stringtranslate.com

Puerto de visualización

Conector DisplayPort
Un puerto DisplayPort (arriba a la derecha) en una computadora portátil de 2010, cerca de un puerto Ethernet (centro) y un puerto USB (abajo a la derecha)

DisplayPort ( DP ) es una interfaz de pantalla digital patentada [a] desarrollada por un consorcio de fabricantes de PC y chips y estandarizada por la Asociación de Estándares de Electrónica de Vídeo (VESA). Se utiliza principalmente para conectar una fuente de vídeo a un dispositivo de visualización , como un monitor de ordenador . También puede transportar audio , USB y otras formas de datos. [1]

DisplayPort fue diseñado para reemplazar a VGA , FPD-Link y Digital Visual Interface (DVI). Es compatible con otras interfaces, como DVI y High-Definition Multimedia Interface (HDMI), mediante el uso de adaptadores activos o pasivos. [2]

Es la primera interfaz de pantalla que se basa en la transmisión de datos en paquetes , una forma de comunicación digital que se encuentra en tecnologías como Ethernet , USB y PCI Express . Permite el uso de conexiones de pantalla internas y externas. A diferencia de los estándares heredados que transmiten una señal de reloj con cada salida, su protocolo se basa en pequeños paquetes de datos conocidos como micropaquetes , que pueden incrustar la señal de reloj en el flujo de datos, lo que permite una mayor resolución utilizando menos pines. [3] El uso de paquetes de datos también lo hace extensible, lo que significa que se pueden agregar más funciones con el tiempo sin cambios significativos en la interfaz física. [4]

DisplayPort puede transmitir audio y video simultáneamente, aunque cada uno puede transmitirse sin el otro. La ruta de la señal de video puede variar de seis a dieciséis bits por canal de color , y la ruta de audio puede tener hasta ocho canales de audio PCM  sin comprimir de 24 bits y 192 kHz . [1] Un canal auxiliar semidúplex bidireccional transporta datos de administración y control de dispositivos para el enlace principal, como los estándares VESA EDID , MCCS y DPMS . La interfaz también es capaz de transportar señales USB bidireccionales. [5]

La interfaz utiliza una señal diferencial que no es compatible con DVI o HDMI. Sin embargo, los puertos DisplayPort de modo dual están diseñados para transmitir un protocolo DVI o HDMI de enlace único ( TMDS ) a través de la interfaz mediante el uso de un adaptador pasivo externo , lo que habilita el modo de compatibilidad y convierte la señal de 3,3 a 5 voltios. Para VGA / YPbPr analógico y DVI de enlace dual , se requiere un adaptador activo alimentado para la compatibilidad y no depende del modo dual. Los adaptadores VGA activos se alimentan directamente mediante el conector DisplayPort, mientras que los adaptadores DVI de enlace dual activos generalmente dependen de una fuente de alimentación externa como USB.

Versiones

1.0 a 1.1

La primera versión, 1.0, fue aprobada por VESA el 3 de mayo de 2006. [6] La versión 1.1 fue ratificada el 2 de abril de 2007, [7] y la versión 1.1a el 11 de enero de 2008. [8]

DisplayPort 1.0–1.1a permite un ancho de banda máximo de 10,8  Gbit/s (  velocidad de datos de 8,64 Gbit/s) a través de un enlace principal estándar de 4 carriles. Se requieren cables DisplayPort de hasta 2 metros de longitud para soportar el  ancho de banda completo de 10,8 Gbit/s. [8] DisplayPort 1.1 permite que los dispositivos implementen capas de enlace alternativas como fibra óptica , lo que permite un alcance mucho mayor entre la fuente y la pantalla sin degradación de la señal, [9] aunque las implementaciones alternativas no están estandarizadas. También incluye HDCP además de DisplayPort Content Protection (DPCP). El  estándar DisplayPort 1.1a se puede descargar de forma gratuita desde el sitio web de VESA. [10] [ verificación fallida ]

1.2

La versión 1.2 de DisplayPort se introdujo el 7 de enero de 2010. [11] La mejora más significativa de esta versión es la duplicación de la velocidad de datos a 17,28  Gbit/s en el modo High Bit Rate 2 (HBR2), que permite mayores resoluciones, mayores frecuencias de actualización y mayor profundidad de color, como 3840 × 2160 a 60  Hz 10  bpc RGB. Otras mejoras incluyen múltiples transmisiones de video independientes (conexión en cadena con múltiples monitores) denominadas Multi-Stream Transport (MST), facilidades para 3D estereoscópico , mayor ancho de banda del canal AUX (de 1  Mbit/s a 720  Mbit/s), más espacios de color, incluidos xvYCC , scRGB y Adobe RGB 1998 , y Global Time Code (GTC) para sincronización de audio/video por debajo de 1  μs. También el conector Mini DisplayPort de Apple Inc. , que es mucho más pequeño y está diseñado para computadoras portátiles y otros dispositivos pequeños, es compatible con el nuevo estándar. [1] [12] [13] [14]

1.2a

La versión 1.2a de DisplayPort se lanzó en enero de 2013 [15] y puede incluir opcionalmente Adaptive Sync de VESA . [16] FreeSync de AMD utiliza la función DisplayPort Adaptive-Sync para su funcionamiento. FreeSync se demostró por primera vez en CES 2014 en una computadora portátil Toshiba Satellite haciendo uso de la función Panel-Self-Refresh (PSR) del estándar Embedded DisplayPort, [17] y después de una propuesta de AMD, VESA adaptó posteriormente la función Panel-Self-Refresh para su uso en pantallas independientes y la agregó como una función opcional del estándar principal DisplayPort bajo el nombre "Adaptive-Sync" en la versión 1.2a. [18] Como es una función opcional, no se requiere compatibilidad con Adaptive-Sync para que una pantalla sea compatible con DisplayPort 1.2a.

1.3

La versión 1.3 de DisplayPort se aprobó el 15 de septiembre de 2014. [19] Este estándar aumenta el ancho de banda de transmisión general a 32,4  Gbit/s con el nuevo modo HBR3 con 8,1  Gbit/s por carril (frente a los 5,4  Gbit/s con HBR2 en la versión 1.2), para un rendimiento total de datos de 25,92  Gbit/s después de tener en cuenta la sobrecarga de codificación 8b/10b. Este ancho de banda es suficiente para una pantalla UHD 4K ( 3840 × 2160 ) a 120  Hz con color RGB de 24  bit/px, una pantalla 5K ( 5120 × 2880 ) a 60  Hz con color RGB de 30  bit/px o una pantalla UHD 8K ( 7680 × 4320 ) a 30  Hz con  color RGB de 24 bit/px. Con Multi-Stream Transport (MST), un puerto DisplayPort puede controlar dos pantallas 4K UHD ( 3840 × 2160 ) a 60  Hz, o hasta cuatro pantallas WQXGA ( 2560 × 1600 ) a 60  Hz con  color RGB de 24 bit/px. El nuevo estándar incluye modo dual obligatorio para adaptadores DVI y HDMI, implementando el estándar HDMI  2.0 y protección de contenido HDCP  2.2. [20] El estándar de conexión Thunderbolt 3 originalmente iba a incluir  la capacidad DisplayPort 1.3, pero la versión final terminó con solo la versión 1.2 para los controladores Thunderbolt™ 3 de la serie Intel® 6000. Más tarde, los controladores Thunderbolt™3 de la serie Intel® 7000 vendrían a soportar  la capacidad DisplayPort 1.4, incluido HDR. La función Adaptive Sync de VESA en la versión 1.3 de DisplayPort sigue siendo una parte opcional de la especificación. [21]

1.4

La versión 1.4 de DisplayPort se publicó el 1 de marzo de 2016. [22] No se definen nuevos modos de transmisión, por lo que HBR3 (32,4  Gbit/s) tal como se introdujo en la versión 1.3 sigue siendo el modo más alto disponible. DisplayPort  1.4 agrega compatibilidad con Display Stream Compression 1.2 (DSC), Forward Error Correction , metadatos HDR10 definidos en CTA-861.3, incluidos metadatos estáticos y dinámicos y el espacio de color Rec. 2020 , para la interoperabilidad con HDMI, [23] y extiende el número máximo de canales de audio en línea a 32. [24]

1.4a

La versión 1.4a de DisplayPort se publicó en abril de 2018. [25] VESA no emitió ningún comunicado de prensa oficial para esta versión. Actualizó la implementación de Display Stream Compression de DisplayPort de DSC 1.2 a 1.2a. [26]

2.0

El 26 de junio de 2019, VESA lanzó formalmente el estándar DisplayPort 2.0. [27] VESA declaró que la versión 2.0 es la primera actualización importante del estándar DisplayPort desde marzo de 2016 y proporciona una mejora de hasta ≈3× en la velocidad de datos (de 25,92 a 77,37  Gbit/s) en comparación con la versión anterior de DisplayPort (1.4a), así como nuevas capacidades para abordar los futuros requisitos de rendimiento de las pantallas tradicionales. Estas incluyen resoluciones superiores a 8K, frecuencias de actualización más altas y compatibilidad con alto rango dinámico (HDR) a resoluciones más altas, compatibilidad mejorada con múltiples configuraciones de pantalla, así como una mejor experiencia del usuario con pantallas de realidad aumentada/virtual (AR/VR), incluida la compatibilidad con resoluciones de VR de 4K y superiores.

Según una hoja de ruta publicada por VESA en septiembre de 2016, se tenía previsto lanzar una nueva versión de DisplayPort a "principios de 2017". Habría mejorado la velocidad de enlace de 8,1 a 10,0  Gbit/s, un aumento del 23%. [28] [29] Esto habría aumentado el ancho de banda total de 32,4  Gbit/s a 40,0  Gbit/s. Sin embargo, no se lanzó ninguna nueva versión en 2017, probablemente retrasada para realizar más mejoras después de que el HDMI Forum anunciara en enero de 2017 que su próximo estándar (HDMI  2.1) ofrecería hasta 48  Gbit/s de ancho de banda. Según un comunicado de prensa del 3 de enero de 2018, "VESA también está trabajando actualmente con sus miembros en el desarrollo de la próxima generación del estándar DisplayPort, con planes para aumentar la velocidad de datos habilitada por DisplayPort al doble y más. VESA planea publicar esta actualización dentro de los próximos 18 meses". [30] En el CES 2019, VESA anunció que la nueva versión admitiría 8K a 60  Hz sin compresión y se esperaba que se lanzara en la primera mitad de 2019. [31]

Ejemplos de configuración de DP 2.0

Con el mayor ancho de banda que permite DisplayPort 2.0, VESA ofrece un alto grado de versatilidad y configuraciones para resoluciones de pantalla y frecuencias de actualización más altas. Además de la resolución 8K a 60  Hz mencionada anteriormente con compatibilidad con HDR, DP 2.0 (UHBR20) a través de USB-C como modo alternativo de DisplayPort permite una variedad de configuraciones de alto rendimiento [32] :

Al utilizar solo dos carriles en el conector USB-C a través del modo Alt de DP para permitir datos y videos USB SuperSpeed ​​simultáneos, DP 2.0 puede habilitar configuraciones como:

2.1

VESA anunció la versión 2.1 del estándar DisplayPort el 17 de octubre de 2022. [33] Esta versión incorpora las nuevas certificaciones de cable DP40 y DP80, que prueban el correcto funcionamiento de los cables DisplayPort a las velocidades UHBR10 (40  Gbit/s) y UHBR20 (80  Gbit/s) introducidas en la versión 2.0. Además, revisa algunos de los requisitos eléctricos de los dispositivos DisplayPort con el fin de mejorar la integración con USB4. En palabras de VESA:

DisplayPort 2.1 ha mejorado su alineación con la especificación USB Type-C, así como con la especificación USB4 PHY para facilitar un PHY común que dé servicio tanto a DisplayPort como a USB4. Además, DisplayPort 2.1 ha añadido una nueva función de gestión del ancho de banda de DisplayPort para permitir que la tunelización de DisplayPort coexista con otro tráfico de datos de E/S de forma más eficiente a través del enlace USB4.

2.1a

VESA anunció la versión 2.1a del estándar DisplayPort el 8 de enero de 2024. [34] Esta versión reemplaza la certificación del cable DP40 con la nueva certificación DP54, que prueba los cables DisplayPort para un funcionamiento adecuado a la velocidad UHBR13.5 (54  Gbit/s) introducida en la versión 2.0.

Presupuesto

Principal

  1. ^ Solo las versiones 1.0 y 1.1a de la especificación DisplayPort no requieren la firma de un acuerdo de confidencialidad con VESA .
  2. ^ El ancho de banda total (la cantidad de dígitos binarios transmitidos por segundo) es igual al ancho de banda por carril del modo de transmisión admitido más alto multiplicado por la cantidad de carriles.
  3. ^ Si bien el ancho de banda total representa la cantidad de bits físicos transmitidos a través de la interfaz, no todos los bits representan datos de video. Algunos de los bits transmitidos se utilizan para fines de codificación, por lo que la velocidad a la que se pueden transmitir los datos de video a través de la interfaz DisplayPort es solo una parte del ancho de banda total.
  4. ^ El esquema de codificación 8b/10b utiliza 10 bits de ancho de banda para enviar 8 bits de datos, por lo que solo el 80 % del ancho de banda está disponible para el procesamiento de datos. Los 2 bits adicionales se utilizan para equilibrar la corriente continua (lo que garantiza una cantidad aproximadamente igual de 1 y 0). Consumen ancho de banda, pero no representan ningún dato.
  5. ^ En DisplayPort 1.0–1.1a, las imágenes RGB se envían simplemente sin ninguna información de colorimetría específica

El enlace principal de DisplayPort se utiliza para la transmisión de vídeo y audio. El enlace principal consta de una serie de canales de datos seriales unidireccionales que funcionan simultáneamente, llamados carriles . Una conexión DisplayPort estándar tiene 4 carriles, aunque algunas aplicaciones de DisplayPort implementan más, como la interfaz Thunderbolt 3 que implementa hasta 8 carriles de DisplayPort. [40] : 4 

En una conexión DisplayPort estándar, cada carril tiene un conjunto dedicado de cables de par trenzado y transmite datos a través de él mediante señalización diferencial . Este es un sistema de reloj automático , por lo que no es necesario un canal de señal de reloj dedicado. [8] : §1.7.1  A diferencia de DVI y HDMI, que varían su velocidad de transmisión a la velocidad exacta requerida para el formato de video específico, DisplayPort solo funciona a unas pocas velocidades específicas; cualquier exceso de bits en la transmisión se rellena con "símbolos de relleno". [8] : §2.2.1.4 

En las versiones 1.0–1.4a de DisplayPort, los datos se codifican utilizando la codificación ANSI 8b/10b antes de la transmisión. Con este esquema, solo 8 de cada 10 bits transmitidos representan datos; los bits adicionales se utilizan para equilibrar la corriente continua (lo que garantiza una cantidad aproximadamente igual de 1 y 0). Como resultado, la velocidad a la que se pueden transmitir los datos es solo el 80% de la velocidad de bits física. Las velocidades de transmisión también se expresan a veces en términos de "velocidad de símbolo de enlace", que es la velocidad a la que se transmiten estos símbolos codificados en 8b/10b (es decir, la velocidad a la que se transmiten grupos de 10 bits, 8 de los cuales representan datos). Los siguientes modos de transmisión están definidos en la versión 1.0–1.4a:

DisplayPort 2.0 utiliza codificación 128b/132b; cada grupo de 132 bits transmitidos representa 128 bits de datos. Este esquema tiene una eficiencia del 96,96 % . [41] Además, se agrega una pequeña cantidad de sobrecarga para el paquete de control de la capa de enlace y otras operaciones diversas, lo que da como resultado una eficiencia general de aproximadamente el 96,7 %. [42] : §3.5.2.18  Los siguientes modos de transmisión se agregan en DP 2.0:

El ancho de banda total del enlace principal en una conexión estándar de 4 carriles es la suma de todos los carriles:

El modo de transmisión utilizado por el enlace principal de DisplayPort es negociado por el dispositivo de origen y el receptor cuando se establece una conexión, a través de un proceso llamado Link Training . Este proceso determina la velocidad máxima posible de la conexión. Si la calidad del cable DisplayPort no es suficiente para manejar de manera confiable velocidades HBR2, por ejemplo, los dispositivos DisplayPort lo detectarán y cambiarán a un modo más bajo para mantener una conexión estable. [8] : §2.1.1  El enlace se puede renegociar en cualquier momento si se detecta una pérdida de sincronización. [8] : §1.7.3 

Los datos de audio se transmiten a través del enlace principal durante los intervalos de borrado de vídeo (pausas breves entre cada línea y cuadro de datos de vídeo). [8] : §2.2.5.3 

Canal auxiliar

El canal AUX de DisplayPort es un canal de datos semidúplex (bidireccional) utilizado para datos adicionales diversos más allá del video y el audio, como comandos EDID ( I 2 C ) o CEC. [8] : §2.4  Este canal de datos bidireccional es necesario, ya que las señales del carril de video son unidireccionales desde la fuente hasta la pantalla. Las señales AUX se transmiten a través de un conjunto dedicado de cables de par trenzado. DisplayPort  1.0 especificó la codificación Manchester con una tasa de señal de 2 MBd ( tasa de datos de 1 Mbit/s). [8] : §3.4  La versión 1.2 del estándar DisplayPort introdujo un segundo modo de transmisión llamado FAUX (Fast AUX), que operaba a 720 Mbit/s con codificación 8b/10b ( tasa de datos de 576 Mbit/s), [38] : §3.4  pero quedó obsoleto en la versión 1.3.    

Cables y conectores

Cables

Compatibilidad y soporte de funciones

Todos los cables DisplayPort son compatibles con todos los dispositivos DisplayPort, independientemente de la versión de cada dispositivo o el nivel de certificación del cable. [43]

Todas las características de DisplayPort funcionarán con cualquier cable DisplayPort. DisplayPort no tiene múltiples diseños de cable; todos los cables DP tienen el mismo diseño y cableado básicos, y admiten cualquier característica, incluido audio, conexión en cadena, G-Sync / FreeSync , HDR y DSC.

Los cables DisplayPort se diferencian en su compatibilidad con la velocidad de transmisión. DisplayPort especifica siete modos de transmisión diferentes (RBR, HBR, HBR2, HBR3, UHBR  10, UHBR  13.5 y UHBR  20) que admiten anchos de banda cada vez mayores. No todos los cables DisplayPort son compatibles con los siete modos de transmisión. VESA ofrece certificaciones para varios niveles de ancho de banda. Estas certificaciones son opcionales y no todos los cables DisplayPort están certificados por VESA.

Los cables con velocidad de transmisión limitada aún son compatibles con todos los dispositivos DisplayPort, pero pueden imponer límites en la resolución máxima o la frecuencia de actualización disponible.

Los cables DisplayPort no se clasifican por "versión". Aunque los cables suelen etiquetarse con números de versión (  por ejemplo, los cables HBR2 se anuncian como "cables DisplayPort 1.2"), VESA no permite esta notación. [43] El uso de números de versión en los cables puede implicar falsamente que una  pantalla DisplayPort 1.4 requiere un "  cable DisplayPort 1.4" o que las características introducidas en la versión 1.4, como HDR o DSC, no funcionarán con los "  cables DP 1.2" más antiguos. Los cables DisplayPort se clasifican solo por su nivel de certificación de ancho de banda (RBR, HBR, HBR2, HBR3, etc.), si es que han sido certificados.

Ancho de banda de cable y certificaciones

No todos los cables DisplayPort son capaces de funcionar con los niveles más altos de ancho de banda. Los cables pueden enviarse a VESA para una certificación opcional en varios niveles de ancho de banda. VESA ofrece cinco niveles de certificación de cables: estándar, DP8K, DP40, DP54 y DP80. [42] : §4.1  Estos certifican los cables DisplayPort para un funcionamiento adecuado a las siguientes velocidades:

En abril de 2013, VESA publicó un artículo que afirmaba que la certificación del cable DisplayPort no tenía niveles distintos para el ancho de banda HBR y HBR2, y que cualquier cable DisplayPort estándar certificado (incluidos los certificados bajo DisplayPort  1.1) sería capaz de manejar el  ancho de banda de 21,6 Gbit/s de HBR2 que se introdujo con el estándar DisplayPort 1.2. [43] El  estándar DisplayPort 1.2 define solo una única especificación para los conjuntos de cables de alta velocidad de bits, que se utiliza tanto para velocidades HBR como HBR2, aunque el proceso de certificación del cable DP se rige por el estándar de prueba de conformidad PHY de DisplayPort (CTS) y no por el estándar DisplayPort en sí. [38] : §5.7.1, §4.1 

La certificación DP8K fue anunciada por VESA en enero de 2018 y certifica que los cables funcionan correctamente a velocidades HBR3 (8,1  Gbit/s por carril, 32,4  Gbit/s en total). [44]

En junio de 2019, con el lanzamiento de la versión 2.0 del estándar DisplayPort, VESA anunció que la certificación DP8K también era suficiente para el nuevo modo de transmisión UHBR10. No se anunciaron nuevas certificaciones para los modos UHBR13.5 y UHBR20. VESA está fomentando que las pantallas utilicen cables conectados para estas velocidades, en lugar de lanzar cables independientes al mercado. [41]

También debe tenerse en cuenta que el uso de la compresión de flujo de pantalla (DSC), introducida en DisplayPort  1.4, reduce en gran medida los requisitos de ancho de banda del cable. Los formatos que normalmente estarían fuera de los límites de DisplayPort  1.4, como 4K (3840  ×  2160) a 144  Hz 8  bpc RGB/Y′C B C R 4:4:4 (  velocidad de datos de 31,4 Gbit/s sin comprimir), solo se pueden implementar mediante el uso de DSC. Esto reduciría los requisitos de ancho de banda físico entre 2 y 3 veces, lo que lo colocaría dentro de las capacidades de un cable con clasificación HBR2.

Esto ejemplifica por qué los cables DisplayPort no se clasifican por "versión"; aunque DSC se introdujo en la versión 1.4, esto no significa que necesite un  cable denominado "DP 1.4" (un cable con clasificación HBR3) para funcionar. Los cables HBR3 solo se requieren para aplicaciones que superen el ancho de banda de nivel HBR2, no simplemente cualquier aplicación que involucre DisplayPort  1.4. Si se utiliza DSC para reducir los requisitos de ancho de banda a niveles HBR2, entonces un cable con clasificación HBR2 será suficiente.

En la versión 2.1, VESA introdujo los niveles de certificación de cables DP40 y DP80, que validan los cables para velocidades UHBR10 y UHBR20 respectivamente. DisplayPort 2.1a introdujo la certificación de cables DP54 para velocidades UHBR13.5.

Longitud del cable

El estándar DisplayPort no especifica ninguna longitud máxima para los cables, aunque el estándar DisplayPort 1.2 establece un requisito mínimo de que todos los cables de hasta 2 metros de longitud deben soportar velocidades HBR2 (21,6  Gbit/s), y todos los cables de cualquier longitud deben soportar velocidades RBR (6,48  Gbit/s). [38] : §5.7.1, §4.1  Los cables de más de 2 metros pueden soportar o no velocidades HBR/HBR2, y los cables de cualquier longitud pueden soportar o no velocidades HBR3 o superiores.

Conectores y configuración de pines

Salida DisplayPort en una computadora

Los cables y puertos DisplayPort pueden tener un conector de "tamaño completo" o un conector "mini". Estos conectores difieren solo en la forma física: las capacidades de DisplayPort son las mismas independientemente del conector que se utilice. El uso de un conector Mini DisplayPort no afecta el rendimiento ni la compatibilidad de funciones de la conexión.

Conector DisplayPort de tamaño completo

El conector DisplayPort estándar (ahora denominado conector de "tamaño completo" para distinguirlo del miniconector) [38] :  §4.1.1 fue el único tipo de conector introducido en DisplayPort  1.0. Es un conector de orientación única de 20 pines con un bloqueo por fricción y un pestillo mecánico opcional. El receptáculo DisplayPort estándar tiene dimensiones de 16,10  mm (ancho) × 4,76  mm (alto) × 8,88  mm (profundidad). [8] : §4.2.1.7, p201 

La asignación de pines del conector DisplayPort estándar es la siguiente: [8] : §4.2.1 

Conector mini DisplayPort

Conector mini DisplayPort

El conector Mini DisplayPort fue desarrollado por Apple para su uso en sus productos informáticos. Se anunció por primera vez en octubre de 2008 para su uso en los nuevos MacBooks y Cinema Display. En 2009, VESA lo adoptó como estándar oficial y en 2010 la especificación se fusionó con el estándar principal DisplayPort con el lanzamiento de DisplayPort  1.2. Apple concede la licencia de la especificación a VESA sin cargo alguno.

El conector Mini DisplayPort (mDP) es un conector de orientación única de 20 pines con un bloqueo por fricción. A diferencia del conector de tamaño completo, no tiene una opción para un pestillo mecánico. El receptáculo mDP tiene dimensiones de 7,50  mm (ancho) × 4,60  mm (alto) × 4,99  mm (profundidad). [45] : §2.1.3.6, pp27–31  Las asignaciones de pines mDP son las mismas que las del conector DisplayPort de tamaño completo. [45] : §2.1.3 

DP_PWR (pin 20)

El pin 20 del conector DisplayPort, llamado DP_PWR, proporciona  una alimentación de CC de 3,3 V (±10 %) a un máximo de 500  mA (suministro de potencia mínimo de 1,5  W). [8] : §3.2  Esta alimentación está disponible en todos los receptáculos DisplayPort, tanto en los dispositivos de fuente como de visualización. DP_PWR está destinado a proporcionar alimentación a adaptadores, cables amplificados y dispositivos similares, de modo que no sea necesario un cable de alimentación independiente.

Las conexiones de cable DisplayPort estándar no utilizan el pin DP_PWR. Conectar los pines DP_PWR de dos dispositivos directamente entre sí a través de un cable puede crear un cortocircuito que puede dañar los dispositivos, ya que es poco probable que los pines DP_PWR de dos dispositivos tengan exactamente el mismo voltaje (especialmente con una tolerancia de ±10%). [46] Por este motivo, los  estándares DisplayPort 1.1 y posteriores especifican que los cables pasivos DisplayPort a DisplayPort deben dejar el pin 20 sin conectar. [8] :  §3.2.2

Sin embargo, en 2013, VESA anunció que después de investigar informes sobre dispositivos DisplayPort que funcionaban mal, había descubierto que una gran cantidad de proveedores no certificados estaban fabricando sus cables DisplayPort con el pin DP_PWR conectado:

Recientemente, VESA ha recibido bastantes quejas sobre el funcionamiento problemático de DisplayPort, que terminó siendo causado por cables DisplayPort mal fabricados. Estos cables DisplayPort "malos" generalmente se limitan a cables no certificados para DisplayPort o cables de otras marcas. Para investigar más a fondo esta tendencia en el mercado de cables DisplayPort, VESA compró una serie de cables no certificados y de otras marcas y descubrió que una cantidad alarmantemente alta de ellos estaban configurados incorrectamente y probablemente no serían compatibles con todas las configuraciones del sistema. Ninguno de estos cables habría pasado la prueba de certificación de DisplayPort; además, algunos de estos cables podrían dañar una PC, una computadora portátil o un monitor.

La estipulación de que el cable DP_PWR se omitiera de los cables DisplayPort estándar no estaba presente en el  estándar DisplayPort 1.0. Sin embargo, los productos (y cables) DisplayPort no comenzaron a aparecer en el mercado hasta 2008, mucho después de que la versión 1.0 hubiera sido reemplazada por la versión 1.1. El  estándar DisplayPort 1.0 nunca se implementó en productos comerciales. [47]

Límites de resolución y frecuencia de actualización

Las siguientes tablas describen las frecuencias de actualización que se pueden lograr con cada modo de transmisión. En general, la frecuencia de actualización máxima está determinada por el modo de transmisión (RBR, HBR, HBR2, HBR3, UHBR10, UHBR13.5 o UHBR20). Estos modos de transmisión se introdujeron en el estándar DisplayPort de la siguiente manera:

Sin embargo, la compatibilidad del modo de transmisión no está necesariamente determinada por el "número de versión de DisplayPort" declarado de un dispositivo. Por ejemplo, las versiones anteriores de las Directrices de marketing de DisplayPort permitían que un dispositivo se etiquetara como "DisplayPort 1.2" si admitía la función MST, incluso si no admitía el modo de transmisión HBR2. [48] : 9  Las versiones más nuevas de las directrices han eliminado esta cláusula y, actualmente (a partir de la revisión de junio de 2018) no existen directrices sobre el uso de números de versión de DisplayPort en productos. [49] Por lo tanto, los "números de versión" de DisplayPort no son una indicación confiable de las velocidades de transmisión que puede admitir un dispositivo.

Además, los dispositivos individuales pueden tener sus propias limitaciones arbitrarias más allá de la velocidad de transmisión. Por ejemplo, las GPU NVIDIA Kepler GK104 (como las GeForce GTX 680 y 770) admiten "DisplayPort 1.2" con el modo de transmisión HBR2, pero están limitadas a 540  Mpx/s, solo 34 del máximo posible con HBR2. [50] En consecuencia, ciertos dispositivos pueden tener limitaciones que difieren de las que se enumeran en las siguientes tablas.

Para admitir un formato en particular, tanto el dispositivo de origen como el de visualización deben admitir el modo de transmisión requerido, y el cable DisplayPort también debe ser capaz de manejar el ancho de banda requerido para ese modo de transmisión. (Consulte: Cables y conectores)

Límites de frecuencia de actualización para resoluciones comunes

Los límites máximos para los modos RBR y HBR se calculan utilizando cálculos de velocidad de datos estándar. [51] Para los modos UHBR, los límites se basan en los cálculos de eficiencia de datos proporcionados por el estándar DisplayPort. [52] : §3.5.2.18  Todos los cálculos suponen video RGB sin comprimir con sincronización CVT-RB v2 . Los límites máximos pueden diferir si se utiliza compresión (es decir, DSC) o submuestreo de croma Y′C B C R 4:2:2 o 4:2:0.

Los fabricantes de pantallas también pueden utilizar intervalos de borrado no estándar en lugar de CVT-RB v2 para lograr frecuencias aún más altas cuando el ancho de banda es una limitación. Las frecuencias de actualización de la siguiente tabla no representan el límite máximo absoluto de cada interfaz, sino más bien una estimación basada en una fórmula de sincronización estandarizada moderna. Los intervalos de borrado mínimos (y, por lo tanto, la frecuencia máxima exacta que se puede lograr) dependerán de la pantalla y de cuántos paquetes de datos secundarios requiere y, por lo tanto, diferirán de un modelo a otro.

  Por debajo de 30 Hz
  0 30–60  Hz
  0 60–120  Hz
  120–240  Hz
  Por encima de 240  Hz

Límites de frecuencia de actualización para video estándar

En estas tablas se supone que todos los formatos tienen una profundidad de color de 8  bpc (24  bit/px o 16,7 millones de colores). Esta es la profundidad de color estándar que se utiliza en la mayoría de las pantallas de ordenador. Tenga en cuenta que algunos sistemas operativos se refieren a esto como profundidad de color de "32 bits", lo que equivale a una profundidad de color de 24 bits. Los 8 bits adicionales son para la información del canal alfa, que solo está presente en el software. En la etapa de transmisión, esta información ya se ha incorporado a los canales de color primarios, por lo que los datos de vídeo reales transmitidos a través del cable solo contienen 24 bits por píxel.

  1. ^ Solo una parte del ancho de banda de DisplayPort se utiliza para transportar datos de vídeo. Los modos de transmisión RBR, HBR, HBR2 y HBR3 utilizan codificación 8b/10b, lo que significa que el 80 % de los bits transmitidos a través del enlace representan datos y el 20 % restante se utiliza para fines de codificación.  Por lo tanto, las velocidades de bits máximas de estos modos (6,48, 10,8, 21,6 y 32,4 Gbit/s) transportan datos de vídeo a velocidades de 5,184, 8,64, 17,28 y 25,92  Gbit/s respectivamente. Los modos DisplayPort UHBR utilizan codificación 128b/132b y, por lo tanto, las velocidades de bits máximas de UHBR10, 13.5 y 20 (40, 54 y 80  Gbit/s) transportan datos a velocidades de 38,69, 52,22 y 77,37  Gbit/s.
  2. ^ Estas velocidades de datos corresponden a una profundidad de color de 8  bpc (24  bit/px) sin comprimir con formato de color RGB o YC B C R 4:4:4 y sincronización CVT-R2. La velocidad de datos sin comprimir para video RGB en bits por segundo se calcula como bits por píxel × píxeles por cuadro × cuadros por segundo. Los píxeles por cuadro incluyen intervalos de borrado según lo definido por CVT-R2 .
  3. ^ ab Aunque este formato supera ligeramente la velocidad máxima de datos de este modo de transmisión con sincronización CVT-R2, está lo suficientemente cerca como para lograrse con sincronizaciones no estándar.
  1. ^ Solo una parte del ancho de banda de DisplayPort se utiliza para transportar datos de vídeo. Los modos de transmisión RBR, HBR, HBR2 y HBR3 utilizan codificación 8b/10b, lo que significa que el 80 % de los bits transmitidos a través del enlace representan datos y el 20 % restante se utiliza para fines de codificación.  Por lo tanto, las velocidades de bits máximas de estos modos (6,48, 10,8, 21,6 y 32,4 Gbit/s) transportan datos de vídeo a velocidades de 5,184, 8,64, 17,28 y 25,92  Gbit/s respectivamente. Los modos DisplayPort UHBR utilizan codificación 128b/132b y, por lo tanto, las velocidades de bits máximas de UHBR10, 13.5 y 20 (40, 54 y 80  Gbit/s) transportan datos a velocidades de 38,69, 52,22 y 77,37  Gbit/s.
  2. ^ Estas velocidades de datos corresponden a una profundidad de color de 8  bpc (24  bit/px) sin comprimir con formato de color RGB o YC B C R 4:4:4 y sincronización CVT-R2. La velocidad de datos sin comprimir para video RGB en bits por segundo se calcula como bits por píxel × píxeles por cuadro × cuadros por segundo. Los píxeles por cuadro incluyen intervalos de borrado según lo definido por CVT-R2 .
  3. ^ Este formato solo se puede lograr con color RGB completo si se utiliza DSC (compresión de flujo de visualización).
  4. ^ Este formato solo se puede lograr sin comprimir si se utiliza el formato YC B C R con submuestreo de croma 4:2:2 o 4:2:0 (como se indica)
  5. ^ Este formato solo se puede lograr si se utiliza DSC junto con el submuestreo de croma YCbCr 4:2:2 o 4:2:0 (como se indica)
  6. ^ ab Aunque este formato supera ligeramente la velocidad máxima de datos de este modo de transmisión con sincronización CVT-R2, está lo suficientemente cerca como para lograrse con sincronizaciones no estándar.

Límites de frecuencia de actualización para video HDR

Se supone una profundidad de color de 10  bpc (30  bit/px o 1.07 mil millones de colores) para todos los formatos de estas tablas. Esta profundidad de color es un requisito para varios estándares HDR comunes, como HDR10 . Requiere un 25 % más de ancho de banda que  el video estándar de 8 bpc.

Las extensiones HDR se definieron en la versión 1.4 del estándar DisplayPort. Algunas pantallas admiten estas extensiones HDR, pero solo pueden implementar el modo de transmisión HBR2 si el ancho de banda adicional de HBR3 no es necesario (por ejemplo, en  pantallas HDR 4K de 60 Hz). Dado que no existe una definición de lo que constituye un dispositivo "DisplayPort 1.4", algunos fabricantes pueden optar por etiquetarlos como dispositivos "DP 1.2" a pesar de su compatibilidad con extensiones HDR DP 1.4. [53] Como resultado, los "números de versión" de DisplayPort no deben usarse como un indicador de compatibilidad con HDR.

  1. ^ Solo una parte del ancho de banda de DisplayPort se utiliza para transportar datos de vídeo. Los modos de transmisión RBR, HBR, HBR2 y HBR3 utilizan codificación 8b/10b, lo que significa que el 80 % de los bits transmitidos a través del enlace representan datos y el 20 % restante se utiliza para fines de codificación.  Por lo tanto, las velocidades de bits máximas de estos modos (6,48, 10,8, 21,6 y 32,4 Gbit/s) transportan datos de vídeo a velocidades de 5,184, 8,64, 17,28 y 25,92  Gbit/s respectivamente. Los modos DisplayPort UHBR utilizan codificación 128b/132b y, por lo tanto, las velocidades de bits máximas de UHBR10, 13.5 y 20 (40, 54 y 80  Gbit/s) transportan datos a velocidades de 38,69, 52,22 y 77,37  Gbit/s.
  2. ^ Estas velocidades de datos corresponden a una profundidad de color de 10  bpc (30  bit/px) sin comprimir con formato de color RGB o YC B C R 4:4:4 y sincronización CVT-R2. La velocidad de datos sin comprimir para video RGB en bits por segundo se calcula como bits por píxel × píxeles por cuadro × cuadros por segundo. Los píxeles por cuadro incluyen intervalos de borrado según lo definido por CVT-R2 .
  3. ^ abcdefg Aunque este formato supera ligeramente la velocidad máxima de datos de este modo de transmisión con sincronización CVT-R2, es lo suficientemente cercano como para lograrse con sincronizaciones no estándar.
  1. ^ Solo una parte del ancho de banda de DisplayPort se utiliza para transportar datos de vídeo. Los modos de transmisión RBR, HBR, HBR2 y HBR3 utilizan codificación 8b/10b, lo que significa que el 80 % de los bits transmitidos a través del enlace representan datos y el 20 % restante se utiliza para fines de codificación.  Por lo tanto, las velocidades de bits máximas de estos modos (6,48, 10,8, 21,6 y 32,4 Gbit/s) transportan datos de vídeo a velocidades de 5,184, 8,64, 17,28 y 25,92  Gbit/s respectivamente. Los modos DisplayPort UHBR utilizan codificación 128b/132b y, por lo tanto, las velocidades de bits máximas de UHBR10, 13.5 y 20 (40, 54 y 80  Gbit/s) transportan datos a velocidades de 38,69, 52,22 y 77,37  Gbit/s.
  2. ^ Estas velocidades de datos corresponden a una profundidad de color de 10  bpc (30  bit/px) sin comprimir con formato de color RGB o YC B C R 4:4:4 y sincronización CVT-R2. La velocidad de datos sin comprimir para video RGB en bits por segundo se calcula como bits por píxel × píxeles por cuadro × cuadros por segundo. Los píxeles por cuadro incluyen intervalos de borrado según lo definido por CVT-R2 .
  3. ^ Este formato solo se puede lograr con color RGB completo si se utiliza DSC (compresión de flujo de pantalla).  Aquí se supone una relación de compresión de 3,75:1 (compresión de 8 bits/px).
  4. ^ Este formato solo se puede lograr sin comprimir si se utiliza el formato YC B C R con submuestreo de croma 4:2:2 o 4:2:0 (como se indica)
  5. ^ abcde Aunque este formato supera ligeramente la velocidad máxima de datos de este modo de transmisión con sincronización CVT-R2, es lo suficientemente cercana como para lograrse con sincronizaciones no estándar.
  6. ^ Este formato solo se puede lograr si se utilizan juntos DSC y submuestreo de croma. El estándar DisplayPort permite valores más bajos para el tamaño de salida DSC cuando se utiliza submuestreo; 6  bit/px para submuestreo 4:2:0 y 7  bit/px para submuestreo 4:2:2, en comparación con 8  bit/px para salida sin submuestreo (RGB y 4:4:4).

Características

DisplayPort Dual-Mode (DP++)

Dual-mode DisplayPort logo

DisplayPort Dual-Mode (DP++), also called Dual-Mode DisplayPort, is a standard which allows DisplayPort sources to use simple passive adapters to connect to HDMI or DVI displays. Dual-mode is an optional feature, so not all DisplayPort sources necessarily support DVI/HDMI passive adapters, though in practice nearly all devices do. Officially, the "DP++" logo should be used to indicate a DP port that supports dual-mode, but most modern devices do not use the logo.[54]

Devices which implement dual-mode will detect that a DVI or HDMI adapter is attached, and send DVI/HDMI TMDS signals instead of DisplayPort signals. The original DisplayPort Dual-Mode standard (version 1.0), used in DisplayPort 1.1 devices, only supported TMDS clock speeds of up to 165 MHz (4.95 Gbit/s bandwidth). This is equivalent to HDMI 1.2, and is sufficient for up to 1920 × 1200 at 60 Hz.

In 2013, VESA released the Dual-Mode 1.1 standard, which added support for up to a 300 MHz TMDS clock (9.00 Gbit/s bandwidth), and is used in newer DisplayPort 1.2 devices. This is slightly less than the 340 MHz maximum of HDMI 1.4, and is sufficient for up to 1920 × 1080 at 120 Hz, 2560 × 1440 at 60 Hz, or 3840 × 2160 at 30 Hz. Older adapters, which were only capable of the 165 MHz speed, were retroactively termed "Type 1" adapters, with the new 300 MHz adapters being called "Type 2".[55]

Dual-mode limitations

A DisplayPort to DVI adapter after removing its enclosure. The chip on the board converts the voltage levels generated by the dual-mode DisplayPort device to be compatible with a DVI monitor. Despite the chip, this is often categorized as a passive adapter.

Multi-Stream Transport (MST)

Multi-Stream Transport is a feature first introduced in the DisplayPort 1.2 standard. It allows multiple independent displays to be driven from a single DP port on the source devices by multiplexing several video streams into a single stream and sending it to a branch device, which demultiplexes the signal into the original streams. Branch devices are commonly found in the form of an MST hub, which plugs into a single DP input port and provides multiple outputs, but it can also be implemented on a display internally to provide a DP output port for daisy-chaining, effectively embedding a 2-port MST hub inside the display.[38]: Fig. 2-59 [56] Theoretically, up to 63 displays can be supported,[38]: 20  but the combined data rate requirements of all the displays cannot exceed the limits of a single DP port (17.28 Gbit/s for a DP 1.2 port, or 25.92 Gbit/s for a DP 1.3/1.4 port). In addition, the maximum number of links between the source and any device (i.e. the maximum length of a daisy-chain) is 7,[38]: §2.5.2  and the maximum number of physical output ports on each branch device (such as a hub) is 7.[38]: §2.5.1  With the release of MST, standard single-display operation has been retroactively named "SST" mode (Single-Stream Transport).

Daisy-chaining is a feature that must be specifically supported by each intermediary display; not all DisplayPort 1.2 devices support it. Daisy-chaining requires a dedicated DisplayPort output port on the display. Standard DisplayPort input ports found on most displays cannot be used as a daisy-chain output. Only the last display in the daisy-chain does not need to support the feature specifically or have a DP output port. DisplayPort 1.1 displays can also be connected to MST hubs, and can be part of a DisplayPort daisy-chain if it is the last display in the chain.[38]: §2.5.1 

The host system's software also needs to support MST for hubs or daisy-chains to work. While Microsoft Windows environments have full support for it, Apple operating systems currently do not support MST hubs or DisplayPort daisy-chaining as of macOS 10.15 ("Catalina").[57][58]DisplayPort-to-DVI and DisplayPort-to-HDMI adapters/cables may or may not function from an MST output port; support for this depends on the specific device.[citation needed]

MST is supported by USB Type-C DisplayPort Alternate Mode, so standard DisplayPort daisy-chains and MST hubs do function from Type-C sources with a simple Type-C to DisplayPort adapter.[59]

High dynamic range (HDR)

Support for HDR video was introduced in DisplayPort 1.4. It implements the CTA 861.3 standard for transport of static HDR metadata in EDID.[22]

Content protection

DisplayPort 1.0 includes optional DPCP (DisplayPort Content Protection) from Philips, which uses 128-bit AES encryption. It also features full authentication and session key establishment. Each encryption session is independent, and it has an independent revocation system. This portion of the standard is licensed separately. It also adds the ability to verify the proximity of the receiver and transmitter, a technique intended to ensure users are not bypassing the content protection system to send data out to distant, unauthorized users.[8]: §6 

DisplayPort 1.1 added optional implementation of industry-standard 56-bit HDCP (High-bandwidth Digital Content Protection) revision 1.3, which requires separate licensing from the Digital Content Protection LLC.[8]: §1.2.6 

DisplayPort 1.3 added support for HDCP 2.2, which is also used by HDMI 2.0.[19]

Cost

VESA, the creators of the DisplayPort standard, state that the standard is royalty-free to implement. However, in March 2015, MPEG LA issued a press release stating that a royalty rate of $0.20 per unit applies to DisplayPort products manufactured or sold in countries that are covered by one or more of the patents in the MPEG LA license pool, which includes patents from Hitachi Maxell, Philips, Lattice Semiconductor, Rambus, and Sony.[60][61] In response, VESA updated their DisplayPort FAQ page with the following statement:[62]

MPEG LA is making claims that DisplayPort implementation requires a license and a royalty payment. It is important to note that these are only CLAIMS. Whether these CLAIMS are relevant will likely be decided in a US court.

As of August 2019, VESA's official FAQ no longer contains a statement mentioning the MPEG LA royalty fees.

While VESA does not charge any per-device royalty fees, VESA requires membership for access to said standards.[63] The minimum cost is presently $5,000 (or $10,000 depending on Annual Corporate Sales Revenue) annually.[64]

Advantages over DVI, VGA and FPD-Link

In December 2010, several computer vendors and display makers including Intel, AMD, Dell, Lenovo, Samsung and LG announced they would begin phasing out FPD-Link, VGA, and DVI-I over the next few years, replacing them with DisplayPort and HDMI.[65][66][67]

DisplayPort has several advantages over VGA, DVI, and FPD-Link.[68]

Comparison with HDMI

Although DisplayPort has much of the same functionality as HDMI, it is a complementary connection used in different scenarios.[72][73] A dual-mode DisplayPort port can emit an HDMI signal via a passive adapter.

Market share

Figures from IDC show that 5.1% of commercial desktops and 2.1% of commercial notebooks released in 2009 featured DisplayPort.[65] The main factor behind this was the phase-out of VGA, and that both Intel and AMD planned to stop building products with FPD-Link by 2013. Nearly 70% of LCD monitors sold in August 2014 in the US, UK, Germany, Japan, and China were equipped with HDMI/DisplayPort technology, up 7.5% on the year, according to Digitimes Research.[82] IHS Markit, an analytics firm, forecast that DisplayPort would surpass HDMI in 2019.[83][needs update]

Companion standards

Mini DisplayPort

Mini DisplayPort (mDP) is a standard announced by Apple in the fourth quarter of 2008. Shortly after announcing Mini DisplayPort, Apple announced that it would license the connector technology with no fee. The following year, in early 2009, VESA announced that Mini DisplayPort would be included in the upcoming DisplayPort 1.2 specification. On 24 February 2011, Apple and Intel announced Thunderbolt, a successor to Mini DisplayPort which adds support for PCI Express data connections while maintaining backwards compatibility with Mini DisplayPort based peripherals.[84]

Micro DisplayPort

Micro DisplayPort would have targeted systems that need ultra-compact connectors, such as phones, tablets and ultra-portable notebook computers. This standard would have been physically smaller than the currently available Mini DisplayPort connectors. The standard was expected to be released by Q2 2014.[85]

DDM

Direct Drive Monitor (DDM) 1.0 standard was approved in December 2008. It allows for controller-less monitors where the display panel is directly driven by the DisplayPort signal, although the available resolutions and color depth are limited to two-lane operation.

Display Stream Compression

Display Stream Compression (DSC) is a VESA-developed video compression algorithm designed to enable increased display resolutions and frame rates over existing physical interfaces, and make devices smaller and lighter, with longer battery life.[86]

eDP

Embedded DisplayPort (eDP) is a display panel interface standard for portable and embedded devices. It defines the signaling interface between graphics cards and integrated displays. The various revisions of eDP are based on existing DisplayPort standards. However, version numbers between the two standards are not interchangeable. For instance, eDP version 1.4 is based on DisplayPort 1.2, while eDP version 1.4a is based on DisplayPort 1.3. Embedded DisplayPort has displaced LVDS as the predominant panel interface in modern laptops and modern smartphones.

eDP 1.0 was adopted in December 2008.[87] It included advanced power-saving features such as seamless refresh rate switching. Version 1.1 was approved in October 2009 followed by version 1.1a in November 2009. Version 1.2 was approved in May 2010 and includes DisplayPort 1.2 HBR2 data rates, 120 Hz sequential color monitors, and a new display panel control protocol that works through the AUX channel.[12] Version 1.3 was published in February 2011; it includes a new optional Panel Self-Refresh (PSR) feature developed to save system power and further extend battery life in portable PC systems.[88] PSR mode allows the GPU to enter a power saving state in between frame updates by including framebuffer memory in the display panel controller.[12] Version 1.4 was released in February 2013; it reduces power consumption through partial-frame updates in PSR mode, regional backlight control, lower interface voltages, and additional link rates; the auxiliary channel supports multi-touch panel data to accommodate different form factors.[89] Version 1.4a was published in February 2015; the underlying DisplayPort version was updated to 1.3 in order to support HBR3 data rates, Display Stream Compression 1.1, Segmented Panel Displays, and partial updates for Panel Self-Refresh.[90] Version 1.4b was published in October 2015; its protocol refinements and clarifications are intended to enable adoption of eDP 1.4b in devices by mid-2016.[91] Version 1.5 was published in October 2021; adds new features and protocols, including enhanced support for Adaptive-Sync, that provide additional power savings and improved gaming and media playback performance.[92]

iDP

Internal DisplayPort (iDP) is a standard that defines an internal link between a digital TV system on a chip controller and the display panel's timing controller. Version 1.0 was approved in April 2010. It aims to replace currently used internal FPD-Link lanes with a DisplayPort connection.[93] iDP features a unique physical interface and protocols, which are not directly compatible with DisplayPort and are not applicable to external connection, however they enable very high resolution and refresh rates while providing simplicity and extensibility.[12] iDP features a non-variable 2.7 GHz clock and is nominally rated at 3.24 Gbit/s per lane, with up to sixteen lanes in a bank, resulting in a six-fold decrease in wiring requirements over FPD-Link for a 1080p24 signal; other data rates are also possible. iDP was built with simplicity in mind so doesn't have an AUX channel, content protection, or multiple streams; it does however have frame sequential and line interleaved stereo 3D.[12]

PDMI

Portable Digital Media Interface (PDMI) is an interconnection between docking stations/display devices and portable media players, which includes 2-lane DisplayPort v1.1a connection. It has been ratified in February 2010 as ANSI/CEA-2017-A.

wDP

Wireless DisplayPort (wDP) enables the bandwidth and feature set of DisplayPort 1.2 for cable-free applications operating in the 60 GHz radio band. It was announced in November 2010 by WiGig Alliance and VESA as a cooperative effort.[94]

SlimPort

A SlimPort-to-HDMI adapter, made by Analogix

SlimPort, a brand of Analogix products,[95] complies with Mobility DisplayPort, also known as MyDP, which is an industry standard for a mobile audio/video Interface, providing connectivity from mobile devices to external displays and HDTVs. SlimPort implements the transmission of video up to 4K-UltraHD and up to eight channels of audio over the micro-USB connector to an external converter accessory or display device. SlimPort products support seamless connectivity to DisplayPort, HDMI and VGA displays.[96] The MyDP standard was released in June 2012,[97] and the first product to use SlimPort was Google's Nexus 4 smartphone.[98] Some LG smartphones in LG G series also adopted SlimPort.

SlimPort is an alternative to Mobile High-Definition Link (MHL).[99][100]

DisplayID

DisplayID is designed to replace the E-EDID standard. DisplayID features variable-length structures which encompass all existing EDID extensions as well as new extensions for 3D displays and embedded displays.

The latest version 1.3 (announced on 23 September 2013) adds enhanced support for tiled display topologies; it allows better identification of multiple video streams, and reports bezel size and locations.[101] As of December 2013, many current 4K displays use a tiled topology, but lack a standard way to report to the video source which tile is left and which is right. These early 4K displays, for manufacturing reasons, typically use two 1920×2160 panels laminated together and are currently generally treated as multiple-monitor setups.[102] DisplayID 1.3 also allows 8K display discovery, and has applications in stereo 3D, where multiple video streams are used.

DockPort

DockPort, formerly known as Lightning Bolt, is an extension to DisplayPort to include USB 3.0 data as well as power for charging portable devices from attached external displays. Originally developed by AMD and Texas Instruments, it has been announced as a VESA specification in 2014.[103]

USB-C

On 22 September 2014, VESA published the DisplayPort Alternate Mode on USB Type-C Connector Standard, a specification on how to send DisplayPort signals over the newly released USB-C connector. One, two or all four of the differential pairs that USB uses for the SuperSpeed bus can be configured dynamically to be used for DisplayPort lanes. In the first two cases, the connector still can carry a full SuperSpeed signal; in the latter case, at least a non-SuperSpeed signal is available. The DisplayPort AUX channel is also supported over the two sideband signals over the same connection; furthermore, USB Power Delivery according to the newly expanded USB-PD 2.0 specification is possible at the same time. This makes the Type-C connector a strict superset of the use cases envisioned for DockPort, SlimPort, and Mini and Micro DisplayPort.[104]

VirtualLink

VirtualLink is a proposal that allows the power, video, and data required to drive virtual reality headsets to be delivered over a single USB-C cable.

Products

A Dual-mode DisplayPort connector

Since DisplayPort's introduction in 2006, it has gained popularity within the computer industry and is featured on many graphics cards, displays, and notebook computers. Dell was the first company to introduce a consumer product with a DisplayPort connector, the Dell UltraSharp 3008WFP, which was released in January 2008.[105] Soon after, AMD and Nvidia released products to support the technology. AMD included support in the Radeon HD 3000 series of graphics cards, and Nvidia first introduced support in the GeForce 9 series starting with the GeForce 9600 GT.[106][107]

A Mini DisplayPort connector

Later in 2008, Apple introduced several products featuring a Mini DisplayPort.[108] The new connector – proprietary at the time – eventually became part of the DisplayPort standard, however Apple reserves the right to void the license should the licensee "commence an action for patent infringement against Apple".[109] In 2009, AMD followed suit with their Radeon HD 5000 series of graphics cards, which featured the Mini DisplayPort on the Eyefinity versions in the series.[110]

Nvidia launched a graphics card with 8 Mini DisplayPort outputs on 4 November 2015, called the NVS 810, which was intended for digital signage.[111][112]

Nvidia revealed the GeForce GTX 1080, the world's first graphics card with DisplayPort 1.4 support on 6 May 2016.[113] AMD followed with the Radeon RX 480 to support DisplayPort 1.3/1.4 on 29 June 2016.[114] The Radeon RX 400 series will support DisplayPort 1.3 HBR and HDR10, dropping the DVI connector(s) in the reference board design.

In February 2017, VESA and Qualcomm announced that DisplayPort Alt Mode video transport will be integrated into the Snapdragon 835 mobile chipset, which powers smartphones, VR/AR head-mounted displays, IP cameras, tablets and mobile PCs.[115]

Support for DisplayPort Alternate Mode over USB-C

A Samsung Galaxy S8 plugged into a DeX docking station

Currently, DisplayPort is the most widely implemented alternate mode, and is used to provide video output on devices that do not have standard-size DisplayPort or HDMI ports, such as smartphones, tablets, and laptops. A USB-C multiport adapter converts the device's native video stream to DisplayPort/HDMI/VGA, allowing it to be displayed on an external display, such as a television set or computer monitor.

Examples of devices that support DisplayPort Alternate Mode over USB-C include: MacBook, Chromebook Pixel, Surface Book 2, Samsung Galaxy Tab S4, iPad Pro (3rd generation), iPhone 15/15 Pro, HTC 10/U Ultra/U11/U12+, Huawei Mate 10/20/30, LG V20/V30/V40*/V50, OnePlus 7 and newer, ROG Phone, Samsung Galaxy S8 and newer, Nintendo Switch, Sony Xperia 1/5 etc.[116][117]

Participating companies

The following companies have participated in preparing the drafts of DisplayPort, eDP, iDP, DDM or DSC standards:

The following companies have additionally announced their intention to implement DisplayPort, eDP or iDP:

See also

Notes

  1. ^ Dual-link DVI is limited in resolution and speed by the quality and therefore the bandwidth of the DVI cable, the quality of the transmitter, and the quality of the receiver; can only drive one monitor at a time; and cannot send audio data. HDMI 1.3 and 1.4 are limited to effectively 8.16 Gbit/s or 340 MHz (though actual devices are limited to 225–300 MHz[citation needed]), and can only drive one monitor at a time. VGA connectors have no defined maximum resolution or speed, but their analog nature limits their bandwidth, though can provide long cabling only limited by appropriate shielding.

References

  1. ^ a b c "DisplayPort Technical Overview" (PDF). VESA.org. 10 January 2011. Retrieved 23 January 2012.
  2. ^ "DisplayPort... the End of an Era, but Beginning of a New Age". Hope Industrial Systems. 27 April 2011. Retrieved 9 March 2012.
  3. ^ "AMD's Eyefinity Technology Explained". Tom's Hardware. 28 February 2010. Retrieved 23 January 2012.
  4. ^ "An Inside Look at DisplayPort v1.2". ExtremeTech. 4 February 2011. Retrieved 28 July 2011.
  5. ^ "The Case For DisplayPort, Continued, And Bezels". Tom's Hardware. 15 April 2010. Retrieved 28 July 2011.
  6. ^ "New DisplayPort(TM) Interface Standard for PCs, Monitors, TV Displays and Projectors Released by the Video Electronics Standards Association". Video Electronics Standards Association (VESA). 3 May 2006. Archived from the original on 14 February 2009.
  7. ^ Hodgin, Rick (30 July 2007). "DisplayPort: The new video interconnect standard". geek.com. Archived from the original on 16 October 2012. Retrieved 21 July 2011.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac "VESA DisplayPort Standard, Version 1, Revision 1a" (PDF). Video Electronics Standards Association (VESA). 11 January 2008. Archived from the original (PDF) on 8 April 2016.
  9. ^ "Video Electronics Standards Association (VESA) Endorses Alternative to Copper Cables". Luxtera Inc. 17 April 2007. Archived from the original on 18 February 2010. Retrieved 19 January 2010.
  10. ^ "Free Standards". Video Electronics Standards Association (VESA). Retrieved 2 May 2018.
  11. ^ a b "VESA Introduces DisplayPort v1.2, the Most Comprehensive and Innovative Display Interface Available". www.vesa.org. Video Electronics Standards Association (VESA). 7 January 2010. Archived from the original on 2 May 2018. Retrieved 2 May 2018.
  12. ^ a b c d e "DisplayPort Developer Conference Presentations Posted". Vesa. 6 December 2010. {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ "WinHEC 2008 GRA-583: Display Technologies". Microsoft. 6 November 2008. Archived from the original on 27 December 2008.
  14. ^ Tony Smith, "DisplayPort revision to get mini connector, stereo 3D" Archived 14 October 2009 at the Wayback Machine, The Register, 13 January 2009
  15. ^ Joseph D. Cornwall (15 January 2014). "DisplayPort in A/V Applications in the Next Five Years". connectorsupplier.com. Retrieved 10 May 2018.
  16. ^ "VESA Adds 'Adaptive-Sync' to Popular DisplayPort Video Standard". vesa.org. 12 May 2014. Retrieved 27 January 2016.
  17. ^ Anand Lal Shimpi. "AMD Demonstrates "FreeSync", Free G-Sync Alternative, at CES 2014". anandtech.com. Retrieved 27 January 2016.
  18. ^ "AMD 'FreeSync': proposition pour le DP 1.2a". hardware.fr. Retrieved 27 January 2016.
  19. ^ a b c d e "VESA Releases DisplayPort 1.3 Standard". Video Electronics Standards Association (VESA). 15 September 2014. Archived from the original on 12 August 2017. Retrieved 27 January 2016.
  20. ^ "VESA Releases DisplayPort 1.3 Standard: 50% More Bandwidth, New Features". www.anandtech.com. Retrieved 7 January 2016.
  21. ^ "VESA Releases DisplayPort 1.3 Standard: 50% More Bandwidth, New Features". 16 September 2014. Retrieved 15 September 2016. DisplayPort Active-Sync remains an optional part of the specification, so Adaptive-Sync availability will continue to be on a monitor-by-monitor basis as a premium feature.
  22. ^ a b c d "VESA Publishes DisplayPort Standard Version 1.4". Video Electronics Standards Association (VESA). 1 March 2016. Archived from the original on 3 January 2018. Retrieved 2 March 2016.
  23. ^ "DisplayPort 1.4 vs HDMI 2.1". Planar.
  24. ^ "VESA Updates Display Stream Compression Standard to Support New Applications and Richer Display Content". PRNewswire. 27 January 2016. Retrieved 29 January 2016.
  25. ^ a b "FAQ – DisplayPort". Archived from the original on 24 December 2018.
  26. ^ "DSC Display Stream Compression". Archived from the original on 10 July 2019.
  27. ^ a b "VESA Publishes DisplayPort 2.0 Video Standard Enabling Support for Beyond-8K Resolutions, Higher Refresh Rates For 4K/HDR and Virtual Reality Applications". 26 June 2019. Retrieved 26 June 2019.
  28. ^ "imgur.com". Imgur.
  29. ^ "VESA DisplayPort Alternate Mode on USB-C – Technical Overview" (PDF). USB Implementers Forum. 28 September 2016.
  30. ^ "VESA Strengthens 8K Video Resolution Ecosystem with Market-ready DP8K Certified DisplayPort Cables". VESA – Interface Standards for The Display Industry. 3 January 2018.
  31. ^ Sag, Anshel (12 February 2019). "Display Technologies Ruled At CES 2019". Forbes.com. Retrieved 12 April 2019.
  32. ^ https://vesa.org/press/vesa-publishes-displayport-2-0-video-standard-enabling-support-for-beyond-8k-resolutions-higher-refresh-rates-for-4k-hdr-and-virtual-reality-applications/
  33. ^ a b "VESA Releases DisplayPort 2.1 Specification". VESA. 17 October 2022. Retrieved 30 October 2022.
  34. ^ a b "VESA Announces DisplayPort Updates and Extensions for Gaming and Automotive Market at CES". 8 January 2024.
  35. ^ Kowaliski, Cyril (4 May 2006). "DisplayPort 1.0 approved by VESA". www.techreport.com. The Tech Report. Retrieved 1 May 2018.
  36. ^ a b "MPEG LA Expands DisplayPort License Coverage" (PDF). 8 August 2016. Archived from the original (PDF) on 15 May 2018. Retrieved 2 May 2018.
  37. ^ a b c d e f g h i j k DisplayPort Standard, Version 1, Video Electronics Standards Association (VESA), 1 May 2006
  38. ^ a b c d e f g h i j k l m n o p q r s t u v DisplayPort Standard, Version 1, Revision 2, Video Electronics Standards Association (VESA), 5 January 2010
  39. ^ Syed Athar Hussain (June 2016). "DisplayPort – Future Proofing Display Connectivity for VR and 8K HDR" (PDF). Retrieved 11 May 2018.
  40. ^ "Thunderbolt 3 Technology Brief" (PDF). Intel Corporation. 2016. Retrieved 14 May 2018.
  41. ^ a b c Smith, Ryan (26 June 2019). "VESA Announces DisplayPort 2.0 Standard: Bandwidth For 8K Monitors & Beyond". Anandtech.
  42. ^ a b VESA DisplayPort Standard, Version 2.1. Video Electronics Standards Association (VESA). 10 October 2022.
  43. ^ a b c Craig Wiley (25 April 2013). "How to Choose a DisplayPort Cable, and Not Get a Bad One!". DisplayPort.org. Archived from the original on 5 July 2013.
  44. ^ "VESA Strengthens 8K Video Resolution Ecosystem with Market-ready DP8K Certified DisplayPort Cables". Video Electronics Standards Association (VESA). 3 January 2018. Archived from the original on 14 May 2018. Retrieved 14 May 2018.
  45. ^ a b "Mini DisplayPort Connector Standard, Version 1.0". Video Electronics Standards Association (VESA). 26 October 2009. Retrieved 13 May 2018.
  46. ^ "The DisplayPort Pin 20 Problem". Monitor Insider. Archived from the original on 14 May 2018. Retrieved 14 May 2018.
  47. ^ Roy Santos (3 January 2008). "Dell UltraSharp 3008WFP 30-Inch LCD Monitor". PC World. Archived from the original on 23 March 2018. Retrieved 14 May 2018.
  48. ^ VESA DisplayPort Marketing Guidelines version 1.1 (PDF), archived from the original (PDF) on 12 November 2020
  49. ^ "DisplayPort Marketing Guidelines R14" (PDF). 8 June 2018. Archived (PDF) from the original on 25 March 2019. Retrieved 25 March 2019.
  50. ^ "GTX 770 4gb Unable to select 144hz on dell S2716DG". 4 February 2016. Archived from the original on 30 July 2020.
  51. ^ "Video Timings Calculator". tomverbeure.github.io. Retrieved 20 June 2022.
  52. ^ "VESA DisplayPort (DP) Standard, Version 2.0". Video Electronics Standards Association (VESA). 26 June 2019.
  53. ^ "LG 27UK650-W 4K UHD LED Monitor". Archived from the original on 18 November 2018.
  54. ^ a b VESA DisplayPort Interoperability Guideline, Version 1.1, VESA, 28 January 2008
  55. ^ "VESA Introduces Updated Dual-Mode Standard for Higher Resolution Interoperability with HDMI Displays". VESA. 31 January 2013. Archived from the original on 10 May 2018. Retrieved 13 May 2018.
  56. ^ "DisplayPortTM Ver.1.2 Overview" (PDF). Retrieved 5 July 2018.
  57. ^ "Does the 16-inch, 2019 MacBook Pro support daisy-chaining on DisplayPort?". 30 April 2020.
  58. ^ "MacBook Pros and (their lack of) DisplayPort MST (Multi-Stream) support: what about macOS Catalina?". 17 December 2019.
  59. ^ "Google's USB Type-C to DP Adapter "DingDong"". Retrieved 2 August 2018.
  60. ^ "MPEG LA Introduces License for DisplayPort". Business Wire. 5 March 2015. Retrieved 5 March 2015.
  61. ^ "DisplayPort Attachment 1" (PDF). 23 November 2015. Archived from the original (PDF) on 23 January 2018. Retrieved 23 November 2015.
  62. ^ "DisplayPort FAQ". Video Electronics Standards Association (VESA). Archived from the original on 13 November 2015. Retrieved 23 November 2015.
  63. ^ "VESA standards purchasing page".
  64. ^ "VESA membership application".
  65. ^ a b Adhikari, Richard (9 December 2010). "VGA Given 5 Years to Live". Tech News World.
  66. ^ "Top PC, Chip, Display Makers to Ditch VGA, DVI". PCMag.
  67. ^ "R.I.P. VGA: Nvidia's GeForce GTX 1080 dumps analog support, following Intel and AMD's lead". PCWorld. 10 May 2016. Retrieved 2 May 2021.
  68. ^ "DisplayPort: the next generation interface for high-definition video and audio content" (PDF). st.com. June 2010. Archived from the original (PDF) on 19 July 2014. Retrieved 15 July 2014.
  69. ^ "Standards". Vesa. Retrieved 27 January 2016. {{cite journal}}: Cite journal requires |journal= (help)
  70. ^ Broekhuijsen, Niels (30 December 2013). "EVGA's DisplayPort Hub Available Now". Tom's Hardware. Retrieved 7 March 2014.
  71. ^ Moritz Förster (16 September 2014). "VESA veröffentlicht DisplayPort 1.3". heise online. Retrieved 27 January 2016.
  72. ^ "FAQ Archive – DisplayPort". VESA. Retrieved 22 August 2012.
  73. ^ "The Truth About DisplayPort vs. HDMI". dell.com. Retrieved 27 January 2016.
  74. ^ "HDMI Adopter Terms". hdmi.org. HDMI Licensing. Archived from the original on 18 December 2008. Retrieved 23 June 2008.
  75. ^ "Interview with Steve Venuti from HDMI Licensing" (PDF). hdmi.org. HDMI Licensing. Archived from the original (PDF) on 21 June 2010. Retrieved 27 January 2016.
  76. ^ "Zotac releases DisplayPort to dual HDMI adapter". Anandtech. 2 August 2011. Retrieved 23 January 2012.
  77. ^ "FAQ for HDMI 2.0". HDMI. Archived from the original on 5 January 2019. Retrieved 29 November 2013.
  78. ^ "HDMI Specification 1.3a" (PDF). HDMI Licensing, LLC. 10 November 2006. Archived from the original (PDF) on 5 March 2016. Retrieved 1 April 2016.
  79. ^ "Designing CEC into your next HDMI Product" (PDF). QuantumData.com. 2008. Archived from the original (PDF) on 4 March 2012. Retrieved 24 July 2017.
  80. ^ Hans Verkuil (20 November 2017). "Linux drm: add support for DisplayPort CEC-Tunneling-over-AUX". Cisco. Retrieved 3 January 2018.
  81. ^ "Understanding EDID - Extended Display Identification Data". .extron.com.
  82. ^ "Digitimes Research: Proportion of HDMI/DisplayPort technology in LCD monitors increases 7.5pp in August". DIGITIMES. September 2014.
  83. ^ "DisplayPort expected to surpass HDMI in 2019 - IHS Technology". technology.ihs.com.
  84. ^ "Thunderbolt Technology: The Fastest Data Connection to Your PC Just Arrived" (Press release). Intel. 24 February 2011. Retrieved 24 February 2011.
  85. ^ "VESA Begins Development of Micro-DisplayPort Connector Standard". DisplayPort. 23 October 2013. Retrieved 7 March 2014.
  86. ^ "VESA Finalizes Requirements for Display Stream Compression Standard" (Press release). VESA. 24 January 2013. Archived from the original on 21 March 2018. Retrieved 20 March 2018.
  87. ^ "Embedded DisplayPort Standard Ready from VESA" (PDF). VESA. 23 February 2009. Archived from the original (PDF) on 7 July 2012.
  88. ^ "VESA Issues Updated Embedded DisplayPort Standard". Business Wire. 7 February 2011. Retrieved 27 January 2016. {{cite journal}}: Cite journal requires |journal= (help)
  89. ^ "Mobile Battery Life and Display Performance Improves with Upcoming Release of eDP 1.4". VESA. 10 September 2012. Retrieved 10 November 2013.
  90. ^ "VESA Publishes Embedded DisplayPort (eDP) Standard Version 1.4a". VESA. 9 February 2015. Retrieved 27 January 2016.
  91. ^ "VESA Rolls Out Production-Ready Embedded DisplayPort Standard 1.4 for Mobile Personal Computing Devices". VESA. 27 October 2015. Retrieved 28 October 2015.
  92. ^ "VESA Publishes Embedded DisplayPort Standard Version 1.5". 27 October 2021. Retrieved 28 October 2021.
  93. ^ "VESA Issues Internal DisplayPort Standard for Flat Panel TVs" (PDF). VESA. 10 May 2010. Archived from the original (PDF) on 26 July 2011.
  94. ^ "WiGig Alliance and VESA to Collaborate on Next Generation Wireless DisplayPort". Wireless Gigabit Alliance. {{cite journal}}: Cite journal requires |journal= (help)
  95. ^ "VESA Experiences Acceleration of MyDP Standard Adoption in Mobile Devices". Archived from the original on 22 March 2016. Retrieved 10 March 2014.
  96. ^ "Support – Slimport". Us.slimportconnect.com. 18 July 2013. Archived from the original on 23 March 2016. Retrieved 11 March 2014.
  97. ^ "Releases MyDP Standard". VESA. 27 June 2012. Archived from the original on 17 March 2016. Retrieved 10 November 2013.
  98. ^ "Experiences Acceleration of MyDP Standard Adoption in Mobile Devices". VESA. 9 November 2012. Retrieved 10 November 2013.
  99. ^ "Hands on with the Analogix SlimPort microUSB to HDMI and VGA adapters". AnandTech. Retrieved 31 December 2013.
  100. ^ "SlimPort". Archived from the original on 9 April 2016. Retrieved 31 December 2013.
  101. ^ "VESA Refreshes DisplayID Standard to Support Higher Resolutions and Tiled Displays". vesa.org. 23 September 2013. Archived from the original on 8 February 2015. Retrieved 24 December 2013.
  102. ^ "Gaming At 3840x2160: Is Your PC Ready For A 4K Display?". tomshardware.com. 19 September 2013. Retrieved 26 December 2013.
  103. ^ "MD/TI's DockPort Adopted As Official Extension to DisplayPort Standard". anandtech.com. Retrieved 12 January 2014.
  104. ^ "DisplayPort Alternate Mode for USB Type-C Announced – Video, Power, & Data All Over Type-D". anandtech.com. Retrieved 14 October 2014.
  105. ^ "Dell UltraSharp 3008WFP 30-Inch LCD Monitor". The Washington Post. Retrieved 25 June 2008.
  106. ^ "AMD Receives First Ever DisplayPort Certification for PC Graphics". AMD. 19 March 2008. Retrieved 23 January 2012.
  107. ^ Kirsch, Nathan (21 February 2008). "EVGA, Palit and XFX GeForce 9600 GT Video Card Review". Legit Reviews. Retrieved 2 April 2013.
  108. ^ "Software Licensing and Trademark Agreement: Mini DisplayPort".
  109. ^ "Apple Mini DisplayPort Connector Implementation License Checklist" (PDF). Apple. Retrieved 4 December 2008.
  110. ^ "ATI Radeon HD 5870 1GB Graphics Card and AMD Eyefinity Review". PC Perspective. 23 September 2009. Archived from the original on 27 September 2009. Retrieved 23 September 2009.
  111. ^ "Signs of the Times: Massive Digital Signage Displays Powered by Diminutive Graphics Card". The Official NVIDIA Blog. Archived from the original on 6 November 2015. Retrieved 1 March 2024.
  112. ^ Williams, Daniel. "NVIDIA Launches NVS 810 Digital Signage Video Card". www.anandtech.com. Archived from the original on 5 November 2015. Retrieved 1 March 2024.
  113. ^ "NVIDIA GeForce 10 Series Graphics Cards". NVIDIA.
  114. ^ "Radeon RX 480-Grafikkarten – AMD". www.amd.com.
  115. ^ "VESA Highlights Growing DisplayPort Alt Mode Adoption and Latest DisplayPort Developments at Mobile World Congress". VESA - Interface Standards for The Display Industry. 15 February 2017.
  116. ^ "Search | Device Specs | PhoneDB - The Largest Phone Specs Database". phonedb.net.
  117. ^ "SlimPort". www.slimportconnect.com.
  118. ^ "Analogix announces DisplayPort transmitter". 26 August 2006. Archived from the original on 24 June 2013. Retrieved 10 August 2009..
  119. ^ "Chrontel".
  120. ^ "Genesis Microchip (GNSS) Q4 2006 Earnings Conference Call". Seeking Alpha. 2 May 2006. Retrieved 16 July 2007.
  121. ^ "Samsung touts development of first DisplayPort desktop LCD". TG Daily. 25 July 2006. Archived from the original on 26 September 2007. Retrieved 25 July 2007.
  122. ^ "Worldwide First DisplayPort MB". 25 March 2008. Archived from the original on 15 January 2009. Retrieved 10 August 2009.
  123. ^ "DataPro DisplayPort Cables".
  124. ^ "MSI announces video adaptor with DisplayPort". 17 January 2008. Archived from the original on 19 December 2013. Retrieved 10 August 2009.

External links