK, Brauer M, Laan E (May 2011). "Sexual desire, sexual arousal and hormonal differences in premenopausal US and Dutch women with and without low sexual desire". Hormones and Behavior. 59 (5): 772–779. doi:10.1016/j.yhbeh.2011.03.013. PMID 21514299. S2CID 20807391.
  48. ^ Brisken C, O'Malley B (December 2010). "Hormone action in the mammary gland". Cold Spring Harbor Perspectives in Biology. 2 (12): a003178. doi:10.1101/cshperspect.a003178. PMC 2982168. PMID 20739412.
  49. ^ Kleinberg DL (February 1998). "Role of IGF-I in normal mammary development". Breast Cancer Research and Treatment. 47 (3): 201–208. doi:10.1023/a:1005998832636. PMID 9516076. S2CID 30440069.
  50. ^ a b c Johnson LR (2003). Essential Medical Physiology. Academic Press. p. 770. ISBN 978-0-12-387584-6.
  51. ^ a b c Norman AW, Henry HL (30 July 2014). Hormones. Academic Press. p. 311. ISBN 978-0-08-091906-5.
  52. ^ a b Coad J, Dunstall M (2011). Anatomy and Physiology for Midwives, with Pageburst online access,3: Anatomy and Physiology for Midwives. Elsevier Health Sciences. p. 413. ISBN 978-0-7020-3489-3.
  53. ^ Haslam SZ, Osuch JR (1 January 2006). Hormones and Breast Cancer in Post-Menopausal Women. IOS Press. p. 69. ISBN 978-1-58603-653-9.
  54. ^ Silbernagl S, Despopoulos A (1 January 2011). Color Atlas of Physiology. Thieme. pp. 305–. ISBN 978-3-13-149521-1.
  55. ^ Fadem B (2007). High-yield Comprehensive USMLE Step 1 Review. Lippincott Williams & Wilkins. pp. 445–. ISBN 978-0-7817-7427-7.
  56. ^ Blackburn S (14 April 2014). Maternal, Fetal, & Neonatal Physiology. Elsevier Health Sciences. pp. 146–. ISBN 978-0-323-29296-2.
  57. ^ Strauss JF, Barbieri RL (13 September 2013). Yen and Jaffe's Reproductive Endocrinology. Elsevier Health Sciences. pp. 236–. ISBN 978-1-4557-2758-2.
  58. ^ Wilson CB, Nizet V, Maldonado Y, Remington JS, Klein JO (24 February 2015). Remington and Klein's Infectious Diseases of the Fetus and Newborn Infant. Elsevier Health Sciences. pp. 190–. ISBN 978-0-323-24147-2.
  59. ^ Zárate S, Stevnsner T, Gredilla R (2017). "El papel del estrógeno y otras hormonas sexuales en el envejecimiento cerebral. Neuroprotección y reparación del ADN". Frontiers in Aging Neuroscience . 9 : 430. doi : 10.3389/fnagi.2017.00430 . PMC 5743731 . PMID  29311911. 
  60. ^ Sherwin BB (febrero de 2012). "Estrógeno y funcionamiento cognitivo en mujeres: lecciones que hemos aprendido". Neurociencia del comportamiento . 126 (1): 123–127. doi :10.1037/a0025539. PMC 4838456 . PMID  22004260. 
  61. ^ Hara Y, Waters EM, McEwen BS, Morrison JH (julio de 2015). "Efectos del estrógeno en la salud cognitiva y sináptica a lo largo de la vida". Physiological Reviews . 95 (3): 785–807. doi :10.1152/physrev.00036.2014. PMC 4491541 . PMID  26109339. 
  62. ^ Korol DL, Pisani SL (agosto de 2015). "Estrógenos y cognición: ¿amigos o enemigos?: Una evaluación de los efectos opuestos de los estrógenos en el aprendizaje y la memoria". Hormones and Behavior . 74 : 105–115. doi :10.1016/j.yhbeh.2015.06.017. PMC 4573330 . PMID  26149525. 
  63. ^ Au A, Feher A, McPhee L, Jessa A, Oh S, Einstein G (enero de 2016). "Estrógenos, inflamación y cognición". Frontiers in Neuroendocrinology . 40 : 87–100. doi : 10.1016/j.yfrne.2016.01.002 . PMID  26774208.
  64. ^ Jacobs E, D'Esposito M (abril de 2011). "El estrógeno moldea los procesos cognitivos dependientes de la dopamina: implicaciones para la salud de la mujer". The Journal of Neuroscience . 31 (14): 5286–5293. doi :10.1523/JNEUROSCI.6394-10.2011. PMC 3089976 . PMID  21471363. 
  65. ^ Colzato LS, Hommel B (1 de enero de 2014). "Los efectos del estrógeno en las funciones cognitivas de orden superior en mujeres humanas no estresadas pueden depender de la variación individual en los niveles basales de dopamina". Frontiers in Neuroscience . 8 : 65. doi : 10.3389/fnins.2014.00065 . PMC 3985021 . PMID  24778605. 
  66. ^ Hogervorst E (marzo de 2013). "Estrógeno y cerebro: ¿el tratamiento con estrógenos mejora la función cognitiva?". Menopause International . 19 (1): 6–19. doi :10.1177/1754045312473873. PMID  27951525. S2CID  10122688.
  67. ^ Douma SL, Husband C, O'Donnell ME, Barwin BN, Woodend AK (2005). "Trastornos del estado de ánimo relacionados con los estrógenos: factores del ciclo de vida reproductivo". ANS. Avances en la ciencia de la enfermería . 28 (4): 364–375. doi :10.1097/00012272-200510000-00008. PMID  16292022. S2CID  9172877.
  68. ^ Osterlund MK, Witt MR, Gustafsson JA (diciembre de 2005). "Acción del estrógeno en trastornos neurodegenerativos y del estado de ánimo: compuestos estrogénicos con propiedades selectivas: la próxima generación de terapias". Endocrine . 28 (3): 235–242. doi :10.1385/ENDO:28:3:235. PMID  16388113. S2CID  8205014.
  69. ^ Lasiuk GC, Hegadoren KM (octubre de 2007). "Los efectos del estradiol en los sistemas serotoninérgicos centrales y su relación con el estado de ánimo en las mujeres". Investigación biológica para enfermería . 9 (2): 147–160. doi :10.1177/1099800407305600. PMID  17909167. S2CID  37965502.
  70. ^ Grigoriadis S, Seeman MV (junio de 2002). "El papel del estrógeno en la esquizofrenia: implicaciones para las pautas de práctica de la esquizofrenia para mujeres". Revista canadiense de psiquiatría . 47 (5): 437–442. doi : 10.1177/070674370204700504 . PMID  12085678.
  71. ^ "TDPM/SPM". Centro de Salud Mental de la Mujer del Hospital General de Massachusetts . Consultado el 12 de enero de 2019 .
  72. ^ Hill RA, McInnes KJ, Gong EC, Jones ME, Simpson ER, Boon WC (febrero de 2007). "Los ratones machos con deficiencia de estrógeno desarrollan un comportamiento compulsivo". Psiquiatría biológica . 61 (3): 359–366. doi :10.1016/j.biopsych.2006.01.012. PMID  16566897. S2CID  22669945.
  73. ^ Benmansour S, Weaver RS, Barton AK, Adeniji OS, Frazer A (abril de 2012). "Comparación de los efectos del estradiol y la progesterona en la función serotoninérgica". Psiquiatría biológica . 71 (7): 633–641. doi :10.1016/j.biopsych.2011.11.023. PMC 3307822 . PMID  22225849. 
  74. ^ Berg SJ, Wynne-Edwards KE (June 2001). "Changes in testosterone, cortisol, and estradiol levels in men becoming fathers". Mayo Clinic Proceedings. 76 (6): 582–592. doi:10.4065/76.6.582. PMID 11393496.
  75. ^ a b c Cao X, Xu P, Oyola MG, Xia Y, Yan X, Saito K, et al. (October 2014). "Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice". The Journal of Clinical Investigation. 124 (10): 4351–4362. doi:10.1172/JCI74726. PMC 4191033. PMID 25157819.
  76. ^ Jimerson DC, Lesem MD, Kaye WH, Hegg AP, Brewerton TD (September 1990). "Eating disorders and depression: is there a serotonin connection?". Biological Psychiatry. 28 (5): 443–454. doi:10.1016/0006-3223(90)90412-u. PMID 2207221. S2CID 31058047.
  77. ^ Klump KL, Keel PK, Racine SE, Burt SA, Burt AS, Neale M, et al. (February 2013). "The interactive effects of estrogen and progesterone on changes in emotional eating across the menstrual cycle". Journal of Abnormal Psychology. 122 (1): 131–137. doi:10.1037/a0029524. PMC 3570621. PMID 22889242.
  78. ^ a b Edler C, Lipson SF, Keel PK (January 2007). "Ovarian hormones and binge eating in bulimia nervosa". Psychological Medicine. 37 (1): 131–141. doi:10.1017/S0033291706008956. PMID 17038206. S2CID 36609028.
  79. ^ a b Klump KL, Racine SE, Hildebrandt B, Burt SA, Neale M, Sisk CL, et al. (September 2014). "Ovarian Hormone Influences on Dysregulated Eating: A Comparison of Associations in Women with versus without Binge Episodes". Clinical Psychological Science. 2 (4): 545–559. doi:10.1177/2167702614521794. PMC 4203460. PMID 25343062.
  80. ^ Klump KL, Keel PK, Culbert KM, Edler C (December 2008). "Ovarian hormones and binge eating: exploring associations in community samples". Psychological Medicine. 38 (12): 1749–1757. doi:10.1017/S0033291708002997. PMC 2885896. PMID 18307829.
  81. ^ Lester NA, Keel PK, Lipson SF (January 2003). "Symptom fluctuation in bulimia nervosa: relation to menstrual-cycle phase and cortisol levels". Psychological Medicine. 33 (1): 51–60. doi:10.1017/s0033291702006815. PMID 12537036. S2CID 21497515.
  82. ^ Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, Honda S, et al. (October 2009). "Estrogen masculinizes neural pathways and sex-specific behaviors". Cell. 139 (1): 61–72. doi:10.1016/j.cell.2009.07.036. PMC 2851224. PMID 19804754.
  83. ^ Rochira V, Carani C (October 2009). "Aromatase deficiency in men: a clinical perspective". Nature Reviews. Endocrinology. 5 (10): 559–568. doi:10.1038/nrendo.2009.176. PMID 19707181. S2CID 22116130.
  84. ^ Wilson JD (September 2001). "Androgens, androgen receptors, and male gender role behavior" (PDF). Hormones and Behavior. 40 (2): 358–366. doi:10.1006/hbeh.2001.1684. PMID 11534997. S2CID 20480423. Archived from the original (PDF) on 26 February 2019.
  85. ^ Baum MJ (November 2006). "Mammalian animal models of psychosexual differentiation: when is 'translation' to the human situation possible?". Hormones and Behavior. 50 (4): 579–588. doi:10.1016/j.yhbeh.2006.06.003. PMID 16876166. S2CID 7465192.
  86. ^ Rosano GM, Panina G (1999). "Oestrogens and the heart". Therapie. 54 (3): 381–385. PMID 10500455.
  87. ^ Nadkarni S, Cooper D, Brancaleone V, Bena S, Perretti M (November 2011). "Activation of the annexin A1 pathway underlies the protective effects exerted by estrogen in polymorphonuclear leukocytes". Arteriosclerosis, Thrombosis, and Vascular Biology. 31 (11): 2749–2759. doi:10.1161/ATVBAHA.111.235176. PMC 3357483. PMID 21836070.
  88. ^ Abdul Sultan A, West J, Stephansson O, Grainge MJ, Tata LJ, Fleming KM, et al. (November 2015). "Defining venous thromboembolism and measuring its incidence using Swedish health registries: a nationwide pregnancy cohort study". BMJ Open. 5 (11): e008864. doi:10.1136/bmjopen-2015-008864. PMC 4654387. PMID 26560059.
  89. ^ a b Foo YZ, Nakagawa S, Rhodes G, Simmons LW (February 2017). "The effects of sex hormones on immune function: a meta-analysis" (PDF). Biological Reviews of the Cambridge Philosophical Society. 92 (1): 551–571. doi:10.1111/brv.12243. PMID 26800512. S2CID 37931012.
  90. ^ Taneja V (27 August 2018). "Sex Hormones Determine Immune Response". Frontiers in Immunology. 9: 1931. doi:10.3389/fimmu.2018.01931. PMC 6119719. PMID 30210492.
  91. ^ a b Roved J, Westerdahl H, Hasselquist D (February 2017). "Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences". Hormones and Behavior. 88: 95–105. doi:10.1016/j.yhbeh.2016.11.017. PMID 27956226. S2CID 9137227.
  92. ^ Khan D, Ansar Ahmed S (6 January 2016). "The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases". Frontiers in Immunology. 6: 635. doi:10.3389/fimmu.2015.00635. PMC 4701921. PMID 26779182.
  93. ^ a b c Kovats S (April 2015). "Estrogen receptors regulate innate immune cells and signaling pathways". Cellular Immunology. 294 (2): 63–69. doi:10.1016/j.cellimm.2015.01.018. PMC 4380804. PMID 25682174.
  94. ^ Prior JC (2018). Estrogen's Storm Season: stories of perimenopause. Vancouver, British Columbia: CeMCOR (Centre for Menstrual Cycle and Ovulation Research). ISBN 9780973827521. Retrieved 24 July 2021. [...] high estrogen amplifies your stress hormone responses to stressful things [...]
  95. ^ Häggström M, Richfield D (2014). "Diagram of the pathways of human steroidogenesis". WikiJournal of Medicine. 1 (1). doi:10.15347/wjm/2014.005. ISSN 2002-4436.
  96. ^ Marieb E (2013). Anatomy & physiology. Benjamin-Cummings. p. 903. ISBN 978-0-321-88760-3.
  97. ^ Hemsell DL, Grodin JM, Brenner PF, Siiteri PK, MacDonald PC (March 1974). "Plasma precursors of estrogen. II. Correlation of the extent of conversion of plasma androstenedione to estrone with age". The Journal of Clinical Endocrinology and Metabolism. 38 (3): 476–479. doi:10.1210/jcem-38-3-476. PMID 4815174.
  98. ^ Barakat R, Oakley O, Kim H, Jin J, Ko CJ (September 2016). "Extra-gonadal sites of estrogen biosynthesis and function". BMB Reports. 49 (9): 488–496. doi:10.5483/BMBRep.2016.49.9.141. PMC 5227141. PMID 27530684.
  99. ^ a b Nelson LR, Bulun SE (September 2001). "Estrogen production and action". Journal of the American Academy of Dermatology. 45 (3 Suppl): S116–S124. doi:10.1067/mjd.2001.117432. PMID 11511861.
  100. ^ Labrie F, Bélanger A, Luu-The V, Labrie C, Simard J, Cusan L, et al. (1998). "DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging". Steroids. 63 (5–6): 322–328. doi:10.1016/S0039-128X(98)00007-5. PMID 9618795. S2CID 37344052.
  101. ^ Schreinder WE (2012). "The Ovary". In Trachsler A, Thorn G, Labhart A, Bürgi H, Dodsworth-Phillips J, Constam G, Courvoisier B, Fischer JA, Froesch ER, Grob P (eds.). Clinical Endocrinology: Theory and Practice. Springer Berlin Heidelberg. p. 530. ISBN 978-3-642-96158-8. Retrieved 12 October 2023.
  102. ^ Fuentes N, Silveyra P (2019). "Estrogen receptor signaling mechanisms". Advances in Protein Chemistry and Structural Biology. Vol. 116. Elsevier. pp. 135–170. doi:10.1016/bs.apcsb.2019.01.001. ISBN 9780128155615. ISSN 1876-1623. PMC 6533072. PMID 31036290. Physiologically, the metabolic conversion of estrogens allows their excretion from the body via urine, feces, and/or bile, along with the production of estrogen analogs, which have been shown to present antiproliferative effects (Tsuchiya et al., 2005).
  103. ^ Kuhl H (August 2005). "Pharmacology of estrogens and progestogens: influence of different routes of administration". Climacteric. 8 (Suppl 1): 3–63. doi:10.1080/13697130500148875. PMID 16112947. S2CID 24616324.
  104. ^ Wesp LM, Deutsch MB (March 2017). "Hormonal and Surgical Treatment Options for Transgender Women and Transfeminine Spectrum Persons". The Psychiatric Clinics of North America. 40 (1): 99–111. doi:10.1016/j.psc.2016.10.006. PMID 28159148.
  105. ^ Tata JR (June 2005). "One hundred years of hormones". EMBO Reports. 6 (6): 490–496. doi:10.1038/sj.embor.7400444. PMC 1369102. PMID 15940278.
  106. ^ a b "Origin in Biomedical Terms: oestrogen or oestrogen". Bioetymology. Retrieved 24 January 2018.
  107. ^ "Council on Pharmacy and Chemistry". Journal of the American Medical Association. 107 (15): 1221–3. 1936. doi:10.1001/jama.1936.02770410043011.
  108. ^ "Greek Word Study Tool: oistros". Perseus Digital Library. Retrieved 28 December 2011.
  109. ^ Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, et al. (March 2001). "Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens". Chemical Research in Toxicology. 14 (3): 280–294. CiteSeerX 10.1.1.460.20. doi:10.1021/tx000208y. PMID 11258977.
  110. ^ Wise A, O'Brien K, Woodruff T (January 2011). "Are oral contraceptives a significant contributor to the estrogenicity of drinking water?". Environmental Science & Technology. 45 (1): 51–60. doi:10.1021/es1014482. PMID 20977246.
  111. ^ Peach S. "Don't Blame The Pill | Latest News". Chemical & Engineering News. Retrieved 22 April 2023.
  112. ^ Liney KE, Jobling S, Shears JA, Simpson P, Tyler CR (October 2005). "Assessing the sensitivity of different life stages for sexual disruption in roach (Rutilus rutilus) exposed to effluents from wastewater treatment works". Environmental Health Perspectives. 113 (10): 1299–1307. doi:10.1289/ehp.7921. PMC 1281270. PMID 16203238.
  113. ^ Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, et al. (April 2006). "Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations". Environmental Health Perspectives. 114 (Suppl 1): 32–39. doi:10.1289/ehp.8050. PMC 1874167. PMID 16818244.
  114. ^ Sanghavi DM (17 October 2006). "Preschool Puberty, and a Search for the Causes". The New York Times. Retrieved 4 June 2008.
  115. ^ a b FDA (February 1995). "Products containing estrogenic hormones, placental extract or vitamins". Guide to Inspections of Cosmetic Product Manufacturers. Archived from the original on 14 October 2007. Retrieved 24 October 2006.

External links