stringtranslate.com

Energía nuclear

La central nuclear de Leibstadt en Suiza
Crecimiento de la generación de energía nuclear a nivel mundial

La energía nuclear es el uso de reacciones nucleares para producir electricidad . La energía nuclear puede obtenerse a partir de reacciones de fisión nuclear , desintegración nuclear y fusión nuclear . En la actualidad, la gran mayoría de la electricidad procedente de la energía nuclear se produce mediante la fisión nuclear de uranio y plutonio en centrales nucleares . Los procesos de desintegración nuclear se utilizan en aplicaciones específicas, como los generadores termoeléctricos de radioisótopos en algunas sondas espaciales como la Voyager 2. La generación de electricidad a partir de energía de fusión sigue siendo el foco de la investigación internacional.

La mayoría de las centrales nucleares utilizan reactores térmicos con uranio enriquecido en un ciclo de combustible de un solo paso . El combustible se retira cuando el porcentaje de átomos que absorben neutrones se vuelve tan grande que ya no se puede sostener una reacción en cadena , normalmente tres años. Luego se enfría durante varios años en piscinas de combustible gastado in situ antes de transferirlo al almacenamiento a largo plazo. El combustible gastado, aunque de bajo volumen, es un residuo radiactivo de alto nivel . Si bien su radiactividad disminuye exponencialmente, debe aislarse de la biosfera durante cientos de miles de años, aunque las tecnologías más nuevas (como los reactores rápidos ) tienen el potencial de reducir esto significativamente. Debido a que el combustible gastado sigue siendo en su mayoría material fisionable, algunos países (por ejemplo, Francia y Rusia ) reprocesan su combustible gastado extrayendo elementos fisionables y fértiles para la fabricación de nuevo combustible, aunque este proceso es más caro que producir combustible nuevo a partir de uranio extraído . Todos los reactores generan algo de plutonio-239 , que se encuentra en el combustible gastado, y como el Pu-239 es el material preferido para las armas nucleares , su reprocesamiento se considera un riesgo de proliferación de armas .

La primera central nuclear se construyó en la década de 1950. La capacidad nuclear instalada a nivel mundial creció hasta 100  GW a fines de la década de 1970, y luego se expandió durante la década de 1980, alcanzando 300  GW en 1990. El accidente de Three Mile Island en 1979 en los Estados Unidos y el desastre de Chernóbil en 1986 en la Unión Soviética dieron como resultado una mayor regulación y oposición pública a las centrales nucleares. Estos factores, junto con el alto costo de construcción, dieron como resultado que la capacidad instalada global solo aumentara a 390  GW en 2022. Estas plantas suministraron 2586 teravatios hora (TWh) de electricidad en 2019, equivalente a aproximadamente el 10% de la generación eléctrica mundial , y fueron la segunda fuente de energía baja en carbono más grande después de la hidroelectricidad . En agosto de 2023, hay 410 reactores de fisión civiles en el mundo , con una capacidad total de 369  GW, [1] 57 en construcción y 102 planificados, con una capacidad combinada de 59  GW y 96  GW, respectivamente. Estados Unidos tiene la flota más grande de reactores nucleares, generando casi 800  TWh de electricidad baja en carbono por año con un factor de capacidad promedio del 92%. El factor de capacidad global promedio es del 89%. [1] La mayoría de los nuevos reactores en construcción son reactores de generación III en Asia.

Los defensores de la energía nuclear sostienen que es una fuente de energía segura y sostenible que reduce las emisiones de carbono . Esto se debe a que la generación de energía nuclear causa uno de los niveles más bajos de muertes por unidad de energía generada en comparación con otras fuentes de energía. El carbón , el petróleo , el gas natural y la hidroelectricidad han causado más muertes por unidad de energía debido a la contaminación del aire y los accidentes . Las plantas de energía nuclear tampoco emiten gases de efecto invernadero y dan como resultado menos emisiones de carbono durante el ciclo de vida que las "renovables" comunes. Los peligros radiológicos asociados con la energía nuclear son las principales motivaciones del movimiento antinuclear , que sostiene que la energía nuclear plantea muchas amenazas para las personas y el medio ambiente, citando el potencial de accidentes como el desastre nuclear de Fukushima en Japón en 2011, y es demasiado costosa/lenta de implementar en comparación con las fuentes de energía sostenibles alternativas .

Historia

Orígenes

Las primeras bombillas encendidas con electricidad generada por energía nuclear en el EBR-1 del Laboratorio Nacional Argonne -Oeste, el 20 de diciembre de 1951. [2]

El descubrimiento de la fisión nuclear se produjo en 1938, tras más de cuatro décadas de trabajo sobre la ciencia de la radiactividad y la elaboración de una nueva física nuclear que describía los componentes de los átomos . Poco después del descubrimiento del proceso de fisión, se comprendió que un núcleo en fisión puede inducir más fisiones nucleares, induciendo así una reacción en cadena autosostenida. [3] Una vez que esto se confirmó experimentalmente en 1939, los científicos de muchos países solicitaron a sus gobiernos apoyo para la investigación de la fisión nuclear, justo en el umbral de la Segunda Guerra Mundial , para el desarrollo de un arma nuclear . [4]

En Estados Unidos, estos esfuerzos de investigación condujeron a la creación del primer reactor nuclear artificial, el Chicago Pile-1 bajo el estadio Stagg Field de la Universidad de Chicago , que alcanzó la criticidad el 2 de diciembre de 1942. El desarrollo del reactor fue parte del Proyecto Manhattan , el esfuerzo aliado para crear bombas atómicas durante la Segunda Guerra Mundial. Condujo a la construcción de reactores de producción de propósito único más grandes para la producción de plutonio de grado armamentístico para su uso en las primeras armas nucleares. Estados Unidos probó la primera arma nuclear en julio de 1945, la prueba Trinity , y los bombardeos atómicos de Hiroshima y Nagasaki tuvieron lugar un mes después.

La ceremonia de botadura del USS  Nautilus en enero de 1954. En 1958 se convertiría en el primer buque en llegar al Polo Norte . [5]
La central nuclear de Calder Hall en el Reino Unido, la primera central nuclear comercial del mundo.

A pesar de la naturaleza militar de los primeros dispositivos nucleares, las décadas de 1940 y 1950 se caracterizaron por un fuerte optimismo sobre el potencial de la energía nuclear para proporcionar energía barata e inagotable. [6] La electricidad se generó por primera vez mediante un reactor nuclear el 20 de diciembre de 1951, en la estación experimental EBR-I cerca de Arco, Idaho , que inicialmente produjo unos 100 kW . [7] [8] En 1953, el presidente estadounidense Dwight Eisenhower pronunció su discurso " Átomos para la paz " en las Naciones Unidas , enfatizando la necesidad de desarrollar rápidamente usos "pacíficos" de la energía nuclear. A esto le siguió la Ley de Energía Atómica de 1954 que permitió la rápida desclasificación de la tecnología de reactores estadounidenses y alentó el desarrollo por parte del sector privado. 

Primera generación de energía

La primera organización en desarrollar energía nuclear práctica fue la Marina de los Estados Unidos , con el reactor S1W para propulsar submarinos y portaaviones . El primer submarino de propulsión nuclear, el USS  Nautilus , se hizo a la mar en enero de 1954. [9] [10] El reactor S1W era un reactor de agua presurizada . Se eligió este diseño porque era más simple, más compacto y más fácil de operar en comparación con los diseños alternativos, por lo que era más adecuado para su uso en submarinos. Esta decisión daría como resultado que el PWR fuera el reactor elegido también para la generación de energía, lo que tendría un impacto duradero en el mercado de electricidad civil en los años venideros. [11]

El 27 de junio de 1954, la central nuclear de Óbninsk en la URSS se convirtió en la primera central nuclear del mundo en generar electricidad para una red eléctrica , produciendo alrededor de 5 megavatios de energía eléctrica. [12] La primera central nuclear comercial del mundo, Calder Hall en Windscale, Inglaterra, se conectó a la red eléctrica nacional el 27 de agosto de 1956. Al igual que varios otros reactores de generación I , la planta tenía el doble propósito de producir electricidad y plutonio-239 , este último para el naciente programa de armas nucleares en Gran Bretaña . [13]

Expansión y primera oposición

La capacidad nuclear instalada global total inicialmente aumentó con relativa rapidez, pasando de menos de 1 gigavatio (GW) en 1960 a 100 GW  a fines de los años 1970. [9] Durante los años 1970 y 1980, el aumento de los costos económicos (relacionados con los tiempos de construcción más largos debido en gran medida a cambios regulatorios y litigios de grupos de presión) [14] y la caída de los precios de los combustibles fósiles hicieron que las plantas de energía nuclear que se estaban construyendo en ese momento fueran menos atractivas. En los años 1980 en los EE. UU. y 1990 en Europa, el crecimiento estancado de la red eléctrica y la liberalización de la electricidad también hicieron que la adición de nuevos generadores de energía de carga base de gran tamaño fuera económicamente poco atractiva.

La crisis del petróleo de 1973 tuvo un efecto significativo en países como Francia y Japón , que habían dependido más del petróleo para la generación eléctrica, para invertir en energía nuclear. [15] Francia construiría 25 plantas de energía nuclear durante los siguientes 15 años, [16] [17] y en 2019, el 71% de la electricidad francesa se generaba con energía nuclear, el porcentaje más alto de cualquier nación del mundo. [18]

A principios de los años 1960, en Estados Unidos surgió cierta oposición local a la energía nuclear. [19] A finales de los años 1960, algunos miembros de la comunidad científica comenzaron a expresar preocupaciones claras. [20] Estas preocupaciones antinucleares estaban relacionadas con los accidentes nucleares , la proliferación nuclear , el terrorismo nuclear y la eliminación de residuos radiactivos . [21] A principios de los años 1970, hubo grandes protestas por una propuesta de planta de energía nuclear en Wyhl , Alemania. El proyecto se canceló en 1975. El éxito antinuclear en Wyhl inspiró la oposición a la energía nuclear en otras partes de Europa y América del Norte. [22] [23]

A mediados de los años 1970, el activismo antinuclear ganó un mayor atractivo e influencia, y la energía nuclear comenzó a convertirse en un tema de importante protesta pública. [24] [25] En algunos países, el conflicto de la energía nuclear "alcanzó una intensidad sin precedentes en la historia de las controversias tecnológicas". [26] [27] La ​​creciente hostilidad pública hacia la energía nuclear condujo a un proceso de obtención de licencias más largo, más regulaciones y mayores requisitos para el equipo de seguridad, lo que hizo que las nuevas construcciones fueran mucho más caras. [28] [29] En los Estados Unidos, más de 120 propuestas de reactores de agua ligera fueron finalmente canceladas [30] y la construcción de nuevos reactores se detuvo. [31] El accidente de 1979 en Three Mile Island sin víctimas mortales, jugó un papel importante en la reducción del número de nuevas construcciones de plantas en muchos países. [20]

Chernóbil y el renacimiento

La ciudad de Pripyat, abandonada desde 1986, con la planta de Chernóbil y el arco del Nuevo Confinamiento Seguro de Chernóbil a lo lejos
Olkiluoto 3 en construcción en 2009. Fue el primer EPR , un diseño PWR modernizado, en comenzar a construirse.

Durante la década de 1980, en promedio, se ponía en funcionamiento un nuevo reactor nuclear cada 17 días. [32] A fines de la década, la capacidad nuclear instalada a nivel mundial alcanzó los 300 GW. Desde fines de la década de 1980, la incorporación de nueva capacidad se desaceleró significativamente, y en 2005  la capacidad nuclear instalada alcanzó los 366 GW. 

El desastre de Chernóbil de 1986 en la URSS , que involucró a un reactor RBMK , alteró el desarrollo de la energía nuclear y condujo a un mayor enfoque en el cumplimiento de las normas internacionales de seguridad y reglamentación. [33] Se considera el peor desastre nuclear de la historia tanto en víctimas totales, con 56 muertes directas, como financieramente, con la limpieza y el costo estimado en 18  mil millones de rublos (US$ 68 mil millones en 2019, ajustados por inflación). [34] [35] La organización internacional para promover la conciencia de seguridad y el desarrollo profesional de los operadores en instalaciones nucleares, la Asociación Mundial de Operadores Nucleares (WANO), fue creada como resultado directo del accidente de Chernóbil de 1986. El desastre de Chernóbil jugó un papel importante en la reducción del número de nuevas construcciones de plantas en los años siguientes. [20] Influenciada por estos eventos, Italia votó en contra de la energía nuclear en un referéndum de 1987, [36] convirtiéndose en el primer país en eliminar por completo la energía nuclear en 1990.  

A principios de la década de 2000, la energía nuclear esperaba un renacimiento nuclear , un aumento en la construcción de nuevos reactores, debido a las preocupaciones sobre las emisiones de dióxido de carbono . [37] Durante este período, se comenzó a construir reactores más nuevos de generación III , como el EPR .

Accidente de Fukushima

Generación de energía nuclear (TWh) y reactores nucleares operativos desde 1997 [38]

Las perspectivas de un renacimiento nuclear se vieron retrasadas por otro accidente nuclear. [37] [39] El accidente nuclear de Fukushima Daiichi de 2011 fue causado por el terremoto y tsunami de Tōhoku , uno de los terremotos más grandes jamás registrados. La planta de energía nuclear de Fukushima Daiichi sufrió tres fusiones del núcleo debido a la falla del sistema de enfriamiento de emergencia por falta de suministro eléctrico. Esto resultó en el accidente nuclear más grave desde el desastre de Chernóbil.

El accidente provocó un reexamen de la seguridad nuclear y la política de energía nuclear en muchos países. [40] Alemania aprobó planes para cerrar todos sus reactores para 2022, y muchos otros países revisaron sus programas de energía nuclear. [41] [42] [43] [44] Después del desastre, Japón cerró todos sus reactores de energía nuclear, algunos de ellos de forma permanente, y en 2015 comenzó un proceso gradual para reiniciar los 40 reactores restantes, después de los controles de seguridad y basándose en criterios revisados ​​para las operaciones y la aprobación pública. [45]

En 2022, el gobierno japonés, bajo el liderazgo del primer ministro Fumio Kishida , declaró que se reabrirían 10 plantas de energía nuclear más desde el desastre de 2011. [46] Kishida también está impulsando la investigación y construcción de nuevas plantas nucleares más seguras para salvaguardar a los consumidores japoneses del precio fluctuante del mercado de combustibles fósiles y reducir las emisiones de gases de efecto invernadero de Japón. [47] Kishida tiene la intención de que Japón se convierta en un exportador importante de energía y tecnología nuclear a países en desarrollo de todo el mundo. [47]

Perspectivas actuales

En 2015, las perspectivas del OIEA para la energía nuclear se habían vuelto más prometedoras, reconociendo la importancia de la generación baja en carbono para mitigar el cambio climático . [48] A partir de 2015 , la tendencia mundial era que las nuevas centrales nucleares que entraran en funcionamiento se equilibraran con el número de plantas antiguas que se retiraran. [49] En 2016, la Administración de Información Energética de los Estados Unidos proyectó para su "caso base" que la generación mundial de energía nuclear aumentaría de 2344 teravatios hora (TWh) en 2012 a 4500  TWh en 2040. Se esperaba que la mayor parte del aumento previsto se produjera en Asia. [50] A partir de 2018, había más de 150 reactores nucleares planificados, incluidos 50 en construcción. [51] En enero de 2019, China tenía 45 reactores en funcionamiento, 13 en construcción y planeaba construir 43 más, lo que la convertiría en el mayor generador de electricidad nuclear del mundo. [52] En 2021, se informó de que se estaban construyendo 17 reactores. China construyó muchos menos reactores de los que había planeado originalmente. Su participación en la electricidad generada a partir de energía nuclear fue del 5 % en 2019 [53] y los observadores han advertido de que, junto con los riesgos, el cambio en la economía de la generación de energía puede hacer que las nuevas plantas de energía nuclear "ya no tengan sentido en un mundo que se inclina hacia una energía renovable más barata y confiable". [54] [55]

En octubre de 2021, el gabinete japonés aprobó el nuevo Plan de Generación de Electricidad hasta 2030 elaborado por la Agencia de Recursos Naturales y Energía (ANRE) y un comité asesor, tras una consulta pública. El objetivo nuclear para 2030 requiere la reanudación de la actividad de otros diez reactores. En julio de 2022, el primer ministro Fumio Kishida anunció que el país debería estudiar la posibilidad de construir reactores avanzados y ampliar las licencias de explotación más allá de los 60 años. [56]

A partir de 2022, con los precios mundiales del petróleo y el gas en aumento, mientras que Alemania está reiniciando sus plantas de carbón para lidiar con la pérdida de gas ruso que necesita para complementar su Energiewende , [57] muchos otros países han anunciado planes ambiciosos para revitalizar la envejecida capacidad de generación nuclear con nuevas inversiones. El presidente francés, Emmanuel Macron, anunció su intención de construir seis nuevos reactores en las próximas décadas, colocando la energía nuclear en el centro de la campaña de Francia por la neutralidad de carbono para 2050. [58] Mientras tanto, en los Estados Unidos, el Departamento de Energía , en colaboración con las entidades comerciales TerraPower y X-energy , está planeando construir dos reactores nucleares avanzados diferentes para 2027, con otros planes para la implementación nuclear en sus objetivos de energía verde y seguridad energética a largo plazo. [59]

Centrales eléctricas

Una animación de un reactor de agua presurizada en funcionamiento.
Número de reactores civiles generadores de electricidad por tipo en 2014 [60]
  PWR   BWR   GCR   PWR (protección contra incendios)   GRG de largo alcance   FBR

Las centrales nucleares son centrales térmicas que generan electricidad aprovechando la energía térmica liberada por la fisión nuclear . Una central nuclear de fisión se compone generalmente de: un reactor nuclear , en el que tienen lugar las reacciones nucleares que generan calor; un sistema de refrigeración, que extrae el calor del interior del reactor; una turbina de vapor , que transforma el calor en energía mecánica ; un generador eléctrico , que transforma la energía mecánica en energía eléctrica. [61]

Cuando un neutrón choca con el núcleo de un átomo de uranio-235 o plutonio , puede dividir el núcleo en dos núcleos más pequeños, lo que constituye una reacción de fisión nuclear. La reacción libera energía y neutrones. Los neutrones liberados pueden chocar con otros núcleos de uranio o plutonio, lo que provoca nuevas reacciones de fisión, que liberan más energía y más neutrones. Esto se denomina reacción en cadena . En la mayoría de los reactores comerciales, la velocidad de reacción está contenida por barras de control que absorben el exceso de neutrones. La capacidad de control de los reactores nucleares depende del hecho de que una pequeña fracción de los neutrones resultantes de la fisión se retrasan . El retraso temporal entre la fisión y la liberación de los neutrones ralentiza los cambios en las velocidades de reacción y da tiempo para mover las barras de control para ajustar la velocidad de reacción. [61] [62]

Ciclo del combustible

El ciclo del combustible nuclear comienza cuando se extrae el uranio, se enriquece y se transforma en combustible nuclear (1), que se envía a una planta de energía nuclear . Después de su uso, el combustible gastado se envía a una planta de reprocesamiento (2) o a un depósito final (3). En el reprocesamiento nuclear , el 95% del combustible gastado puede reciclarse potencialmente para volver a utilizarse en una planta de energía (4).

El ciclo de vida del combustible nuclear comienza con la extracción de uranio . El mineral de uranio se convierte luego en una forma compacta de concentrado de mineral , conocida como torta amarilla (U 3 O 8 ), para facilitar el transporte. [63] Los reactores de fisión generalmente necesitan uranio-235 , un isótopo fisible del uranio . La concentración de uranio-235 en el uranio natural es baja (alrededor del 0,7%). Algunos reactores pueden utilizar este uranio natural como combustible, dependiendo de su economía de neutrones . Estos reactores generalmente tienen moderadores de grafito o agua pesada . Para los reactores de agua ligera, el tipo de reactor más común, esta concentración es demasiado baja y debe aumentarse mediante un proceso llamado enriquecimiento de uranio . [63] En los reactores de agua ligera civiles, el uranio se enriquece típicamente al 3,5-5% de uranio-235. [64] El uranio se convierte luego generalmente en óxido de uranio (UO 2 ), una cerámica, que luego se sinteriza por compresión en pastillas de combustible, una pila de las cuales forma barras de combustible de la composición y geometría adecuadas para el reactor en particular. [64]

Después de un tiempo en el reactor, el combustible habrá reducido el material fisible y habrá aumentado los productos de fisión, hasta que su uso se vuelva impráctico. [64] En ese momento, el combustible gastado se trasladará a una piscina de combustible gastado que proporciona refrigeración para el calor térmico y protección contra la radiación ionizante. Después de varios meses o años, el combustible gastado estará lo suficientemente frío desde el punto de vista radiactivo y térmico como para ser trasladado a contenedores de almacenamiento en seco o reprocesado. [64]

Recursos de uranio

Proporciones de los isótopos uranio-238 (azul) y uranio-235 (rojo) presentes en el uranio natural y en el uranio enriquecido para diferentes aplicaciones. Los reactores de agua ligera utilizan uranio enriquecido entre un 3 y un 5 %, mientras que los reactores CANDU funcionan con uranio natural.

El uranio es un elemento bastante común en la corteza terrestre: es aproximadamente tan común como el estaño o el germanio , y es unas 40 veces más común que la plata . [65] El uranio está presente en concentraciones traza en la mayoría de las rocas, la tierra y el agua del océano, pero generalmente se extrae económicamente solo donde está presente en concentraciones relativamente altas. La minería de uranio puede ser subterránea, a cielo abierto o por lixiviación in situ . Un número cada vez mayor de las minas de mayor producción son operaciones subterráneas remotas, como la mina de uranio McArthur River , en Canadá, que por sí sola representa el 13% de la producción mundial. A partir de 2011, los recursos conocidos de uranio del mundo, económicamente recuperables al precio máximo arbitrario de US$130/kg, eran suficientes para durar entre 70 y 100 años. [66] [67] [68] En 2007, la OCDE estimó que el uranio recuperable económicamente en recursos convencionales totales y minerales de fosfato sería de 670 años , suponiendo la tasa de uso vigente en ese momento. [69]

Los reactores de agua ligera hacen un uso relativamente ineficiente del combustible nuclear, en su mayoría utilizando sólo el isótopo muy raro uranio-235. [70] El reprocesamiento nuclear puede hacer que estos residuos sean reutilizables, y los reactores más nuevos también logran un uso más eficiente de los recursos disponibles que los más antiguos. [70] Con un ciclo de combustible de reactor rápido puro con una quema de todo el uranio y actínidos (que actualmente constituyen las sustancias más peligrosas en los residuos nucleares), se estima que hay un valor de 160.000 años de uranio en recursos convencionales totales y mineral de fosfato a un precio de 60-100 dólares EE.UU./kg. [71] Sin embargo, el reprocesamiento es caro, posiblemente peligroso y puede utilizarse para fabricar armas nucleares. [72] [73] [74] [75] [76] Un análisis encontró que los precios del uranio podrían aumentar en dos órdenes de magnitud entre 2035 y 2100 y que podría haber una escasez cerca del final del siglo. [77] Un estudio de 2017 realizado por investigadores del MIT y el WHOI concluyó que "al ritmo actual de consumo, las reservas convencionales mundiales de uranio terrestre (aproximadamente 7,6 millones de toneladas) podrían agotarse en poco más de un siglo". [78] El suministro limitado de uranio-235 puede inhibir una expansión sustancial con la tecnología nuclear actual. [79] Si bien se están explorando varias formas de reducir la dependencia de dichos recursos, [80] [81] [82] se considera que las nuevas tecnologías nucleares no están disponibles a tiempo para los fines de mitigación del cambio climático o la competencia con alternativas de energías renovables, además de ser más caras y requerir una investigación y desarrollo costosos. [79] [83] [84] Un estudio concluyó que no es seguro si los recursos identificados se desarrollarán lo suficientemente rápido como para proporcionar un suministro de combustible ininterrumpido a las instalaciones nucleares ampliadas [85] y varias formas de minería pueden verse desafiadas por barreras ecológicas, costos y requisitos de tierra. [86] [87] Los investigadores también informan de una considerable dependencia de las importaciones de energía nuclear. [88] [89] [90] [91]

También existen recursos de uranio no convencionales. El uranio está presente de forma natural en el agua de mar en una concentración de unos 3 microgramos por litro, [92] [93] [94] y se considera que en el agua de mar hay 4.400 millones de toneladas de uranio presentes en cualquier momento. [95] En 2014 se sugirió que sería económicamente competitivo producir combustible nuclear a partir de agua de mar si el proceso se implementara a gran escala. [96] Al igual que los combustibles fósiles, en escalas de tiempo geológicas, el uranio extraído a escala industrial del agua de mar se repondría tanto por la erosión fluvial de las rocas como por el proceso natural de disolución del uranio de la superficie del fondo del océano, los cuales mantienen los equilibrios de solubilidad de la concentración de agua de mar a un nivel estable. [95] Algunos comentaristas han argumentado que esto refuerza el argumento a favor de que la energía nuclear se considere una energía renovable . [97]

Desperdiciar

Composición típica del combustible de dióxido de uranio antes y después de aproximadamente tres años en el ciclo de combustible nuclear de un solo paso de un reactor de agua ligera [98]

El funcionamiento normal de las centrales nucleares y sus instalaciones produce residuos radiactivos , o desechos nucleares. Este tipo de residuos también se produce durante el desmantelamiento de las centrales. Existen dos grandes categorías de residuos nucleares: los residuos de baja actividad y los residuos de alta actividad. [99] Los primeros tienen baja radiactividad e incluyen elementos contaminados como la ropa, que plantea una amenaza limitada. Los residuos de alta actividad son principalmente el combustible gastado de los reactores nucleares, que es muy radiactivo y debe enfriarse y luego eliminarse de forma segura o reprocesarse. [99]

Residuos de alto nivel

Actividad del combustible UOx gastado en comparación con la actividad del mineral de uranio natural a lo largo del tiempo [100] [98]
Recipientes de almacenamiento en seco que almacenan conjuntos de combustible nuclear gastado

La corriente de desechos más importante de los reactores nucleares es el combustible nuclear gastado , que se considera un residuo de alto nivel . En el caso de los reactores de agua ligera (LWR), el combustible gastado suele estar compuesto por un 95 % de uranio, un 4 % de productos de fisión y aproximadamente un 1 % de actínidos transuránicos (principalmente plutonio , neptunio y americio ). [101] Los productos de fisión son responsables de la mayor parte de la radiactividad a corto plazo, mientras que el plutonio y otros transuránicos son responsables de la mayor parte de la radiactividad a largo plazo. [102]

Los residuos de alto nivel (HLW) deben almacenarse aislados de la biosfera con un blindaje suficiente para limitar la exposición a la radiación. Después de ser retirados de los reactores, los haces de combustible usado se almacenan durante seis a diez años en piscinas de combustible gastado , que proporcionan refrigeración y protección contra la radiación. Después de eso, el combustible está lo suficientemente frío como para que pueda transferirse de forma segura al almacenamiento en contenedores secos . [103] La radiactividad disminuye exponencialmente con el tiempo, de modo que habrá disminuido en un 99,5% después de 100 años. [104] Los productos de fisión de vida corta (SLFP) más intensamente radiactivos se desintegran en elementos estables en aproximadamente 300 años, y después de unos 100.000 años, el combustible gastado se vuelve menos radiactivo que el mineral de uranio natural. [98] [105]

Los métodos comúnmente sugeridos para aislar los desechos LLFP de la biosfera incluyen la separación y transmutación , [98] tratamientos synroc o almacenamiento geológico profundo. [106] [107] [108] [109]

Los reactores de neutrones térmicos , que actualmente constituyen la mayoría de la flota mundial, no pueden quemar el plutonio de grado reactor que se genera durante la operación del reactor. Esto limita la vida del combustible nuclear a unos pocos años. En algunos países, como Estados Unidos, el combustible gastado se clasifica en su totalidad como un residuo nuclear. [110] En otros países, como Francia, se reprocesa en gran medida para producir un combustible parcialmente reciclado, conocido como combustible de óxido mixto o MOX . Para el combustible gastado que no se somete a reprocesamiento, los isótopos más preocupantes son los elementos transuránicos de vida media , que están encabezados por el plutonio de grado reactor (vida media de 24.000 años). [111] Algunos diseños de reactores propuestos, como el reactor rápido integral y los reactores de sales fundidas , pueden utilizar como combustible el plutonio y otros actínidos en el combustible gastado de los reactores de agua ligera, gracias a su espectro de fisión rápido . Esto ofrece una alternativa potencialmente más atractiva a la eliminación geológica profunda. [112] [113] [114]

El ciclo del combustible de torio produce productos de fisión similares, aunque crea una proporción mucho menor de elementos transuránicos a partir de eventos de captura de neutrones dentro de un reactor. El combustible de torio gastado, aunque es más difícil de manipular que el combustible de uranio gastado, puede presentar riesgos de proliferación algo menores. [115]

Residuos de baja actividad

La industria nuclear también produce un gran volumen de desechos de bajo nivel , con baja radiactividad, en forma de artículos contaminados como ropa, herramientas manuales, resinas para purificadores de agua y (al desmantelamiento) los materiales con los que está construido el propio reactor. Los desechos de bajo nivel pueden almacenarse en el sitio hasta que los niveles de radiación sean lo suficientemente bajos como para eliminarlos como desechos ordinarios, o pueden enviarse a un sitio de eliminación de desechos de bajo nivel. [116]

Residuos en relación con otros tipos

En los países con energía nuclear, los desechos radiactivos representan menos del 1% del total de desechos tóxicos industriales, muchos de los cuales siguen siendo peligrosos durante largos períodos. [70] En general, la energía nuclear produce mucho menos material de desecho por volumen que las centrales eléctricas basadas en combustibles fósiles. [117] Las plantas que queman carbón, en particular, producen grandes cantidades de cenizas tóxicas y ligeramente radiactivas resultantes de la concentración de materiales radiactivos naturales en el carbón. [118] Un informe de 2008 del Laboratorio Nacional de Oak Ridge concluyó que la energía del carbón en realidad da como resultado una mayor liberación de radiactividad al medio ambiente que la operación de la energía nuclear, y que la dosis equivalente efectiva para la población de la radiación de las plantas de carbón es 100 veces mayor que la de la operación de las plantas nucleares. [119] Aunque la ceniza de carbón es mucho menos radiactiva que el combustible nuclear gastado en peso, la ceniza de carbón se produce en cantidades mucho mayores por unidad de energía generada. También se libera directamente al medio ambiente como cenizas volantes , mientras que las plantas nucleares utilizan blindaje para proteger el medio ambiente de los materiales radiactivos. [120]

El volumen de los desechos nucleares es pequeño en comparación con la energía producida. Por ejemplo, en la central nuclear Yankee Rowe , que generó 44 mil millones de kilovatios hora de electricidad cuando estaba en servicio, su inventario completo de combustible gastado está contenido en dieciséis barriles. [121] Se estima que para producir un suministro de energía de por vida para una persona con un nivel de vida occidental (aproximadamente 3 GWh ) se requeriría un volumen del orden del volumen de una lata de refresco de uranio poco enriquecido , lo que daría como resultado un volumen similar de combustible gastado generado. [122] [123] [124] 

Eliminación de residuos

Almacenamiento de residuos radiactivos en WIPP
Los contenedores de desechos nucleares generados por los Estados Unidos durante la Guerra Fría se almacenan bajo tierra en la Planta Piloto de Aislamiento de Residuos (WIPP, por sus siglas en inglés) en Nuevo México . La instalación se considera una posible demostración del almacenamiento de combustible gastado de reactores civiles.

Después del almacenamiento provisional en una piscina de combustible gastado , los haces de conjuntos de barras de combustible usadas de una central nuclear típica suelen almacenarse en el lugar en recipientes de almacenamiento en contenedores secos . [125] En la actualidad, los desechos se almacenan principalmente en sitios de reactores individuales y hay más de 430 lugares en todo el mundo donde el material radiactivo continúa acumulándose.

La eliminación de residuos nucleares se considera a menudo el aspecto políticamente más divisivo en el ciclo de vida de una instalación de energía nuclear. [126] La falta de movimiento de residuos nucleares en los reactores de fisión nuclear natural de 2 mil millones de años de Oklo , Gabón, se cita como "una fuente de información esencial hoy en día". [127] [128] Los expertos sugieren que los repositorios subterráneos centralizados que estén bien administrados, vigilados y monitoreados, serían una gran mejora. [126] Existe un "consenso internacional sobre la conveniencia de almacenar residuos nucleares en repositorios geológicos profundos ". [129] Con la llegada de nuevas tecnologías, se han propuesto otros métodos, incluida la eliminación mediante perforaciones horizontales en áreas geológicamente inactivas. [130] [131]

La mayor parte del procesamiento de envases de residuos, la química del reciclaje de combustible experimental a pequeña escala y el refinamiento de radiofármacos se llevan a cabo en celdas calientes controladas a distancia .

No existen depósitos subterráneos de residuos de alto nivel construidos a escala comercial en funcionamiento. [129] [132] [133] Sin embargo, en Finlandia, el depósito de combustible nuclear gastado de Onkalo de la central nuclear de Olkiluoto estaba en construcción en 2015. [134]

Reprocesamiento

La mayoría de los reactores de neutrones térmicos funcionan con un ciclo de combustible nuclear de un solo paso , principalmente debido al bajo precio del uranio fresco. Sin embargo, muchos reactores también se alimentan con materiales fisionables reciclados que permanecen en el combustible nuclear gastado. El material fisionable más común que se recicla es el plutonio de grado de reactor (RGPu) que se extrae del combustible gastado. Se mezcla con óxido de uranio y se fabrica en combustible de óxido mixto o MOX . Debido a que los LWR térmicos siguen siendo el reactor más común en todo el mundo, este tipo de reciclaje es el más común. Se considera que aumenta la sostenibilidad del ciclo del combustible nuclear, reduce el atractivo del combustible gastado para el robo y reduce el volumen de desechos nucleares de alto nivel. [135] El combustible MOX gastado generalmente no se puede reciclar para su uso en reactores de neutrones térmicos. Este problema no afecta a los reactores de neutrones rápidos , que por lo tanto son los preferidos para lograr el potencial energético completo del uranio original. [136] [137]

El componente principal del combustible gastado de los reactores de agua dulce es el uranio ligeramente enriquecido . Este puede reciclarse para obtener uranio reprocesado (RepU), que puede utilizarse en un reactor rápido, utilizarse directamente como combustible en reactores CANDU o enriquecerse nuevamente para otro ciclo a través de un reactor de agua dulce. El reenriquecimiento del uranio reprocesado es común en Francia y Rusia. [138] El uranio reprocesado también es más seguro en términos de potencial de proliferación nuclear. [139] [140] [141]

El reprocesamiento tiene el potencial de recuperar hasta el 95% del combustible de uranio y plutonio en el combustible nuclear gastado, así como reducir la radiactividad a largo plazo dentro de los desechos restantes. Sin embargo, el reprocesamiento ha sido políticamente controvertido debido al potencial de proliferación nuclear y las diversas percepciones de aumento de la vulnerabilidad al terrorismo nuclear . [136] [142] El reprocesamiento también conduce a un mayor costo del combustible en comparación con el ciclo de combustible de un solo uso. [136] [142] Si bien el reprocesamiento reduce el volumen de desechos de alto nivel, no reduce los productos de fisión que son las principales causas de la generación de calor residual y la radiactividad durante los primeros siglos fuera del reactor. Por lo tanto, los desechos reprocesados ​​aún requieren un tratamiento casi idéntico durante los primeros cientos de años.

En la actualidad, el combustible nuclear gastado se reprocesa en Francia, el Reino Unido, Rusia, Japón y la India. En los Estados Unidos, el combustible nuclear gastado no se reprocesa actualmente. [138] La planta de reprocesamiento de La Hague, en Francia, funciona comercialmente desde 1976 y, en 2010, es responsable de la mitad del reprocesamiento mundial . [143] Produce combustible MOX a partir de combustible gastado procedente de varios países. En 2015, se habían reprocesado más de 32 000 toneladas de combustible gastado, la mayoría de ellas procedentes de Francia, el 17 % de Alemania y el 9 % de Japón. [144]

Cría

Inspección de conjuntos de combustible nuclear antes de entrar en un reactor de agua presurizada en Estados Unidos

La reproducción es el proceso de convertir material no fisible en material fisible que puede utilizarse como combustible nuclear. El material no fisible que puede utilizarse para este proceso se denomina material fértil y constituye la gran mayoría de los residuos nucleares actuales. Este proceso de reproducción se produce de forma natural en los reactores reproductores . A diferencia de los reactores de neutrones térmicos de agua ligera, que utilizan uranio-235 (0,7% de todo el uranio natural), los reactores reproductores de neutrones rápidos utilizan uranio-238 (99,3% de todo el uranio natural) o torio. Se considera que varios ciclos de combustible y combinaciones de reactores reproductores son fuentes de energía sostenibles o renovables. [145] [146] En 2006 se estimó que con la extracción de agua de mar, probablemente había cinco mil millones de años de recursos de uranio para su uso en reactores reproductores. [147]

La tecnología de reactores reproductores se ha utilizado en varios reactores, pero a partir de 2006, el alto costo de reprocesar el combustible de manera segura requiere precios de uranio de más de US$200/kg antes de justificarse económicamente. [148] Sin embargo, los reactores reproductores se están desarrollando por su potencial para quemar todos los actínidos (los componentes más activos y peligrosos) en el inventario actual de desechos nucleares, al mismo tiempo que producen energía y crean cantidades adicionales de combustible para más reactores a través del proceso de reproducción. [149] [150] A partir de 2017, hay dos reactores reproductores que producen energía comercial, el reactor BN-600 y el reactor BN-800 , ambos en Rusia. [151] El reactor reproductor Phénix en Francia se apagó en 2009 después de 36 años de operación. [151] Tanto China como la India están construyendo reactores reproductores. El reactor reproductor rápido prototipo indio de 500 MWe está en la fase de puesta en servicio, [152] con planes de construir más. [153]

Otra alternativa a los reactores reproductores de neutrones rápidos son los reactores reproductores de neutrones térmicos que utilizan uranio-233 generado a partir del torio como combustible de fisión en el ciclo del combustible del torio . [154] El torio es aproximadamente 3,5 veces más común que el uranio en la corteza terrestre y tiene características geográficas diferentes. [154] El programa de energía nuclear de tres etapas de la India presenta el uso de un ciclo de combustible de torio en la tercera etapa, ya que tiene abundantes reservas de torio pero poco uranio. [154]

Desmantelamiento

El desmantelamiento nuclear es el proceso de desmantelar una instalación nuclear hasta el punto en que ya no requiere medidas de protección radiológica, [155] devolviendo la instalación y sus partes a un nivel lo suficientemente seguro como para ser confiada para otros usos. [156] Debido a la presencia de materiales radiactivos, el desmantelamiento nuclear presenta desafíos técnicos y económicos. [157] Los costos del desmantelamiento generalmente se distribuyen a lo largo de la vida útil de una instalación y se ahorran en un fondo de desmantelamiento. [158]

Producción

Porcentaje de la producción de electricidad a partir de energía nuclear, 2022 [159]
La situación de la energía nuclear a nivel mundial (haga clic para ver la leyenda)

Generación mundial de electricidad en 2021 por fuente. La generación total fue de 28 petavatios-hora . [160]

  Carbón (36%)
  Gas natural (23%)
  Hidro (15%)
  Nuclear (10%)
  Viento (7%)
  Energía solar (4%)
  Otros (5%)

La energía nuclear civil suministró 2.586 teravatios hora (TWh) de electricidad en 2019, equivalente a aproximadamente el 10% de la generación eléctrica mundial , y fue la segunda fuente de energía baja en carbono más grande después de la hidroelectricidad . [38] [161] Dado que la electricidad representa aproximadamente el 25% del consumo energético mundial , la contribución de la energía nuclear a la energía global fue de aproximadamente el 2,5% en 2011. [162] Esto es un poco más que la producción mundial combinada de electricidad a partir de energía eólica, solar, de biomasa y geotérmica, que juntas proporcionaron el 2% del consumo energético final mundial en 2014. [163] La participación de la energía nuclear en la producción mundial de electricidad ha caído del 16,5% en 1997, en gran parte porque la economía de la energía nuclear se ha vuelto más difícil. [164]

En marzo de 2022, hay 439 reactores de fisión civiles en el mundo , con una capacidad eléctrica combinada de 392 gigavatios (GW). También hay 56 reactores nucleares en construcción y 96 reactores planificados, con una capacidad combinada de 62  GW y 96  GW, respectivamente. [165] Estados Unidos tiene la flota más grande de reactores nucleares, generando más de 800 TWh por año con un factor de capacidad  promedio del 92%. [166] La mayoría de los reactores en construcción son reactores de generación III en Asia. [167]

Las diferencias regionales en el uso de la energía nuclear son grandes. Estados Unidos produce la mayor cantidad de energía nuclear del mundo, ya que la energía nuclear proporciona el 20% de la electricidad que consume, mientras que Francia produce el mayor porcentaje de su energía eléctrica a partir de reactores nucleares: el 71% en 2019. [18] En la Unión Europea , la energía nuclear proporciona el 26% de la electricidad a partir de 2018. [168] La energía nuclear es la fuente de electricidad baja en carbono más grande en los Estados Unidos, [169] y representa dos tercios de la electricidad baja en carbono de la Unión Europea . [170] La política de energía nuclear difiere entre los países de la Unión Europea, y algunos, como Austria, Estonia , Irlanda e Italia , no tienen centrales nucleares activas.

Además, había aproximadamente 140 buques de guerra que utilizaban propulsión nuclear en operación, impulsados ​​por alrededor de 180 reactores. [171] [172] Estos incluyen barcos militares y algunos civiles, como rompehielos de propulsión nuclear . [173]

La investigación internacional continúa sobre usos adicionales del calor de proceso, como la producción de hidrógeno (en apoyo de una economía del hidrógeno ), para desalinizar agua de mar y para su uso en sistemas de calefacción urbana . [174]

Ciencias económicas

La economía de las nuevas centrales nucleares es un tema controvertido y las inversiones multimillonarias dependen de la elección de las fuentes de energía. Las centrales nucleares suelen tener unos costes de capital elevados para su construcción. Por este motivo, la comparación con otros métodos de generación de energía depende en gran medida de supuestos sobre los plazos de construcción y la financiación del capital para las centrales nucleares. Los costes del combustible representan alrededor del 30% de los costes de explotación, mientras que los precios están sujetos al mercado. [175]

El alto costo de construcción es uno de los mayores desafíos para las plantas de energía nuclear.  Se estima que una nueva planta de 1.100 MW costará entre 6.000 y 9.000 millones de dólares. [176] Las tendencias de costos de la energía nuclear muestran una gran disparidad por nación, diseño, ritmo de construcción y nivel de familiaridad en la experiencia. Los únicos dos países para los que hay datos disponibles que vieron disminuciones de costos en la década de 2000 fueron India y Corea del Sur. [177]

El análisis de la economía de la energía nuclear también debe tener en cuenta quién asume los riesgos de las incertidumbres futuras. A partir de 2010, todas las centrales nucleares en funcionamiento han sido desarrolladas por monopolios de servicios públicos de electricidad de propiedad estatal o regulados . [178] Desde entonces, muchos países han liberalizado el mercado de la electricidad , donde estos riesgos, y el riesgo de que surjan competidores más baratos antes de que se recuperen los costos de capital, son asumidos por los proveedores y operadores de las plantas en lugar de los consumidores, lo que lleva a una evaluación significativamente diferente de la economía de las nuevas centrales nucleares. [179]

El costo nivelado de la electricidad (LCOE) de una nueva planta de energía nuclear se estima en 69  USD/MWh, según un análisis de la Agencia Internacional de Energía y la Agencia de Energía Nuclear de la OCDE . Esto representa la estimación del costo medio para una planta de energía nuclear número n de su tipo que se completará en 2025, con una tasa de descuento del 7%. Se encontró que la energía nuclear era la opción de menor costo entre las tecnologías despachables . [180] Las energías renovables variables pueden generar electricidad más barata: el costo medio de la energía eólica terrestre se estimó en 50 USD/MWh, y la energía solar a gran escala en 56 USD/MWh. [180] Con el costo de emisión de CO2 asumido de 30 USD/tonelada, la energía del carbón (88 USD/MWh) y el gas (71 USD/MWh) es más cara que las tecnologías bajas en carbono. Se encontró que la electricidad proveniente de la operación a largo plazo de plantas de energía nuclear mediante la extensión de la vida útil era la opción de menor costo, a 32 USD/MWh. [180]       

Las medidas para mitigar el calentamiento global , como un impuesto al carbono o el comercio de emisiones de carbono , pueden favorecer la economía de la energía nuclear. [181] [182] Los fenómenos meteorológicos extremos, incluidos los eventos agravados por el cambio climático, están reduciendo la confiabilidad de todas las fuentes de energía, incluida la energía nuclear, en un pequeño grado, dependiendo de su ubicación. [183] ​​[184]

Los nuevos reactores modulares pequeños , como los desarrollados por NuScale Power , tienen como objetivo reducir los costos de inversión para nuevas construcciones al hacer los reactores más pequeños y modulares, de modo que puedan construirse en una fábrica.

Algunos diseños tuvieron considerables ventajas económicas iniciales, como el CANDU , que logró un factor de capacidad y una confiabilidad mucho mayores en comparación con los reactores de agua ligera de la generación II hasta la década de 1990. [185]

Las plantas de energía nuclear, aunque capaces de seguir cierta carga de la red , normalmente se hacen funcionar tanto como sea posible para mantener el costo de la energía eléctrica generada lo más bajo posible, suministrando principalmente electricidad de carga base . [186] Debido al diseño del reactor de reabastecimiento en línea, los PHWR (de los cuales el diseño CANDU es parte) continúan manteniendo muchas posiciones de récord mundial por la generación continua de electricidad más larga, a menudo más de 800 días. [187] El récord específico a partir de 2019 lo tiene un PHWR en la central nuclear de Kaiga , que genera electricidad de forma continua durante 962 días. [188]

Los costos no considerados en los cálculos del LCOE incluyen fondos para investigación y desarrollo, y desastres (se estima que el desastre de Fukushima le costó a los contribuyentes aproximadamente $187 mil millones). [189] En algunos casos, se encontró que los gobiernos obligaban a "los consumidores a pagar por adelantado los posibles sobrecostos" [84] o subsidiaban la energía nuclear antieconómica [190] o se les exigía que lo hicieran. [55] Los operadores nucleares están obligados a pagar por la gestión de residuos en la Unión Europea. [191] En los EE. UU., el Congreso habría decidido hace 40 años que la nación, y no las empresas privadas, sería responsable de almacenar los desechos radiactivos y que los contribuyentes pagarían los costos. [192] El Informe Mundial sobre Residuos Nucleares 2019 encontró que "incluso en países en los que el principio de quien contamina paga es un requisito legal, se aplica de manera incompleta" y señala el caso de la instalación de eliminación geológica profunda alemana Asse II , donde los contribuyentes deben pagar la recuperación de grandes cantidades de desechos. [193] De manera similar, otras formas de energía, incluidos los combustibles fósiles y las energías renovables, tienen una parte de sus costos cubiertos por los gobiernos. [194]

Uso en el espacio

El generador termoeléctrico de radioisótopos multimisión (MMRTG), utilizado en varias misiones espaciales como el rover Curiosity en Marte

El uso más común de la energía nuclear en el espacio es el uso de generadores termoeléctricos de radioisótopos , que utilizan la desintegración radiactiva para generar energía. Estos generadores de energía son de escala relativamente pequeña (pocos kW), y se utilizan principalmente para alimentar misiones espaciales y experimentos durante largos períodos en los que la energía solar no está disponible en cantidad suficiente, como en la sonda espacial Voyager 2. [195] Se han lanzado algunos vehículos espaciales utilizando reactores nucleares : 34 reactores pertenecen a la serie soviética RORSAT y uno fue el estadounidense SNAP-10A . [195]

Tanto la fisión como la fusión parecen prometedoras para aplicaciones de propulsión espacial , generando velocidades de misión más altas con menos masa de reacción . [195] [196]

Seguridad

Tasas de mortalidad por unidad de producción de electricidad para diferentes fuentes de energía

Las centrales nucleares tienen tres características únicas que afectan a su seguridad, en comparación con otras centrales eléctricas. En primer lugar, en un reactor nuclear hay materiales intensamente radiactivos . Su liberación al medio ambiente podría ser peligrosa. En segundo lugar, los productos de fisión , que constituyen la mayoría de las sustancias intensamente radiactivas en el reactor, continúan generando una cantidad significativa de calor de desintegración incluso después de que la reacción en cadena de fisión se haya detenido. Si no se puede eliminar el calor del reactor, las barras de combustible pueden sobrecalentarse y liberar materiales radiactivos. En tercer lugar, es posible que se produzca un accidente de criticidad (un aumento rápido de la potencia del reactor) en ciertos diseños de reactores si no se puede controlar la reacción en cadena. Estas tres características deben tenerse en cuenta al diseñar reactores nucleares. [197]

Todos los reactores modernos están diseñados de manera que se evite un aumento incontrolado de la potencia del reactor mediante mecanismos de retroalimentación naturales, un concepto conocido como coeficiente de reactividad de vacío negativo. Si la temperatura o la cantidad de vapor en el reactor aumenta, la tasa de fisión disminuye inherentemente. La reacción en cadena también se puede detener manualmente insertando barras de control en el núcleo del reactor. Los sistemas de enfriamiento de emergencia del núcleo (ECCS) pueden eliminar el calor de desintegración del reactor si fallan los sistemas de enfriamiento normales. [198] Si el ECCS falla, múltiples barreras físicas limitan la liberación de materiales radiactivos al medio ambiente incluso en caso de accidente. La última barrera física es el gran edificio de contención . [197]

Con una tasa de mortalidad de 0,03 por TWh , la energía nuclear es la segunda fuente de energía más segura por unidad de energía generada, después de la energía solar, en términos de mortalidad cuando se considera el historial histórico. [199] La energía producida por carbón, petróleo, gas natural e hidroelectricidad ha causado más muertes por unidad de energía generada debido a la contaminación del aire y los accidentes energéticos . Esto se encuentra al comparar las muertes inmediatas de otras fuentes de energía con las muertes por cáncer indirectas, inmediatas y latentes, o previstas, de accidentes de energía nuclear. [200] [201] Cuando se comparan las muertes directas e indirectas (incluidas las muertes resultantes de la minería y la contaminación del aire) de la energía nuclear y los combustibles fósiles, [202] se ha calculado que el uso de la energía nuclear ha evitado alrededor de 1,84 millones de muertes por contaminación del aire entre 1971 y 2009, al reducir la proporción de energía que de otro modo habría sido generada por combustibles fósiles. [203] [204] Tras el desastre nuclear de Fukushima en 2011, se ha estimado que si Japón nunca hubiera adoptado la energía nuclear, los accidentes y la contaminación de las plantas de carbón o gas habrían causado más años de vida perdidos. [205]

Los graves impactos de los accidentes nucleares a menudo no son directamente atribuibles a la exposición a la radiación, sino más bien a efectos sociales y psicológicos. La evacuación y el desplazamiento a largo plazo de las poblaciones afectadas crearon problemas para muchas personas, especialmente los ancianos y los pacientes hospitalizados. [206] La evacuación forzada de un accidente nuclear puede conducir al aislamiento social, ansiedad, depresión, problemas médicos psicosomáticos, comportamiento imprudente y suicidio. Un estudio exhaustivo de 2005 sobre las secuelas del desastre de Chernóbil concluyó que el impacto en la salud mental es el mayor problema de salud pública causado por el accidente. [207] Frank N. von Hippel , un científico estadounidense, comentó que un miedo desproporcionado a la radiación ionizante ( radiofobia ) podría tener efectos psicológicos a largo plazo en la población de las áreas contaminadas después del desastre de Fukushima. [208]

Accidentes

Tras el desastre nuclear de Fukushima Daiichi de 2011, el peor accidente nuclear del mundo desde 1986, 50.000 hogares fueron desplazados después de que la radiación se filtrara al aire, el suelo y el mar. [209] Los controles de radiación llevaron a la prohibición de algunos envíos de verduras y pescado. [210]
Calor de desintegración del reactor expresado como fracción de la potencia total después de la parada del reactor, utilizando dos correlaciones diferentes. Para eliminar el calor de desintegración, los reactores necesitan refrigeración después de la parada de las reacciones de fisión. La pérdida de la capacidad para eliminar el calor de desintegración provocó el accidente de Fukushima .

Se han producido algunos accidentes nucleares y radiactivos graves . La gravedad de los accidentes nucleares se clasifica generalmente utilizando la Escala Internacional de Sucesos Nucleares (INES) introducida por el Organismo Internacional de Energía Atómica (OIEA). La escala clasifica los sucesos o accidentes anómalos en una escala de 0 (una desviación del funcionamiento normal que no supone ningún riesgo para la seguridad) a 7 (un accidente importante con efectos generalizados). Ha habido tres accidentes de nivel 5 o superior en la industria de la energía nuclear civil, dos de los cuales, el accidente de Chernóbil y el accidente de Fukushima , están clasificados en el nivel 7.

Los primeros accidentes nucleares importantes fueron el desastre de Kyshtym en la Unión Soviética y el incendio de Windscale en el Reino Unido, ambos en 1957. El primer accidente importante en un reactor nuclear en los EE. UU. ocurrió en 1961 en el SL-1 , un reactor nuclear experimental del ejército estadounidense en el Laboratorio Nacional de Idaho . Una reacción en cadena descontrolada resultó en una explosión de vapor que mató a los tres miembros de la tripulación y causó una fusión . [211] [212] Otro accidente grave ocurrió en 1968, cuando uno de los dos reactores refrigerados por metal líquido a bordo del submarino soviético  K-27 sufrió una falla del elemento combustible , con la emisión de productos de fisión gaseosos al aire circundante, lo que resultó en 9 muertes de tripulantes y 83 heridos. [213]

El accidente nuclear de Fukushima Daiichi fue causado por el terremoto y tsunami de Tohoku de 2011. El accidente no ha causado ninguna muerte relacionada con la radiación, pero ha provocado contaminación radiactiva de las zonas circundantes. Se espera que la difícil operación de limpieza cueste decenas de miles de millones de dólares a lo largo de 40 años o más. [214] [215] El accidente de Three Mile Island en 1979 fue un accidente de menor escala, clasificado en el nivel 5 de la INES. No hubo muertes directas o indirectas causadas por el accidente. [216]

El impacto de los accidentes nucleares es controvertido. Según Benjamin K. Sovacool , los accidentes de energía de fisión ocuparon el primer lugar entre las fuentes de energía en términos de su costo económico total, representando el 41% de todos los daños a la propiedad atribuidos a accidentes energéticos. [217] Otro análisis encontró que el carbón, el petróleo, el gas licuado de petróleo y los accidentes hidroeléctricos (principalmente debido al desastre de la presa de Banqiao ) han tenido mayores impactos económicos que los accidentes de energía nuclear. [218] El estudio compara las muertes por cáncer latente atribuibles a la energía nuclear con las muertes inmediatas de otras fuentes de energía por unidad de energía generada, y no incluye el cáncer relacionado con los combustibles fósiles y otras muertes indirectas creadas por el uso del consumo de combustibles fósiles en su clasificación de "accidente grave" (un accidente con más de cinco muertes). El accidente de Chernóbil en 1986 causó aproximadamente 50 muertes por efectos directos e indirectos, y algunas lesiones graves temporales por síndrome de radiación aguda . [219] La mortalidad futura prevista por aumentos en las tasas de cáncer se estima en 4000 en las próximas décadas. [220] [221] [222] Sin embargo, los costos han sido grandes y están aumentando.

La energía nuclear funciona bajo un marco de seguros que limita o estructura las responsabilidades por accidentes de acuerdo con las convenciones nacionales e internacionales. [223] A menudo se argumenta que este potencial déficit en la responsabilidad representa un costo externo no incluido en el costo de la electricidad nuclear. Este costo es pequeño, asciende a aproximadamente el 0,1% del costo nivelado de la electricidad , según un estudio de la Oficina de Presupuesto del Congreso de los Estados Unidos. [224] Estos costos de seguro más allá de lo normal para los peores escenarios no son exclusivos de la energía nuclear. Las plantas de energía hidroeléctrica tampoco están completamente aseguradas contra un evento catastrófico como las fallas de las represas . Por ejemplo, la falla de la represa de Banqiao causó la muerte de aproximadamente 30.000 a 200.000 personas, y 11 millones de personas perdieron sus hogares. Como las aseguradoras privadas basan las primas de seguro de represas en escenarios limitados, el seguro contra desastres mayores en este sector también lo proporciona el estado. [225]

Ataques y sabotajes

Los terroristas podrían atacar las centrales nucleares en un intento de liberar contaminación radiactiva en la comunidad. La Comisión del 11 de septiembre de los Estados Unidos ha dicho que las centrales nucleares fueron objetivos potenciales considerados originalmente para los ataques del 11 de septiembre de 2001. Un ataque a la piscina de combustible gastado de un reactor también podría ser grave, ya que estas piscinas están menos protegidas que el núcleo del reactor. La liberación de radiactividad podría provocar miles de muertes a corto plazo y un mayor número de muertes a largo plazo. [226]

En los Estados Unidos, la Comisión Reguladora Nuclear lleva a cabo ejercicios de "fuerza contra fuerza" (FOF, por sus siglas en inglés) en todas las plantas nucleares al menos una vez cada tres años. [226] En los Estados Unidos, las plantas están rodeadas por una doble hilera de vallas altas que se controlan electrónicamente. Los terrenos de la planta están patrullados por una fuerza considerable de guardias armados. [227]

El sabotaje interno también es una amenaza porque los miembros de la organización pueden observar y sortear las medidas de seguridad. El éxito de los delitos internos dependía de la observación y el conocimiento de las vulnerabilidades de seguridad por parte de los perpetradores. [228] Un incendio causó daños por valor de entre 5 y 10 millones de dólares en el Indian Point Energy Center de Nueva York en 1971. [229] El pirómano era un trabajador de mantenimiento de la planta. [230]

Proliferación

Arsenales de armas nucleares de Estados Unidos y la URSS /Rusia , 1945-2006. El Programa de Megatones a Megavatios fue la principal fuerza impulsora de la marcada reducción de la cantidad de armas nucleares en todo el mundo desde que terminó la Guerra Fría. [231] [232]
El crucero de misiles guiados USS Monterey (CG 61) recibe combustible en el mar (FAS) del portaaviones de clase Nimitz USS George Washington (CVN 73).

La proliferación nuclear es la propagación de armas nucleares , material fisionable y tecnología nuclear relacionada con las armas a Estados que aún no poseen armas nucleares. Muchas tecnologías y materiales asociados con la creación de un programa de energía nuclear tienen una capacidad de doble uso, ya que también pueden utilizarse para fabricar armas nucleares. Por esta razón, la energía nuclear presenta riesgos de proliferación.

El programa de energía nuclear puede convertirse en una ruta que conduzca a un arma nuclear. Un ejemplo de esto es la preocupación por el programa nuclear de Irán . [233] La reutilización de industrias nucleares civiles para fines militares sería una violación del Tratado de No Proliferación Nuclear , al que se adhieren 190 países. A abril de 2012, hay treinta y un países que tienen plantas de energía nuclear civil, [234] de los cuales nueve tienen armas nucleares . La gran mayoría de estos estados con armas nucleares han producido armas antes de las centrales nucleares comerciales.

Un objetivo fundamental para la seguridad global es minimizar los riesgos de proliferación nuclear asociados con la expansión de la energía nuclear. [233] La Asociación Mundial de Energía Nuclear fue un esfuerzo internacional para crear una red de distribución en la que los países en desarrollo necesitados de energía recibirían combustible nuclear a una tasa descontada, a cambio de que esa nación aceptara renunciar a su propio desarrollo autóctono de un programa de enriquecimiento de uranio. El Eurodif / Consorcio Europeo de Enriquecimiento de Uranio por Difusión Gaseosa con sede en Francia es un programa que implementó exitosamente este concepto, con España y otros países sin instalaciones de enriquecimiento comprando una parte del combustible producido en la instalación de enriquecimiento controlada por Francia, pero sin una transferencia de tecnología. [235] Irán fue uno de los primeros participantes desde 1974 y sigue siendo accionista de Eurodif a través de Sofidif .

Un informe de las Naciones Unidas de 2009 decía que:

El resurgimiento del interés en la energía nuclear podría dar lugar a la difusión mundial de tecnologías de enriquecimiento de uranio y reprocesamiento de combustible gastado, que presentan riesgos obvios de proliferación, ya que estas tecnologías pueden producir materiales fisionables que se pueden utilizar directamente en armas nucleares. [236]

Por otra parte, los reactores de potencia también pueden reducir los arsenales de armas nucleares cuando los materiales nucleares de grado militar se reprocesan para ser utilizados como combustible en plantas de energía nuclear. El Programa de Megatones a Megavatios se considera el programa de no proliferación más exitoso hasta la fecha. [231] Hasta 2005, el programa había procesado 8.000 millones de dólares de uranio altamente enriquecido de grado armamentístico en uranio poco enriquecido adecuado como combustible nuclear para reactores de fisión comerciales al diluirlo con uranio natural . Esto corresponde a la eliminación de 10.000 armas nucleares. [237] Durante aproximadamente dos décadas, este material generó casi el 10 por ciento de toda la electricidad consumida en los Estados Unidos, o aproximadamente la mitad de toda la electricidad nuclear estadounidense, con un total de alrededor de 7.000 TWh de electricidad producida. [238] En total, se estima que ha costado 17.000 millones de dólares, una "ganga para los contribuyentes estadounidenses", con Rusia obteniendo 12.000 millones de dólares de beneficio del acuerdo. [238] Ganancias muy necesarias para la industria de supervisión nuclear rusa, que después del colapso de la economía soviética , tuvo dificultades para pagar el mantenimiento y la seguridad del uranio altamente enriquecido y las ojivas de la Federación Rusa. [239] El Programa de Megatones a Megavatios fue aclamado como un gran éxito por los defensores de las armas antinucleares, ya que ha sido en gran medida la fuerza impulsora detrás de la marcada reducción en el número de armas nucleares en todo el mundo desde que terminó la guerra fría. [231] Sin embargo, sin un aumento en los reactores nucleares y una mayor demanda de combustible fisionable, el costo del desmantelamiento y la mezcla descendente ha disuadido a Rusia de continuar su desarme. A partir de 2013, Rusia parece no estar interesada en extender el programa. [240] 

Impacto ambiental

La central nuclear de Ikata , un reactor de agua a presión que se enfría mediante un intercambiador de calor de refrigerante secundario con una gran masa de agua, un enfoque de enfriamiento alternativo a las grandes torres de enfriamiento.

Al ser una fuente de energía baja en carbono con relativamente pocos requisitos de uso de la tierra, la energía nuclear puede tener un impacto ambiental positivo. También requiere un suministro constante de cantidades significativas de agua y afecta al medio ambiente a través de la minería y el procesamiento. [241] [242] [243] [244] Sus mayores impactos negativos potenciales sobre el medio ambiente pueden surgir de sus riesgos transgeneracionales de proliferación de armas nucleares que pueden aumentar los riesgos de su uso en el futuro, riesgos de problemas asociados con la gestión de los desechos radiactivos, como la contaminación de las aguas subterráneas, riesgos de accidentes y riesgos de diversas formas de ataques a los sitios de almacenamiento de desechos o plantas de reprocesamiento y energía. [72] [245] [ 246] [ 247] [248] [244 ] [249] [250] Sin embargo, estos siguen siendo en su mayoría solo riesgos, ya que históricamente solo ha habido pocos desastres en plantas de energía nuclear con impactos ambientales relativamente sustanciales conocidos.

Emisiones de carbono

Emisiones de gases de efecto invernadero a lo largo del ciclo de vida de las tecnologías de suministro de electricidad, valores medianos calculados por el IPCC [251]

La energía nuclear es uno de los principales métodos de generación de energía con bajas emisiones de carbono para producir electricidad y, en términos de emisiones totales de gases de efecto invernadero durante el ciclo de vida por unidad de energía generada , tiene valores de emisión comparables o inferiores a los de la energía renovable . [252] [253] Un análisis de 2014 de la literatura sobre la huella de carbono realizado por el Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) informó que la intensidad de las emisiones totales incorporadas del ciclo de vida de la energía nuclear tiene un valor medio de 12 g de CO2eq / kWh , que es el más bajo entre todas las fuentes de energía de carga base comerciales. [251] [254] Esto contrasta con el carbón y el gas natural , con 820 y 490 g de CO2eq / kWh. [251] [254] En 2021, los reactores nucleares de todo el mundo han ayudado a evitar la emisión de 72 mil millones de toneladas de dióxido de carbono desde 1970, en comparación con la generación de electricidad a partir de carbón, según un informe. [204] [255] 

Radiación

La dosis media de la radiación natural de fondo es de 2,4 milisievert por año (mSv/a) a nivel mundial. Varía entre 1  mSv/a y 13  mSv/a, dependiendo principalmente de la geología del lugar. Según las Naciones Unidas ( UNSCEAR ), las operaciones habituales de las centrales nucleares, incluido el ciclo del combustible nuclear, aumentan esta cantidad en 0,0002  mSv/a de exposición pública como promedio mundial. La dosis media de las centrales nucleares en funcionamiento a las poblaciones locales que las rodean es inferior a 0,0001  mSv/a. [256] A modo de comparación, la dosis media para quienes viven a 80 km (50 millas) de una central eléctrica de carbón es más de tres veces esta dosis, 0,0003  mSv/a. [257]

Chernóbil provocó que las poblaciones circundantes más afectadas y el personal de recuperación masculino recibieran una media inicial de 50 a 100  mSv a lo largo de unas pocas horas o semanas, mientras que el legado global restante del peor accidente de una planta de energía nuclear en exposición media es de 0,002  mSv/a y está cayendo continuamente a un ritmo decreciente, desde el máximo inicial de 0,04  mSv por persona promediado para toda la población del hemisferio norte en el año del accidente en 1986. [256]

Debate

Una comparación de los precios a lo largo del tiempo de la energía de fisión nuclear y de otras fuentes. Durante el tiempo presentado, miles de turbinas eólicas y similares se construyeron en líneas de montaje en producción en masa, lo que resultó en una economía de escala. Si bien la energía nuclear sigue siendo a medida, muchas instalaciones pioneras en su tipo se agregaron en el período de tiempo indicado y ninguna está en producción en serie. Our World in Data señala que este costo es el promedio mundial , mientras que los 2 proyectos que impulsaron el precio nuclear al alza fueron en los EE. UU. La organización reconoce que el costo medio de la instalación de energía nuclear más exportada y producida en la década de 2010, la surcoreana APR1400 , se mantuvo "constante", incluso en la exportación. [258]
LCOE es una medida del costo actual neto promedio de la generación de electricidad para una planta generadora durante su vida útil. Como métrica, sigue siendo controvertida ya que la vida útil de las unidades no es independiente sino proyecciones del fabricante, no una longevidad demostrada.

El debate sobre la energía nuclear se refiere a la controversia que ha rodeado el despliegue y uso de reactores de fisión nuclear para generar electricidad a partir de combustible nuclear para fines civiles. [25] [259] [26]

Proponents of nuclear energy regard it as a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on other energy sources that are also[89][90][91] often dependent on imports.[260][261][262] For example, proponents note that annually, nuclear-generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels.[263] Additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed/recycled for other energy uses.[264] M. King Hubbert, who popularized the concept of peak oil, saw oil as a resource that would run out and considered nuclear energy its replacement.[265] Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission-electricity in terms of deaths is so far "unparalleled".[14] Kharecha and Hansen estimated that "global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning" and, if continued, it could prevent up to 7 million deaths and 240 GtCO2-eq emissions by 2050.[204]

Proponents also bring to attention the opportunity cost of using other forms of electricity. For example, the Environmental Protection Agency estimates that coal kills 30,000 people a year,[266] as a result of its environmental impact, while 60 people died in the Chernobyl disaster.[267] A real world example of impact provided by proponents is the 650,000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant.[268]

Opponents believe that nuclear power poses many threats to people's health and environment[269][270] such as the risk of nuclear weapons proliferation, long-term safe waste management and terrorism in the future.[271][272] They also contend that nuclear power plants are complex systems where many things can and have gone wrong.[273][274] Costs of the Chernobyl disaster amount to ≈$68 billion as of 2019 and are increasing,[34] the Fukushima disaster is estimated to cost taxpayers ~$187 billion,[189] and radioactive waste management is estimated to cost the Eureopean Union nuclear operators ~$250 billion by 2050.[191] However, in countries that already use nuclear energy, when not considering reprocessing, intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees[275] "as the main part of these costs stems from the operation of the intermediate storage facility".[276]

Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources.[54][277][83][243][278] Further costs include ongoing research and development, expensive reprocessing in cases where such is practiced[72][73][74][76] and decommissioning.[279][280][281] Proponents note that focussing on the levelized cost of energy (LCOE), however, ignores the value premium associated with 24/7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid.[282] "Nuclear thus remains the dispatchable low-carbon technology with the lowest expected costs in 2025. Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries."[283]

Anti-nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany

Overall, many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation. In general, they find it to be, too dangerous, too expensive, to take too long for deployment, to be an obstacle to achieving a transition towards sustainability and carbon-neutrality,[83][284][285][286] effectively being a distracting[287][288] competition for resources (i.e. human, financial, time, infrastructure and expertise) for the deployment and development of alternative, sustainable, energy system technologies[84][288][83][289] (such as for wind, ocean and solar[83] – including e.g. floating solar – as well as ways to manage their intermittency other than nuclear baseload[290] generation such as dispatchable generation, renewables-diversification,[291][292] super grids, flexible energy demand and supply regulating smart grids and energy storage[293][294][295][296][297] technologies).[298][299][300][301][302][303][304][305][250]

Nevertheless, there is ongoing research and debate over costs of new nuclear, especially in regions where i.a. seasonal energy storage is difficult to provide and which aim to phase out fossil fuels in favor of low carbon power faster than the global average.[306] Some find that financial transition costs for a 100% renewables-based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies (i.e. not considering potential advances in e.g. green hydrogen, transmission and flexibility capacities, ways to reduce energy needs, geothermal energy and fusion energy) when the grid only extends across Europe.[307] Arguments of economics and safety are used by both sides of the debate.

Comparison with renewable energy

Slowing global warming requires a transition to a low-carbon economy, mainly by burning far less fossil fuel. Limiting global warming to 1.5 °C is technically possible if no new fossil fuel power plants are built from 2019.[308] This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil-based fuels in the global energy mix,[309][310] with intense academic debate.[311][312] Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power.[313]

World total primary energy supply of 162,494 TWh (or 13,792 Mtoe) by fuels in 2017 (IEA, 2019)[314]: 6, 8 

  Oil (32%)
  Coal/Peat/Shale (27.1%)
  Natural Gas (22.2%)
  Biofuels and waste (9.5%)
  Nuclear (4.9%)
  Hydro (2.5%)
  Others (Renewables) (1.8%)

Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources. The Intergovernmental Panel on Climate Change (IPCC) has said that if governments were supportive, renewable energy supply could account for close to 80% of the world's energy use by 2050.[315] While in developed nations the economically feasible geography for new hydropower is lacking, with every geographically suitable area largely already exploited,[316] some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power.[312][317]

Nuclear power is comparable to, and in some cases lower, than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered.[202][200][318] Depending on recycling of renewable energy technologies, nuclear reactors may produce a much smaller volume of waste, although much more toxic, expensive to manage and longer-lived.[319][246] A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low-level nuclear waste for a few decades.[320] The disposal and management of the wide variety[321] of radioactive waste, of which there are over one quarter of a million tons as of 2018, can cause future damage and costs across the world for over or during hundreds of thousands of years[322][323][324] – possibly over a million years,[325][326][327][328] due to issues such as leakage,[329] malign retrieval, vulnerability to attacks (including of reprocessing[75][72] and power plants), groundwater contamination, radiation and leakage to above ground, brine leakage or bacterial corrosion.[330][325][331][332] The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed.[333] Corrosion experts noted in 2020 that putting the problem of storage off any longer "isn't good for anyone".[334] Separated plutonium and enriched uranium could be used for nuclear weapons, which – even with the current centralized control (e.g. state-level) and level of prevalence – are considered to be a difficult and substantial global risk for substantial future impacts on human health, lives, civilization and the environment.[72][245][246][247][248]

Speed of transition and investment needed

Analysis in 2015 by professor Barry W. Brook and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years. This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s.[335][336] In a similar analysis, Brook had earlier determined that 50% of all global energy, including transportation synthetic fuels etc., could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in GW per year per unit of global GDP (GW/year/$).[337] This is in contrast to the conceptual studies for 100% renewable energy systems, which would require an order of magnitude more costly global investment per year, which has no historical precedent.[338] These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects.[337][338] Brook notes that the "principal limitations on nuclear fission are not technical, economic or fuel-related, but are instead linked to complex issues of societal acceptance, fiscal and political inertia, and inadequate critical evaluation of the real-world constraints facing [the other] low-carbon alternatives."[337]

Scientific data indicates that – assuming 2021 emissions levels – humanity only has a carbon budget equivalent to 11 years of emissions left for limiting warming to 1.5 °C[339][340] while the construction of new nuclear reactors took a median of 7.2–10.9 years in 2018–2020,[332] substantially longer than, alongside other measures, scaling up the deployment of wind and solar – especially for novel reactor types – as well as being more risky, often delayed and more dependent on state-support.[341][342][285][287][83][343][298] Researchers have cautioned that novel nuclear technologies – which have been in development since decades,[344][83][277] are less tested, have higher proliferation risks, have more new safety problems, are often far from commercialization and are more expensive[277][83][243][345] – are not available in time.[79][84][346][287][347][297][348] Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion; however, fusion energy is unlikely to be commercially widespread before 2050.[349][350][351][352][353]

Land use

The median land area used by US nuclear power stations per 1 GW installed capacity is 1.3 square miles (3.4 km2).[354][355] To generate the same amount of electricity annually (taking into account capacity factors) from solar PV would require about 60 square miles (160 km2), and from a wind farm about 310 square miles (800 km2).[354][355] Not included in this, is land required for the associated transmission lines, water supply, rail lines, mining and processing of nuclear fuel, and for waste disposal.[356]

Research

Advanced fission reactor designs

Current fission reactors in operation around the world are second or third generation systems, with most of the first-generation systems having been already retired. Research into advanced generation IV reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource use and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.[357]

Hybrid fusion-fission

Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.[358]

Fusion

Schematic of the ITER tokamak under construction in France

Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission.[359][360] These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. Nuclear fusion research is underway but fusion energy is not likely to be commercially widespread before 2050.[361][362][363]

Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is ITER, a large tokamak under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027 – 11 years after initially anticipated.[364] A follow on commercial nuclear fusion power station, DEMO, has been proposed.[349][365] There are also suggestions for a power plant based upon a different fusion approach, that of an inertial fusion power plant.

Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2020, more than 80 years after the first attempts, commercialization of fusion power production was thought to be unlikely before 2050.[349][350][351][352][353]

To enhance and accelerate the development of fusion energy, the United States Department of Energy (DOE) granted $46 million to eight firms, including Commonwealth Fusion Systems and Tokamak Energy Inc, in 2023. This ambitious initiative aims to introduce pilot-scale fusion within a decade.[366]

See also

References

  1. ^ a b "PRIS - Home". pris.iaea.org. Archived from the original on 2018-06-13. Retrieved 2023-08-22.
  2. ^ "Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy". www.ne.anl.gov. Retrieved 24 March 2021.
  3. ^ Wellerstein, Alex (2008). "Inside the atomic patent office". Bulletin of the Atomic Scientists. 64 (2): 26–31. Bibcode:2008BuAtS..64b..26W. doi:10.2968/064002008. ISSN 0096-3402.
  4. ^ "The Einstein Letter". Atomicarchive.com. Archived from the original on 2013-06-28. Retrieved 2013-06-22.
  5. ^ "Nautilus (SSN-571)". US Naval History and Heritage Command (US Navy).
  6. ^ Wendt, Gerald; Geddes, Donald Porter (1945). The Atomic Age Opens. New York: Pocket Books. Archived from the original on 2016-03-28. Retrieved 2017-11-03.
  7. ^ "Reactors Designed by Argonne National Laboratory: Fast Reactor Technology". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2021-04-18. Retrieved 2012-07-25.
  8. ^ "Reactor Makes Electricity". Popular Mechanics. Hearst Magazines. March 1952. p. 105.
  9. ^ a b "50 Years of Nuclear Energy" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2010-01-07. Retrieved 2006-11-09.
  10. ^ "STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development"". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2012-06-22. Retrieved 2012-07-25.
  11. ^ Rockwell, Theodore (1992). The Rickover Effect. Naval Institute Press. p. 162. ISBN 978-1-55750-702-0.
  12. ^ "From Obninsk Beyond: Nuclear Power Conference Looks to Future". International Atomic Energy Agency. 2004-06-23. Archived from the original on 2006-11-15. Retrieved 2006-06-27.
  13. ^ Hill, C. N. (2013). An atomic empire: a technical history of the rise and fall of the British atomic energy programme. London, England: Imperial College Press. ISBN 978-1-908977-43-4.
  14. ^ a b Bernard L. Cohen (1990). The Nuclear Energy Option: An Alternative for the 90s. New York: Plenum Press. ISBN 978-0-306-43567-6.
  15. ^ Beder, Sharon (2006). "The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity"". Soshisha, Japan. Archived from the original on 2011-03-17. Retrieved 2009-05-15.
  16. ^ Palfreman, Jon (1997). "Why the French Like Nuclear Energy". Frontline. Public Broadcasting Service. Archived from the original on 25 August 2007. Retrieved 25 August 2007.
  17. ^ de Preneuf, Rene. "Nuclear Power in France – Why does it Work?". Archived from the original on 13 August 2007. Retrieved 25 August 2007.
  18. ^ a b "Nuclear Share of Electricity Generation in 2019". Power Reactor Information System. International Atomic Energy Agency. Archived from the original on 2023-04-08. Retrieved 2021-01-09.
  19. ^ Garb, Paula (1999). "Review of Critical Masses: Opposition to Nuclear Power in California, 1958–1978". Journal of Political Ecology. 6. Archived from the original on 2018-06-01. Retrieved 2011-03-14.
  20. ^ a b c Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy. Detroit, Michigan: Longman Current Affairs. p. 1. ISBN 978-0-8103-9000-3.
  21. ^ Martin, Brian (2007). "Opposing nuclear power: past and present". Social Alternatives. 26 (2): 43–47. Archived from the original on 2019-05-10. Retrieved 2011-03-14.
  22. ^ Mills, Stephen; Williams, Roger (1986). Public acceptance of new technologies: an international review. London: Croom Helm. pp. 375–376. ISBN 978-0-7099-4319-8.
  23. ^ Robert Gottlieb (2005). Forcing the Spring: The Transformation of the American Environmental Movement, Revised Edition, Island Press, p. 237.
  24. ^ Falk, Jim (1982). Global Fission: The Battle Over Nuclear Power. Melbourne, Australia: Oxford University Press. pp. 95–96. ISBN 978-0-19-554315-5.
  25. ^ a b Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective Archived 2023-03-23 at the Wayback Machine (Berkeley, California: University of California Press), pp. 10–11.
  26. ^ a b Herbert P. Kitschelt (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 57. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
  27. ^ Kitschelt, Herbert P. (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 71. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
  28. ^ "Costs of Nuclear Power Plants – What Went Wrong?". www.phyast.pitt.edu. Archived from the original on 2010-04-13. Retrieved 2007-12-04.
  29. ^ Ginn, Vance; Raia, Elliott (August 18, 2017). "nuclear energy may soon be free from its tangled regulatory web". Washington Examiner. Archived from the original on January 6, 2019. Retrieved January 6, 2019.
  30. ^ "Nuclear Power: Outlook for New U.S. Reactors" (PDF). p. 3. Archived (PDF) from the original on 2015-09-24. Retrieved 2015-10-18.
  31. ^ Cook, James (1985-02-11). "Nuclear Follies". Forbes Magazine.
  32. ^ Thorpe, Gary S. (2015). AP Environmental Science, 6th ed. Barrons Educational Series. ISBN 978-1-4380-6728-5. ISBN 1-4380-6728-3
  33. ^ "Chernobyl Nuclear Accident". www.iaea.org. IAEA. 14 May 2014. Archived from the original on 11 June 2008. Retrieved 23 March 2021.
  34. ^ a b "Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides" (PDF). OECD-NEA. 2002. Archived (PDF) from the original on 22 June 2015. Retrieved 3 June 2015.
  35. ^ Johnson, Thomas (author/director) (2006). The battle of Chernobyl. Play Film / Discovery Channel. Archived from the original on 2021-03-07. Retrieved 2021-03-23. (see 1996 interview with Mikhail Gorbachev.)
  36. ^ Sassoon, Donald (2014-06-03). Contemporary Italy: Politics, Economy and Society Since 1945. Routledge. ISBN 978-1-317-89377-6.
  37. ^ a b "Analysis: Nuclear renaissance could fizzle after Japan quake". Reuters. 2011-03-14. Archived from the original on 2015-12-08. Retrieved 2011-03-14.
  38. ^ a b "Trend in Electricity Supplied". International Atomic Energy Agency. Archived from the original on 2021-01-11. Retrieved 2021-01-09.
  39. ^ "Analysis: The legacy of the Fukushima nuclear disaster". Carbon Brief. 10 March 2016. Archived from the original on 8 March 2021. Retrieved 24 March 2021.
  40. ^ Westall, Sylvia & Dahl, Fredrik (2011-06-24). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety". Scientific American. Archived from the original on 2011-06-25. Retrieved 2011-06-25.
  41. ^ Chandler, Jo (2011-03-19). "Is this the end of the nuclear revival?". The Sydney Morning Herald. Sydney, Australia. Archived from the original on 2020-05-10. Retrieved 2020-02-20.
  42. ^ Belford, Aubrey (2011-03-17). "Indonesia to Continue Plans for Nuclear Power". The New York Times. Archived from the original on 2020-05-10. Retrieved 2017-02-25.
  43. ^ Morgan, Piers (2011-03-17). "Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power". CNN. Archived from the original on 2019-09-30. Retrieved 2011-03-17.
  44. ^ "Israeli PM cancels plan to build nuclear plant". xinhuanet.com. 2011-03-18. Archived from the original on March 18, 2011. Retrieved 2011-03-17.
  45. ^ "Startup of Sendai Nuclear Power Unit No.1". Kyushu Electric Power Company Inc. 2015-08-11. Archived from the original on 2017-05-25. Retrieved 2015-08-12.
  46. ^ "Japan turns back to nuclear power in post-Fukushima shift". Financial Times. London, England. 24 August 2022. Archived from the original on 30 September 2022. Retrieved November 15, 2022.
  47. ^ a b "Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones". August 25, 2022. Archived from the original on November 15, 2022. Retrieved November 26, 2022.
  48. ^ "January: Taking a fresh look at the future of nuclear power". www.iea.org. Archived from the original on 2016-04-05. Retrieved 2016-04-18.
  49. ^ "Plans for New Reactors Worldwide". World Nuclear Association. October 2015. Archived from the original on 2016-01-31. Retrieved 2016-01-05.
  50. ^ "International Energy outlook 2016". US Energy Information Administration. Archived from the original on 15 August 2016. Retrieved 17 August 2016.
  51. ^ "Plans for New Nuclear Reactors Worldwide". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2018-09-28. Retrieved 2018-09-29.
  52. ^ "Can China become a scientific superpower? – The great experiment". The Economist. 12 January 2019. Archived from the original on 25 January 2019. Retrieved 25 January 2019.
  53. ^ "A global nuclear phaseout or renaissance? | DW | 04.02.2021". Deutsche Welle (www.dw.com). Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  54. ^ a b Griffiths, James. "China's gambling on a nuclear future, but is it destined to lose?". CNN. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  55. ^ a b "Building new nuclear plants in France uneconomical -environment agency". Reuters. 10 December 2018. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  56. ^ World Nuclear Association. "Nuclear Power in Japan". Archived from the original on 2020-04-01. Retrieved 2022-09-12.
  57. ^ "Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe". Reuters. 22 August 2022. Archived from the original on 2022-09-09. Retrieved 2022-09-12.
  58. ^ "Macron bets on nuclear in carbon-neutrality push, announces new reactors". Reuters. 10 February 2022. Archived from the original on 2022-09-14. Retrieved 2022-09-12.
  59. ^ "Department of Energy picks two advanced nuclear reactors for demonstration projects, announces new reactors". Science.org. 16 October 2020. Archived from the original on 24 February 2023. Retrieved 3 March 2023.
  60. ^ "Nuclear Power Reactors in the World – 2015 Edition" (PDF). International Atomic Energy Agency (IAEA). Archived (PDF) from the original on 16 November 2020. Retrieved 26 October 2017.
  61. ^ a b "How does a nuclear reactor make electricity?". www.world-nuclear.org. World Nuclear Association. Archived from the original on 24 August 2018. Retrieved 24 August 2018.
  62. ^ Spyrou, Artemis; Mittig, Wolfgang (2017-12-03). "Atomic age began 75 years ago with the first controlled nuclear chain reaction". Scientific American. Archived from the original on 2018-11-18. Retrieved 2018-11-18.
  63. ^ a b "Stages of the Nuclear Fuel Cycle". NRC Web. Nuclear Regulatory Commission. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
  64. ^ a b c d "Nuclear Fuel Cycle Overview". www.world-nuclear.org. World Nuclear Association. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
  65. ^ "uranium Facts, information, pictures | Encyclopedia.com articles about uranium". Encyclopedia.com. 2001-09-11. Archived from the original on 2016-09-13. Retrieved 2013-06-14.
  66. ^ "Second Thoughts About Nuclear Power" (PDF). A Policy Brief – Challenges Facing Asia. January 2011. Archived from the original (PDF) on January 16, 2013. Retrieved September 11, 2012.
  67. ^ "Uranium resources sufficient to meet projected nuclear energy requirements long into the future". Nuclear Energy Agency (NEA). 2008-06-03. Archived from the original on 2008-12-05. Retrieved 2008-06-16.
  68. ^ Uranium 2007 – Resources, Production and Demand. Nuclear Energy Agency, Organisation for Economic Co-operation and Development. 2008. ISBN 978-92-64-04766-2. Archived from the original on 2009-01-30.
  69. ^ "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and table 4.10.
  70. ^ a b c "Waste Management in the Nuclear Fuel Cycle". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-11. Retrieved 2006-11-09.
  71. ^ "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and figure 4.10.
  72. ^ a b c d e "Nuclear Reprocessing: Dangerous, Dirty, and Expensive". Union of Concerned Scientists. Archived from the original on 15 January 2021. Retrieved 26 January 2020.
  73. ^ a b "Toward an Assessment of Future Proliferation Risk" (PDF). Archived (PDF) from the original on 25 November 2021. Retrieved 25 November 2021.
  74. ^ a b Zhang, Hui (1 July 2015). "Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response". Bulletin of the Atomic Scientists. 71 (4): 18–22. doi:10.1177/0096340215590790. ISSN 0096-3402. S2CID 145763632.
  75. ^ a b Martin, Brian (1 January 2015). "Nuclear power and civil liberties". Faculty of Law, Humanities and the Arts – Papers (Archive): 1–6. Archived from the original on 25 November 2021. Retrieved 26 November 2021.
  76. ^ a b Kemp, R. Scott (29 June 2016). "Environmental Detection of Clandestine Nuclear Weapon Programs". Annual Review of Earth and Planetary Sciences. 44 (1): 17–35. Bibcode:2016AREPS..44...17K. doi:10.1146/annurev-earth-060115-012526. hdl:1721.1/105171. ISSN 0084-6597. Archived from the original on 25 November 2021. Retrieved 26 November 2021. Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days
  77. ^ Monnet, Antoine; Gabriel, Sophie; Percebois, Jacques (1 September 2017). "Long-term availability of global uranium resources" (PDF). Resources Policy. 53: 394–407. Bibcode:2017RePol..53..394M. doi:10.1016/j.resourpol.2017.07.008. ISSN 0301-4207. Archived (PDF) from the original on 31 October 2021. Retrieved 1 December 2021. However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply.
  78. ^ Haji, Maha N.; Drysdale, Jessica; Buesseler, Ken; Slocum, Alexander H. (25 June 2017). "Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures". Proceedings of the 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar. Archived from the original on 26 November 2021. Retrieved 28 November 2021 – via OnePetro.
  79. ^ a b c Muellner, Nikolaus; Arnold, Nikolaus; Gufler, Klaus; Kromp, Wolfgang; Renneberg, Wolfgang; Liebert, Wolfgang (1 August 2021). "Nuclear energy - The solution to climate change?". Energy Policy. 155: 112363. Bibcode:2021EnPol.15512363M. doi:10.1016/j.enpol.2021.112363. ISSN 0301-4215. S2CID 236254316.
  80. ^ Chen, Yanxin; Martin, Guillaume; Chabert, Christine; Eschbach, Romain; He, Hui; Ye, Guo-an (1 March 2018). "Prospects in China for nuclear development up to 2050" (PDF). Progress in Nuclear Energy. 103: 81–90. Bibcode:2018PNuE..103...81C. doi:10.1016/j.pnucene.2017.11.011. ISSN 0149-1970. S2CID 126267852. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
  81. ^ Gabriel, Sophie; Baschwitz, Anne; Mathonnière, Gilles; Eleouet, Tommy; Fizaine, Florian (1 August 2013). "A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets". Annals of Nuclear Energy. 58: 213–220. Bibcode:2013AnNuE..58..213G. doi:10.1016/j.anucene.2013.03.010. ISSN 0306-4549.
  82. ^ Shang, Delei; Geissler, Bernhard; Mew, Michael; Satalkina, Liliya; Zenk, Lukas; Tulsidas, Harikrishnan; Barker, Lee; El-Yahyaoui, Adil; Hussein, Ahmed; Taha, Mohamed; Zheng, Yanhua; Wang, Menglai; Yao, Yuan; Liu, Xiaodong; Deng, Huidong; Zhong, Jun; Li, Ziying; Steiner, Gerald; Bertau, Martin; Haneklaus, Nils (1 April 2021). "Unconventional uranium in China's phosphate rock: Review and outlook". Renewable and Sustainable Energy Reviews. 140: 110740. Bibcode:2021RSERv.14010740S. doi:10.1016/j.rser.2021.110740. ISSN 1364-0321. S2CID 233577205.
  83. ^ a b c d e f g h Wealer, Ben; Breyer, Christian; Hennicke, Peter; Hirsch, Helmut; von Hirschhausen, Christian; Klafka, Peter; Kromp-Kolb, Helga; Präger, Fabian; Steigerwald, Björn; Traber, Thure; Baumann, Franz; Herold, Anke; Kemfert, Claudia; Kromp, Wolfgang; Liebert, Wolfgang; Müschen, Klaus (16 October 2021). "Kernenergie und Klima". Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.5573718.
  84. ^ a b c d "Hidden military implications of 'building back' with new nuclear in the UK" (PDF). Archived (PDF) from the original on 23 October 2021. Retrieved 24 November 2021.
  85. ^ "USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources". pubs.usgs.gov. Archived from the original on 19 January 2022. Retrieved 28 November 2021.
  86. ^ Barthel, F. H. (2007). "Thorium and unconventional uranium resources". International Atomic Energy Agency. Archived from the original on 2021-11-28. Retrieved 2021-11-28.
  87. ^ Dungan, K.; Butler, G.; Livens, F. R.; Warren, L. M. (1 August 2017). "Uranium from seawater – Infinite resource or improbable aspiration?". Progress in Nuclear Energy. 99: 81–85. Bibcode:2017PNuE...99...81D. doi:10.1016/j.pnucene.2017.04.016. ISSN 0149-1970.
  88. ^ Fang, Jianchun; Lau, Chi Keung Marco; Lu, Zhou; Wu, Wanshan (1 September 2018). "Estimating Peak uranium production in China – Based on a Stella model". Energy Policy. 120: 250–258. Bibcode:2018EnPol.120..250F. doi:10.1016/j.enpol.2018.05.049. ISSN 0301-4215. S2CID 158066671.
  89. ^ a b Jewell, Jessica; Vetier, Marta; Garcia-Cabrera, Daniel (1 May 2019). "The international technological nuclear cooperation landscape: A new dataset and network analysis" (PDF). Energy Policy. 128: 838–852. Bibcode:2019EnPol.128..838J. doi:10.1016/j.enpol.2018.12.024. ISSN 0301-4215. S2CID 159233075. Archived (PDF) from the original on 28 May 2022. Retrieved 31 May 2022.
  90. ^ a b Xing, Wanli; Wang, Anjian; Yan, Qiang; Chen, Shan (1 December 2017). "A study of China's uranium resources security issues: Based on analysis of China's nuclear power development trend". Annals of Nuclear Energy. 110: 1156–1164. Bibcode:2017AnNuE.110.1156X. doi:10.1016/j.anucene.2017.08.019. ISSN 0306-4549.
  91. ^ a b Yue, Qiang; He, Jingke; Stamford, Laurence; Azapagic, Adisa (2017). "Nuclear Power in China: An Analysis of the Current and Near-Future Uranium Flows". Energy Technology. 5 (5): 681–691. doi:10.1002/ente.201600444. ISSN 2194-4296.
  92. ^ Ferronsky, V. I.; Polyakov, V. A. (2012). Isotopes of the Earth's Hydrosphere. Springer. p. 399. ISBN 978-94-007-2856-1.
  93. ^ "Toxicological profile for thorium" (PDF). Agency for Toxic Substances and Disease Registry. 1990. p. 76. Archived (PDF) from the original on 2018-04-22. Retrieved 2018-10-09. world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980)
  94. ^ Huh, C. A.; Bacon, M. P. (2002). "Determination of thorium concentration in seawater by neutron activation analysis". Analytical Chemistry. 57 (11): 2138–2142. doi:10.1021/ac00288a030.
  95. ^ a b Seko, Noriaki (July 29, 2013). "The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas". Global Energy Policy Research. Archived from the original on October 9, 2018. Retrieved October 9, 2018.
  96. ^ Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary (2014). "Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology". Journal of Marine Science and Engineering. 2: 81–92. doi:10.3390/jmse2010081.
  97. ^ Alexandratos SD, Kung S (April 20, 2016). "Uranium in Seawater". Industrial & Engineering Chemistry Research. 55 (15): 4101–4362. doi:10.1021/acs.iecr.6b01293.
  98. ^ a b c d Finck, Philip. "Current Options for the Nuclear Fuel Cycle" (PDF). JAIF. Archived from the original (PDF) on 2012-04-12.
  99. ^ a b "Backgrounder on Radioactive Waste". NRC. Nuclear Regulatory Commission. Archived from the original on 13 November 2017. Retrieved 20 April 2021.
  100. ^ "A fast reactor system to shorten the lifetime of long-lived fission products".
  101. ^ "Radioactivity: Minor Actinides". www.radioactivity.eu.com. Archived from the original on 2018-12-11. Retrieved 2018-12-23.
  102. ^ Ojovan, Michael I. (2014). An introduction to nuclear waste immobilisation, second edition (2nd ed.). Kidlington, Oxford, U.K.: Elsevier. ISBN 978-0-08-099392-8.
  103. ^ "High-level radioactive waste". nuclearsafety.gc.ca. Canadian Nuclear Safety Commission. February 3, 2014. Archived from the original on April 14, 2022. Retrieved April 19, 2022.
  104. ^ Hedin, A. (1997). Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk' (Technical report). Energy Technology Data Exchange.
  105. ^ Bruno, Jordi; Duro, Laura; Diaz-Maurin, François (2020). "Chapter 13 – Spent nuclear fuel and disposal". Advances in Nuclear Fuel Chemistry. Woodhead Publishing Series in Energy. Woodhead Publishing. pp. 527–553. doi:10.1016/B978-0-08-102571-0.00014-8. ISBN 978-0-08-102571-0. S2CID 216544356. Archived from the original on 2021-09-20. Retrieved 2021-09-20.
  106. ^ Ojovan, M. I.; Lee, W. E. (2005). An Introduction to Nuclear Waste Immobilisation. Amsterdam, Netherlands: Elsevier Science Publishers. p. 315. ISBN 978-0-08-044462-8.
  107. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards. Washington, DC: National Academy Press. p. 91. ISBN 978-0-309-05289-4.
  108. ^ "The Status of Nuclear Waste Disposal". The American Physical Society. January 2006. Archived from the original on 2008-05-16. Retrieved 2008-06-06.
  109. ^ "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22. Archived (PDF) from the original on 2008-06-26. Retrieved 2008-06-06.
  110. ^ "CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal" (PDF). Archived (PDF) from the original on 2017-08-29. Retrieved 2018-12-22. The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste.
  111. ^ Vandenbosch 2007, p. 21.
  112. ^ Clark, Duncan (2012-07-09). "Nuclear waste-burning reactor moves a step closer to reality | Environment | guardian.co.uk". Guardian. London, England. Archived from the original on 2022-10-08. Retrieved 2013-06-14.
  113. ^ Monbiot, George (5 December 2011). "A Waste of Waste". Monbiot.com. Archived from the original on 2013-06-01. Retrieved 2013-06-14.
  114. ^ "Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor". YouTube. 2009-07-23. Archived from the original on 2021-12-11. Retrieved 2013-06-14.
  115. ^ "Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems" (PDF). IAEA. 2012. Archived (PDF) from the original on 6 May 2021. Retrieved 7 April 2021. Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6 MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier.
  116. ^ "NRC: Low-Level Waste". www.nrc.gov. Archived from the original on 17 August 2018. Retrieved 28 August 2018.
  117. ^ "The Challenges of Nuclear Power". Archived from the original on 2017-05-10. Retrieved 2013-01-04.
  118. ^ "Coal Ash Is More Radioactive than Nuclear Waste". Scientific American. 2007-12-13. Archived from the original on 2013-06-12. Retrieved 2012-09-11.
  119. ^ Gabbard, Alex (2008-02-05). "Coal Combustion: Nuclear Resource or Danger". Oak Ridge National Laboratory. Archived from the original on February 5, 2007. Retrieved 2008-01-31.
  120. ^ "Coal ash is not more radioactive than nuclear waste". CE Journal. 2008-12-31. Archived from the original on 2009-08-27.
  121. ^ "Yankee Nuclear Power Plant". Yankeerowe.com. Archived from the original on 2006-03-03. Retrieved 2013-06-22.
  122. ^ "Why nuclear energy". Generation Atomic. 26 January 2021. Archived from the original on 23 December 2018. Retrieved 22 December 2018.
  123. ^ "NPR Nuclear Waste May Get A Second Life". NPR. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
  124. ^ "Energy Consumption of the United States - The Physics Factbook". hypertextbook.com. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
  125. ^ "NRC: Dry Cask Storage". Nrc.gov. 2013-03-26. Archived from the original on 2013-06-02. Retrieved 2013-06-22.
  126. ^ a b Montgomery, Scott L. (2010). The Powers That Be, University of Chicago Press, p. 137.
  127. ^ "international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005" (PDF). Archived from the original (PDF) on 2013-04-26. Retrieved 2013-06-22.
  128. ^ "Oklo: Natural Nuclear Reactors". U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010. November 2004. Archived from the original on 2009-08-25. Retrieved 2009-09-15.
  129. ^ a b Gore, Al (2009). Our Choice: A Plan to Solve the Climate Crisis. Emmaus, Pennsylvania: Rodale. pp. 165–166. ISBN 978-1-59486-734-7.
  130. ^ Muller, Richard A.; Finsterle, Stefan; Grimsich, John; Baltzer, Rod; Muller, Elizabeth A.; Rector, James W.; Payer, Joe; Apps, John (May 29, 2019). "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes". Energies. 12 (11): 2052. doi:10.3390/en12112052.
  131. ^ Mallants, Dirk; Travis, Karl; Chapman, Neil; Brady, Patrick V.; Griffiths, Hefin (February 14, 2020). "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste". Energies. 13 (4): 833. doi:10.3390/en13040833.
  132. ^ "A Nuclear Power Renaissance?". Scientific American. 2008-04-28. Archived from the original on 2017-05-25. Retrieved 2008-05-15.
  133. ^ von Hippel, Frank N. (April 2008). "Nuclear Fuel Recycling: More Trouble Than It's Worth". Scientific American. Archived from the original on 2008-11-19. Retrieved 2008-05-15.
  134. ^ "Licence granted for Finnish used fuel repository". World Nuclear News. 2015-11-12. Archived from the original on 2015-11-24. Retrieved 2018-11-18.
  135. ^ Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J. (May 2014). "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles". Energy. 69: 199–211. Bibcode:2014Ene....69..199P. doi:10.1016/j.energy.2014.02.069.
  136. ^ a b c R. Stephen Berry and George S. Tolley, Nuclear Fuel Reprocessing Archived 2017-05-25 at the Wayback Machine, The University of Chicago, 2013.
  137. ^ Fairley, Peter (February 2007). "Nuclear Wasteland". IEEE Spectrum. Archived from the original on 2020-08-05. Retrieved 2020-02-02.
  138. ^ a b "Processing of Used Nuclear Fuel". World Nuclear Association. 2018. Archived from the original on 2018-12-25. Retrieved 2018-12-26.
  139. ^ Campbell, D. O.; Gift, E. H. (1978). Proliferation-resistant nuclear fuel cycles. [Spiking of plutonium with /sup 238/Pu] (Technical report). Oak Ridge National Laboratory. doi:10.2172/6743129. OSTI 6743129 – via Office of Scientific and Technical Information.
  140. ^ Fedorov, M. I.; Dyachenko, A. I.; Balagurov, N. A.; Artisyuk, V. V. (2015). "Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries". Nuclear Energy and Technology. 1 (2): 111–116. Bibcode:2015NEneT...1..111F. doi:10.1016/j.nucet.2015.11.023.
  141. ^ Lloyd, Cody; Goddard, Braden (2018). "Proliferation resistant plutonium: An updated analysis". Nuclear Engineering and Design. 330: 297–302. Bibcode:2018NuEnD.330..297L. doi:10.1016/j.nucengdes.2018.02.012.
  142. ^ a b Feiveson, Harold; et al. (2011). "Managing nuclear spent fuel: Policy lessons from a 10-country study". Bulletin of the Atomic Scientists. Archived from the original on 2012-04-26. Retrieved 2016-07-18.
  143. ^ Kok, Kenneth D. (2010). Nuclear Engineering Handbook. CRC Press. p. 332. ISBN 978-1-4200-5391-3.
  144. ^ Jarry, Emmanuel (6 May 2015). "Crisis for Areva's plant as clients shun nuclear". Moneyweb. Reuters. Archived from the original on 23 July 2015. Retrieved 6 May 2015.
  145. ^ David, S. (2005). "Future Scenarios for Fission Based Reactors". Nuclear Physics A. 751: 429–441. Bibcode:2005NuPhA.751..429D. doi:10.1016/j.nuclphysa.2005.02.014.
  146. ^ Brundtland, Gro Harlem (20 March 1987). "Chapter 7: Energy: Choices for Environment and Development". Our Common Future: Report of the World Commission on Environment and Development. Oslo. Archived from the original on 21 January 2013. Retrieved 27 March 2013. Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category
  147. ^ John McCarthy (2006). "Facts From Cohen and Others". Progress and its Sustainability. Stanford. Archived from the original on 2007-04-10. Retrieved 2006-11-09. Citing: Cohen, Bernard L. (January 1983). "Breeder reactors: A renewable energy source". American Journal of Physics. 51 (1): 75–76. Bibcode:1983AmJPh..51...75C. doi:10.1119/1.13440. S2CID 119587950.
  148. ^ "Advanced Nuclear Power Reactors". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-15. Retrieved 2006-11-09.
  149. ^ "Synergy between Fast Reactors and Thermal Breeders for Safe, Clean, and Sustainable Nuclear Power" (PDF). World Energy Council. Archived from the original (PDF) on 2011-01-10. Retrieved 2013-02-03.
  150. ^ Kessler, Rebecca. "Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360". E360.yale.edu. Archived from the original on 2013-06-05. Retrieved 2013-06-14.
  151. ^ a b "Fast Neutron Reactors | FBR – World Nuclear Association". www.world-nuclear.org. Archived from the original on 23 December 2017. Retrieved 7 October 2018.
  152. ^ "Prototype fast breeder reactor to be commissioned in two months: IGCAR director". The Times of India. Archived from the original on 15 September 2018. Retrieved 28 August 2018.
  153. ^ "India's breeder reactor to be commissioned in 2013". Hindustan Times. Archived from the original on 2013-04-26. Retrieved 2013-06-14.
  154. ^ a b c "Thorium". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2013-02-16. Retrieved 2006-11-09.
  155. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Velenturf, Anne; Love, Peter ED.; Purnell, Phil; Brookes, Naomi J. (2020-09-01). "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning". Energy Policy. 144: 111677. Bibcode:2020EnPol.14411677I. doi:10.1016/j.enpol.2020.111677. hdl:11311/1204791. ISSN 0301-4215.
  156. ^ "Decommissioning of nuclear installations". www.iaea.org. 17 October 2016. Archived from the original on 21 April 2021. Retrieved 19 April 2021.
  157. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Brookes, Naomi J. (2017-08-01). "How benchmarking can support the selection, planning and delivery of nuclear decommissioning projects" (PDF). Progress in Nuclear Energy. 99: 155–164. Bibcode:2017PNuE...99..155I. doi:10.1016/j.pnucene.2017.05.002. Archived (PDF) from the original on 2021-06-14. Retrieved 2021-04-19.
  158. ^ "Backgrounder on Decommissioning Nuclear Power Plants". United States Nuclear Regulatory Commission. Archived from the original on 3 May 2021. Retrieved 27 August 2021. Before a nuclear power plant begins operations, the licensee must establish or obtain a financial mechanism – such as a trust fund or a guarantee from its parent company – to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility
  159. ^ "Share of electricity production from nuclear". Our World in Data. Retrieved 15 August 2023.
  160. ^ "Yearly electricity data". ember-climate.org. 6 Dec 2023. Retrieved 23 Dec 2023.
  161. ^ "Steep decline in nuclear power would threaten energy security and climate goals". International Energy Agency. 2019-05-28. Archived from the original on 2019-10-12. Retrieved 2019-07-08.
  162. ^ Armaroli, Nicola; Balzani, Vincenzo (2011). "Towards an electricity-powered world". Energy and Environmental Science. 4 (9): 3193–3222 [3200]. doi:10.1039/c1ee01249e. S2CID 1752800.
  163. ^ "REN 21. Renewables 2014 Global Status Report" (PDF). Archived (PDF) from the original on 2015-09-24. Retrieved 2015-08-10.
  164. ^ Butler, Nick (3 September 2018). "The challenge for nuclear is to recover its competitive edge". Financial Times. Archived from the original on 2022-12-10. Retrieved 9 September 2018.
  165. ^ "World Nuclear Power Reactors & Uranium Requirements". World Nuclear Association. Archived from the original on 2012-01-14. Retrieved 2022-04-18.
  166. ^ "What's the Lifespan for a Nuclear Reactor? Much Longer Than You Might Think". Energy.gov. Archived from the original on 2020-06-09. Retrieved 2020-06-09.
  167. ^ "Under Construction Reactors". International Atomic Energy Agency. Archived from the original on 2018-11-22. Retrieved 2019-12-15.
  168. ^ EU energy in figures. European Commission. 2020. p. 94. ISBN 978-92-76-19443-9. Archived from the original on 2021-01-07. Retrieved 2021-01-09.
  169. ^ Apt, Jay; Keith, David W.; Morgan, M. Granger (January 1, 1970). "Promoting Low-Carbon Electricity Production". Archived from the original on September 27, 2013.
  170. ^ "The European Strategic Energy Technology Plan SET-Plan Towards a low-carbon future 2010" (PDF). p. 6. Archived from the original (PDF) on 2014-02-11. Retrieved 2015-08-17.
  171. ^ "What is Nuclear Power Plant – How Nuclear Power Plants work | What is Nuclear Power Reactor – Types of Nuclear Power Reactors". EngineersGarage. Archived from the original on 2013-10-04. Retrieved 2013-06-14.
  172. ^ Ragheb, Magdi. "Naval Nuclear Propulsion" (PDF). Archived from the original (PDF) on 2015-02-26. Retrieved 2015-06-04. As of 2001, about 235 naval reactors had been built.
  173. ^ "Nuclear Icebreaker Lenin". Bellona. 2003-06-20. Archived from the original on October 15, 2007. Retrieved 2007-11-01.
  174. ^ Non-electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications. International Atomic Energy Agency. 2007. ISBN 978-92-0-108808-6. Archived from the original on 27 March 2019. Retrieved 21 August 2018.
  175. ^ What's behind the red-hot uranium boom. Archived 2021-11-29 at the Wayback Machine, CNN, 19 April 2007.
  176. ^ "Synapse Energy |". www.synapse-energy.com. Archived from the original on 2021-01-15. Retrieved 2020-12-29.
  177. ^ Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted (2016). "Historical construction costs of global nuclear power reactors". Energy Policy. 91: 371–382. Bibcode:2016EnPol..91..371L. doi:10.1016/j.enpol.2016.01.011.
  178. ^ Crooks, Ed (2010-09-12). "Nuclear: New dawn now seems limited to the east". Financial Times. London, England. Archived from the original on 2022-12-10. Retrieved 2010-09-12.
  179. ^ The Future of Nuclear Power. Massachusetts Institute of Technology. 2003. ISBN 978-0-615-12420-9. Archived from the original on 2017-05-18. Retrieved 2006-11-10.
  180. ^ a b c "Projected Costs of Generating Electricity 2020". International Energy Agency & OECD Nuclear Energy Agency. 9 December 2020. Archived from the original on 2 April 2022. Retrieved 12 December 2020.
  181. ^ Update of the MIT 2003 Future of Nuclear Power (PDF). Massachusetts Institute of Technology. 2009. Archived (PDF) from the original on 3 February 2023. Retrieved 21 August 2018.
  182. ^ "Splitting the cost". The Economist. 12 November 2009. Archived from the original on 21 August 2018. Retrieved 21 August 2018.
  183. ^ "Nuclear power's reliability is dropping as extreme weather increases". Ars Technica. 24 July 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  184. ^ Ahmad, Ali (July 2021). "Increase in frequency of nuclear power outages due to changing climate". Nature Energy. 6 (7): 755–762. Bibcode:2021NatEn...6..755A. doi:10.1038/s41560-021-00849-y. ISSN 2058-7546. S2CID 237818619.
  185. ^ "The Canadian Nuclear FAQ – Section A: CANDU Technology". Archived from the original on 2013-11-01. Retrieved 2019-08-05.
  186. ^ A. Lokhov. "Load-following with nuclear power plants" (PDF). Archived (PDF) from the original on 2016-02-22. Retrieved 2016-03-12.
  187. ^ "Indian reactor breaks operating record". World Nuclear News. 25 October 2018. Archived from the original on 4 August 2019. Retrieved 4 August 2019.
  188. ^ "Indian-Designed Nuclear Reactor Breaks Record for Continuous Operation". POWER Magazine. 1 February 2019. Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  189. ^ a b McCurry, Justin (30 January 2017). "Possible nuclear fuel find raises hopes of Fukushima plant breakthrough". The Guardian. Archived from the original on 2 February 2017. Retrieved 3 February 2017.
  190. ^ Gardner, Timothy (13 September 2021). "Illinois approves $700 million in subsidies to Exelon, prevents nuclear plant closures". Reuters. Archived from the original on 3 November 2021. Retrieved 28 November 2021.
  191. ^ a b "Europe faces €253bn nuclear waste bill". The Guardian. 4 April 2016. Retrieved 24 November 2021.
  192. ^ Wade, Will (14 June 2019). "Americans are paying more than ever to store deadly nuclear waste". Los Angeles Times. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  193. ^ "The World Nuclear Waste Report 2019" (PDF). Archived (PDF) from the original on 29 November 2021. Retrieved 28 November 2021.
  194. ^ Energy Subsidies Archived 2021-12-04 at the Wayback Machine, World Nuclear Association, 2018.
  195. ^ a b c "Nuclear Reactors for Space – World Nuclear Association". world-nuclear.org. Archived from the original on 17 April 2021. Retrieved 17 April 2021.
  196. ^ Patel, Prachi. "Nuclear-Powered Rockets Get a Second Look for Travel to Mars". IEEE Spectrum. Archived from the original on 10 April 2021. Retrieved 17 April 2021.
  197. ^ a b Deitrich, L. W. "Basic principles of nuclear safety" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2018-11-19. Retrieved 2018-11-18.
  198. ^ "Emergency core cooling systems (ECCS)". United States Nuclear Regulatory Commission. 2018-07-06. Archived from the original on 2021-04-29. Retrieved 2018-12-10.
  199. ^ "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 2020-11-29. Retrieved 2023-11-15.
  200. ^ a b "Dr. MacKay Sustainable Energy without the hot air". Data from studies by the Paul Scherrer Institute including non EU data. p. 168. Archived from the original on 2012-09-02. Retrieved 2012-09-15.
  201. ^ Nicholson, Brendan (2006-06-05). "Nuclear power 'cheaper, safer' than coal and gas". The Age. Melbourne. Archived from the original on 2008-02-08. Retrieved 2008-01-18.
  202. ^ a b Markandya, A.; Wilkinson, P. (2007). "Electricity generation and health". Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602. Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This study includes the latent or indirect fatalities, for example those caused by the inhalation of fossil fuel created particulate matter, smog induced cardiopulmonary events, black lung etc. in its comparison.
  203. ^ "Nuclear Power Prevents More Deaths Than It Causes | Chemical & Engineering News". Cen.acs.org. Archived from the original on 2014-03-01. Retrieved 2014-01-24.
  204. ^ a b c Kharecha, Pushker A.; Hansen, James E. (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Environmental Science & Technology. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. hdl:2060/20140017100. PMID 23495839.
  205. ^ Normile, Dennis (2012-07-27). "Is Nuclear Power Good for You?". Science. 337 (6093): 395. doi:10.1126/science.337.6093.395-b. Archived from the original on 2013-03-01.
  206. ^ Hasegawa, Arifumi; Tanigawa, Koichi; Ohtsuru, Akira; Yabe, Hirooki; Maeda, Masaharu; Shigemura, Jun; Ohira, Tetsuya; Tominaga, Takako; Akashi, Makoto; Hirohashi, Nobuyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Shibuya, Kenji; Yamashita, Shunichi; Chhem, Rethy K (August 2015). "Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima" (PDF). The Lancet. 386 (9992): 479–488. doi:10.1016/S0140-6736(15)61106-0. PMID 26251393. S2CID 19289052. Archived (PDF) from the original on 2021-08-28. Retrieved 2021-08-05.
  207. ^ Revkin, Andrew C. (2012-03-10). "Nuclear Risk and Fear, from Hiroshima to Fukushima". The New York Times. Archived from the original on 2015-09-05. Retrieved 2013-07-08.
  208. ^ von Hippel, Frank N. (September–October 2011). "The radiological and psychological consequences of the Fukushima Daiichi accident". Bulletin of the Atomic Scientists. 67 (5): 27–36. Bibcode:2011BuAtS..67e..27V. doi:10.1177/0096340211421588. S2CID 218769799. Archived from the original on 2012-01-13. Retrieved 2013-07-08.
  209. ^ Yamazaki, Tomoko & Ozasa, Shunichi (2011-06-27). "Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting". Bloomberg.
  210. ^ Saito, Mari (2011-05-07). "Japan anti-nuclear protesters rally after PM call to close plant". Reuters.
  211. ^ IDO-19313: Additional Analysis of the SL-1 Excursion Archived 2011-09-27 at the Wayback Machine Final Report of Progress July through October 1962, November 21, 1962, Flight Propulsion Laboratory Department, General Electric Company, Idaho Falls, Idaho, U.S. Atomic Energy Commission, Division of Technical Information.
  212. ^ McKeown, William (2003). Idaho Falls: The Untold Story of America's First Nuclear Accident. Toronto, Canada: ECW Press. ISBN 978-1-55022-562-4.
  213. ^ Johnston, Robert (2007-09-23). "Deadliest radiation accidents and other events causing radiation casualties". Database of Radiological Incidents and Related Events. Archived from the original on 2007-10-23. Retrieved 2011-03-14.
  214. ^ Schiffman, Richard (2013-03-12). "Two years on, America hasn't learned lessons of Fukushima nuclear disaster". The Guardian. London, England. Archived from the original on 2017-02-02. Retrieved 2016-12-12.
  215. ^ Fackler, Martin (2011-06-01). "Report Finds Japan Underestimated Tsunami Danger". The New York Times. Archived from the original on 2017-02-05. Retrieved 2017-02-25.
  216. ^ "The Worst Nuclear Disasters". Time.com. 2009-03-25. Archived from the original on March 28, 2009. Retrieved 2013-06-22.
  217. ^ Sovacool, B.K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
  218. ^ Burgherr, Peter; Hirschberg, Stefan (10 October 2008). "A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains". Human and Ecological Risk Assessment. 14 (5): 947–973. Bibcode:2008HERA...14..947B. doi:10.1080/10807030802387556. S2CID 110522982.
  219. ^ "Chernobyl at 25th anniversary – Frequently Asked Questions" (PDF). World Health Organisation. 23 April 2011. Archived (PDF) from the original on 17 April 2012. Retrieved 14 April 2012.
  220. ^ "Assessing the Chernobyl Consequences". International Atomic Energy Agency. Archived from the original on 30 August 2013.
  221. ^ "UNSCEAR 2008 Report to the General Assembly, Annex D" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2011-08-04. Retrieved 2018-12-15.
  222. ^ "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
  223. ^ "Publications: Vienna Convention on Civil Liability for Nuclear Damage". International Atomic Energy Agency. 27 August 2014. Archived from the original on 3 March 2016. Retrieved 8 September 2016.
  224. ^ "Nuclear Power's Role in Generating Electricity" (PDF). Congressional Budget Office. May 2008. Archived (PDF) from the original on 2014-11-29. Retrieved 2016-09-08.
  225. ^ "Availability of Dam Insurance" (PDF). 1999. Archived from the original (PDF) on 2016-01-08. Retrieved 2016-09-08.
  226. ^ a b Ferguson, Charles D. & Settle, Frank A. (2012). "The Future of Nuclear Power in the United States" (PDF). Federation of American Scientists. Archived (PDF) from the original on 2017-05-25. Retrieved 2016-07-07.
  227. ^ "Nuclear Security – Five Years After 9/11". U.S. Nuclear Regulatory Commission. Archived from the original on 15 July 2007. Retrieved 23 July 2007.
  228. ^ Bunn, Matthew & Sagan, Scott (2014). "A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes". The American Academy of Arts & Sciences.
  229. ^ McFadden, Robert D. (1971-11-14). "Damage Is Put at Millions In Blaze at Con Ed Plant". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
  230. ^ Knight, Michael (1972-01-30). "Mechanic Seized in Indian Pt. Fire". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
  231. ^ a b c "The Bulletin of atomic scientists support the megatons to megawatts program". 2008-10-23. Archived from the original on 2011-07-08. Retrieved 2012-09-15.
  232. ^ "home". usec.com. 2013-05-24. Archived from the original on 2013-06-21. Retrieved 2013-06-14.
  233. ^ a b Miller, Steven E. & Sagan, Scott D. (Fall 2009). "Nuclear power without nuclear proliferation?". Dædalus. 138 (4): 7. doi:10.1162/daed.2009.138.4.7. S2CID 57568427.
  234. ^ "Nuclear Power in the World Today". World-nuclear.org. Archived from the original on 2013-02-12. Retrieved 2013-06-22.
  235. ^ "Uranium Enrichment". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2013-07-01. Retrieved 2015-08-12.
  236. ^ Sovacool, Benjamin K. (2011). Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy. Hackensack, New Jersey: World Scientific. p. 190. ISBN 978-981-4322-75-1.
  237. ^ "Megatons to Megawatts Eliminates Equivalent of 10,000 Nuclear Warheads". Usec.com. 2005-09-21. Archived from the original on 2013-04-26. Retrieved 2013-06-22.
  238. ^ a b Stover, Dawn (2014-02-21). "More megatons to megawatts". The Bulletin. Archived from the original on 2017-05-04. Retrieved 2015-08-11.
  239. ^ Corley, Anne-Marie. "Against Long Odds, MIT's Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity". Archived from the original on 2015-09-04. Retrieved 2015-08-11.
  240. ^ "Future Unclear For 'Megatons To Megawatts' Program". All Things Considered. United States: National Public Radio. 2009-12-05. Archived from the original on 2015-01-12. Retrieved 2013-06-22.
  241. ^ "Life Cycle Assessment of Electricity Generation Options" (PDF). Archived (PDF) from the original on 10 May 2022. Retrieved 24 November 2021.
  242. ^ "Nuclear energy and water use in the columbia river basin" (PDF). Archived (PDF) from the original on 24 November 2021. Retrieved 24 November 2021.
  243. ^ a b c Ramana, M. V.; Ahmad, Ali (1 June 2016). "Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan". Energy Policy. 93: 236–245. Bibcode:2016EnPol..93..236R. doi:10.1016/j.enpol.2016.03.012. ISSN 0301-4215.
  244. ^ a b Kyne, Dean; Bolin, Bob (July 2016). "Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination". International Journal of Environmental Research and Public Health. 13 (7): 700. doi:10.3390/ijerph13070700. PMC 4962241. PMID 27420080.
  245. ^ a b "Is nuclear power the answer to climate change?". World Information Service on Energy. Archived from the original on 22 April 2020. Retrieved 1 February 2020.
  246. ^ a b c "World Nuclear Waste Report". Archived from the original on 15 June 2023. Retrieved 25 October 2021.
  247. ^ a b Smith, Brice. "Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change – Institute for Energy and Environmental Research". Archived from the original on 30 May 2023. Retrieved 24 November 2021.
  248. ^ a b Prăvălie, Remus; Bandoc, Georgeta (1 March 2018). "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications". Journal of Environmental Management. 209: 81–92. Bibcode:2018JEnvM.209...81P. doi:10.1016/j.jenvman.2017.12.043. ISSN 1095-8630. PMID 29287177.
  249. ^ Ahearne, John F. (2000). "Intergenerational Issues Regarding Nuclear Power, Nuclear Waste, and Nuclear Weapons". Risk Analysis. 20 (6): 763–770. Bibcode:2000RiskA..20..763A. doi:10.1111/0272-4332.206070. ISSN 1539-6924. PMID 11314726. S2CID 23395683.
  250. ^ a b "CoP 26 Statement | Don't nuke the Climate!". Archived from the original on 25 November 2021. Retrieved 24 November 2021.
  251. ^ a b c "IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology–specific cost and performance parameters" (PDF). IPCC. 2014. table A.III.2. Archived (PDF) from the original on 2018-12-14. Retrieved 2019-01-19.
  252. ^ National Renewable Energy Laboratory (NREL) (2013-01-24). "Nuclear Power Results – Life Cycle Assessment Harmonization". nrel.gov. Archived from the original on 2013-07-02. Retrieved 2013-06-22. Collectively, life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions.
  253. ^ "Life Cycle Assessment Harmonization Results and Findings. Figure 1". NREL. Archived from the original on 2017-05-06. Retrieved 2016-09-08.
  254. ^ a b "IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics & Methodology" (PDF). IPCC. 2014. section A.II.9.3. Archived (PDF) from the original on 2021-04-23. Retrieved 2019-01-19.
  255. ^ "World nuclear performance report 2021". World Nuclear Association. Archived from the original on 2022-04-03. Retrieved 2022-04-19.
  256. ^ a b "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
  257. ^ "National Safety Council". Nsc.org. Archived from the original on 12 October 2009. Retrieved 18 June 2013.
  258. ^ Roser, Max (1 December 2020). "Why did renewables become so cheap so fast?". Our World in Data.
  259. ^ MacKenzie, James J. (December 1977). "Review of The Nuclear Power Controversy by Arthur W. Murphy". The Quarterly Review of Biology. 52 (4): 467–468. doi:10.1086/410301. JSTOR 2823429.
  260. ^ "U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power". Bloomberg. Archived from the original on 2009-06-26. Retrieved 2017-03-10..
  261. ^ Patterson, Thom (2013-11-03). "Climate change warriors: It's time to go nuclear". CNN. Archived from the original on 2013-11-04. Retrieved 2013-11-05.
  262. ^ "Renewable Energy and Electricity". World Nuclear Association. June 2010. Archived from the original on 2010-06-19. Retrieved 2010-07-04.
  263. ^ "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  264. ^ "Radioactive Waste Management". February 2022. Archived from the original on 2016-02-01. Retrieved 2022-02-18.
  265. ^ Hubbert, M. King (June 1956). "Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice'" (PDF). API. p. 36. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-04-18.
  266. ^ Bennett, James E.; Tamura-Wicks, Helen; Parks, Robbie M.; Burnett, Richard T.; Pope, C. Arden; Bechle, Matthew J.; Marshall, Julian D.; Danaei, Goodarz; Ezzati, Majid (23 July 2019). "Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis". PLOS Medicine. 16 (7): e1002856. doi:10.1371/journal.pmed.1002856. PMC 6650052. PMID 31335874.
  267. ^ "Nuclear Power and Energy Independence". 22 October 2008. Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  268. ^ "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  269. ^ Weart, Spencer R. (2012). The Rise of Nuclear Fear. Harvard University Press.
  270. ^ Sturgis, Sue. "Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety". Institute for Southern Studies. Archived from the original on 2010-04-18. Retrieved 2010-08-24.
  271. ^ "Energy Revolution: A Sustainable World Energy Outlook" (PDF). Greenpeace International and European Renewable Energy Council. January 2007. p. 7. Archived from the original (PDF) on 2009-08-06. Retrieved 2010-02-28.
  272. ^ Giugni, Marco (2004). Social protest and policy change: ecology, antinuclear, and peace movements in comparative perspective. Lanham: Rowman & Littlefield. p. 44. ISBN 978-0-7425-1826-1. Archived from the original on 2023-12-24. Retrieved 2015-10-18.
  273. ^ Sovacool, Benjamin K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
  274. ^ Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age. New York: Bloomsbury. p. 280. ISBN 978-1-59691-617-3.
  275. ^ Rodriguez, C.; Baxter, A.; McEachern, D.; Fikani, M.; Venneri, F. (1 June 2003). "Deep-Burn: making nuclear waste transmutation practical". Nuclear Engineering and Design. 222 (2): 299–317. Bibcode:2003NuEnD.222..299R. doi:10.1016/S0029-5493(03)00034-7. ISSN 0029-5493.
  276. ^ Geissmann, Thomas; Ponta, Oriana (1 April 2017). "A probabilistic approach to the computation of the levelized cost of electricity". Energy. 124: 372–381. Bibcode:2017Ene...124..372G. doi:10.1016/j.energy.2017.02.078. ISSN 0360-5442.
  277. ^ a b c Ramana, M. V.; Mian, Zia (1 June 2014). "One size doesn't fit all: Social priorities and technical conflicts for small modular reactors". Energy Research & Social Science. 2: 115–124. Bibcode:2014ERSS....2..115R. doi:10.1016/j.erss.2014.04.015. ISSN 2214-6296.
  278. ^ Meckling, Jonas (1 March 2019). "Governing renewables: Policy feedback in a global energy transition". Environment and Planning C: Politics and Space. 37 (2): 317–338. doi:10.1177/2399654418777765. ISSN 2399-6544. S2CID 169975439.
  279. ^ Decommissioning a Nuclear Power Plant Archived 2007-07-14 at the Wayback Machine, 2007-4-20, U.S. Nuclear Regulatory Commission Archived 2020-04-06 at the Wayback Machine, Retrieved 2007-6-12
  280. ^ "Decommissioning at Chernobyl". World-nuclear-news.org. 2007-04-26. Archived from the original on 2010-08-23. Retrieved 2015-11-01.
  281. ^ Wealer, B.; Bauer, S.; Hirschhausen, C. v.; Kemfert, C.; Göke, L. (1 June 2021). "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation". Renewable and Sustainable Energy Reviews. 143: 110836. Bibcode:2021RSERv.14310836W. doi:10.1016/j.rser.2021.110836. ISSN 1364-0321. S2CID 233564525. We conclude that our numerical exercise confirms the literature review, i.e. the economics of nuclear power plants are not favorable to future investments, even though additional costs (decommissioning, long-term storage) and the social costs of accidents are not even considered.
  282. ^ "New nuclear, LTO among cheapest low carbon options, report shows". Reuters Events. Archived from the original on 2022-05-19. Retrieved 2022-04-19.
  283. ^ "Projected Costs of Generating Electricity 2020 – Analysis". IEA. 9 December 2020. Archived from the original on 2022-04-02. Retrieved 2020-12-12.
  284. ^ "Empirically grounded technology forecasts and the energy transition" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
  285. ^ a b "Nuclear energy too slow, too expensive to save climate: report". Reuters. 24 September 2019. Archived from the original on 16 March 2021. Retrieved 24 November 2021.
  286. ^ Farmer, J. Doyne; Way, Rupert; Mealy, Penny (December 2020). "Estimating the costs of energy transition scenarios using probabilistic forecasting methods" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
  287. ^ a b c "Scientists pour cold water on Bill Gates' nuclear plans | DW | 08.11.2021". Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  288. ^ a b "Scientists Warn Experimental Nuclear Plant Backed by Bill Gates Is 'Outright Dangerous'". Common Dreams. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  289. ^ Szyszczak, Erika (1 July 2015). "State aid for energy infrastructure and nuclear power projects". ERA Forum. 16 (1): 25–38. doi:10.1007/s12027-015-0371-6. ISSN 1863-9038. S2CID 154617833.
  290. ^ "The Future of Nuclear Energy in a Carbon-Constrained World" (PDF). Massachusetts Institute of Technology. 2018. Archived (PDF) from the original on 2019-03-27. Retrieved 2019-01-05.
  291. ^ Crespo, Diego (25 July 2019). "STE can replace coal, nuclear and early gas as demonstrated in an hourly simulation over 4 years in the Spanish electricity mix". AIP Conference Proceedings. SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. 2126 (1): 130003. Bibcode:2019AIPC.2126m0003C. doi:10.1063/1.5117645. ISSN 0094-243X. S2CID 201317957.
  292. ^ Benasla, Mokhtar; Hess, Denis; Allaoui, Tayeb; Brahami, Mostefa; Denaï, Mouloud (1 April 2019). "The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play?". Energy Strategy Reviews. 24: 1–13. Bibcode:2019EneSR..24....1B. doi:10.1016/j.esr.2019.01.007. hdl:2299/21546. ISSN 2211-467X. S2CID 169342098.
  293. ^ Haller, Markus; Ludig, Sylvie; Bauer, Nico (1 August 2012). "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation". Energy Policy. 47: 282–290. Bibcode:2012EnPol..47..282H. doi:10.1016/j.enpol.2012.04.069. ISSN 0301-4215.
  294. ^ Arbabzadeh, Maryam; Sioshansi, Ramteen; Johnson, Jeremiah X.; Keoleian, Gregory A. (30 July 2019). "The role of energy storage in deep decarbonization of electricity production". Nature Communications. 10 (1): 3413. Bibcode:2019NatCo..10.3413A. doi:10.1038/s41467-019-11161-5. ISSN 2041-1723. PMC 6667472. PMID 31363084.
  295. ^ Liu, Jianing; Zhang, Weiqi; Zhou, Rui; Zhong, Jin (July 2012). "Impacts of distributed renewable energy generations on smart grid operation and dispatch". 2012 IEEE Power and Energy Society General Meeting. pp. 1–5. doi:10.1109/PESGM.2012.6344997. ISBN 978-1-4673-2729-9. S2CID 25157226.
  296. ^ Ayodele, T. R.; Ogunjuyigbe, A. S. O. (1 April 2015). "Mitigation of wind power intermittency: Storage technology approach". Renewable and Sustainable Energy Reviews. 44: 447–456. Bibcode:2015RSERv..44..447A. doi:10.1016/j.rser.2014.12.034. ISSN 1364-0321.
  297. ^ a b "The controversial future of nuclear power in the U.S." 4 May 2021. Archived from the original on May 4, 2021. Retrieved 25 November 2021.
  298. ^ a b Khatib, Hisham; Difiglio, Carmine (1 September 2016). "Economics of nuclear and renewables". Energy Policy. 96: 740–750. Bibcode:2016EnPol..96..740K. doi:10.1016/j.enpol.2016.04.013. ISSN 0301-4215.
  299. ^ Gerhards, Christoph; Weber, Urban; Klafka, Peter; Golla, Stefan; Hagedorn, Gregor; Baumann, Franz; Brendel, Heiko; Breyer, Christian; Clausen, Jens; Creutzig, Felix; Daub, Claus-Heinrich; Helgenberger, Sebastian; Hentschel, Karl-Martin; Hirschhausen, Christian von; Jordan, Ulrike; Kemfert, Claudia; Krause, Harald; Linow, Sven; Oei, Pao-Yu; Pehnt, Martin; Pfennig, Andreas; Präger, Fabian; Quaschning, Volker; Schneider, Jens; Spindler, Uli; Stelzer, Volker; Sterner, Michael; Wagener-Lohse, Georg; Weinsziehr, Theresa (22 April 2021). "Klimaverträgliche Energieversorgung für Deutschland – 16 Orientierungspunkte" [Climate-friendly energy supply for Germany—16 points of orientation]. Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.4409334.
  300. ^ Lap, Tjerk; Benders, René; van der Hilst, Floor; Faaij, André (15 March 2020). "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?". Energy. 195: 116948. Bibcode:2020Ene...19516948L. doi:10.1016/j.energy.2020.116948. ISSN 0360-5442. S2CID 214336333.
  301. ^ Bustreo, C.; Giuliani, U.; Maggio, D.; Zollino, G. (1 September 2019). "How fusion power can contribute to a fully decarbonized European power mix after 2050". Fusion Engineering and Design. 146: 2189–2193. Bibcode:2019FusED.146.2189B. doi:10.1016/j.fusengdes.2019.03.150. ISSN 0920-3796. S2CID 133216477.
  302. ^ McPherson, Madeleine; Tahseen, Samiha (15 February 2018). "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure". Energy. 145: 856–870. Bibcode:2018Ene...145..856M. doi:10.1016/j.energy.2018.01.002. ISSN 0360-5442.
  303. ^ Kan, Xiaoming; Hedenus, Fredrik; Reichenberg, Lina (15 March 2020). "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden". Energy. 195: 117015. arXiv:2001.03679. Bibcode:2020Ene...19517015K. doi:10.1016/j.energy.2020.117015. ISSN 0360-5442. S2CID 213083726. There is little economic rationale for Sweden to reinvest in nuclear power. Abundant hydropower allows for a low-cost renewable power system without nuclear.
  304. ^ McPherson, Madeleine; Karney, Bryan (1 November 2017). "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model". Energy. 138: 185–196. Bibcode:2017Ene...138..185M. doi:10.1016/j.energy.2017.07.027. ISSN 0360-5442. Several flexibility options have been proposed to facilitate VRE integration, including interconnecting geographically dispersed resources, interconnecting different VRE types, building flexible and dispatchable generation assets, shifting flexible loads through demand response, shifting electricity generation through storage, curtailing excess generation, interconnections to the transport or heating energy sectors, and improving VRE forecasting methodologies (Delucchi and Jacobson 2011). Previous VRE integration studies have considered different combinations of balancing options, but few have considered all flexibility options simultaneously.
  305. ^ "Barriers to Renewable Energy Technologies | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 October 2021. Retrieved 25 October 2021. Renewable energy opponents love to highlight the variability of the sun and wind as a way of bolstering support for coal, gas, and nuclear plants, which can more easily operate on-demand or provide "baseload" (continuous) power. The argument is used to undermine large investments in renewable energy, presenting a rhetorical barrier to higher rates of wind and solar adoption. But reality is much more favorable for clean energy.
  306. ^ "Does Hitachi decision mean the end of UK's nuclear ambitions?". The Guardian. 17 January 2019.
  307. ^ Zappa, William; Junginger, Martin; van den Broek, Machteld (1 January 2019). "Is a 100% renewable European power system feasible by 2050?". Applied Energy. 233–234: 1027–1050. Bibcode:2019ApEn..233.1027Z. doi:10.1016/j.apenergy.2018.08.109. ISSN 0306-2619. S2CID 116855350.
  308. ^ Smith; et al. (15 January 2019). "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming". Nature. 10 (1): 101. Bibcode:2019NatCo..10..101S. doi:10.1038/s41467-018-07999-w. PMC 6333788. PMID 30647408.
  309. ^ Ross Koningstein; David Fork (18 November 2014). "What It Would Really Take to Reverse Climate Change". IEEE Spectrum. Archived from the original on 24 November 2016. Retrieved 13 January 2019.
  310. ^ Johnson, Nathanael (2018). "Agree to Agree Fights over renewable standards and nuclear power can be vicious. Here's a list of things that climate hawks agree on". Grist. Archived from the original on 2019-01-16. Retrieved 2019-01-16.
  311. ^ "What's missing from the 100% renewable energy debate". Utility Dive. Archived from the original on 2019-01-06. Retrieved 2019-01-05.
  312. ^ a b Deign, Jason (March 30, 2018). "Renewables or Nuclear? A New Front in the Academic War Over Decarbonization". gtm. Greentech Media. Archived from the original on December 15, 2018. Retrieved December 13, 2018.
  313. ^ "Turkey may benefit from nuclear power in its bid for clean energy". DailySabah. 6 July 2019. Archived from the original on 2019-07-14. Retrieved 2019-07-14.
  314. ^ "2019 Key World Energy Statistics" (PDF). IEA. 2019.[permanent dead link]
  315. ^ Harvey, Fiona (2011-05-09). "Renewable energy can power the world, says landmark IPCC study". The Guardian. London, England. Archived from the original on 2019-03-27. Retrieved 2016-12-12.
  316. ^ "Hydroelectric power water use". USGS. Archived from the original on 2018-11-09. Retrieved 2018-12-13.
  317. ^ Stover, Dawn (January 30, 2014). "Nuclear vs. renewables: Divided they fall". Bulletin of the Atomic Scientists. Archived from the original on March 27, 2019. Retrieved January 30, 2019.
  318. ^ Starfelt, Nils; Wikdahl, Carl-Erik. "Economic Analysis of Various Options of Electricity Generation – Taking into Account Health and Environmental Effects" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2012-09-08.
  319. ^ Biello, David (2009-01-28). "Spent Nuclear Fuel: A Trash Heap Deadly for 250,000 Years or a Renewable Energy Source?". Scientific American. Archived from the original on 2017-09-03. Retrieved 2014-01-24.
  320. ^ "Closing and Decommissioning Nuclear Power Plants" (PDF). United Nations Environment Programme. 2012-03-07. Archived from the original (PDF) on 2016-05-18. Retrieved 2013-01-04.
  321. ^ Ewing, Rodney C.; Whittleston, Robert A.; Yardley, Bruce W. D. (1 August 2016). "Geological Disposal of Nuclear Waste: a Primer" (PDF). Elements. 12 (4): 233–237. Bibcode:2016Eleme..12..233E. doi:10.2113/gselements.12.4.233. ISSN 1811-5209. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
  322. ^ Stothard, Michael (14 July 2016). "Nuclear waste: keep out for 100,000 years". Financial Times. Archived from the original on 2022-12-10. Retrieved 28 November 2021.
  323. ^ "High-Level Waste". NRC Web. Archived from the original on 27 November 2021. Retrieved 28 November 2021.
  324. ^ Grambow, Bernd (12 December 2008). "Mobile fission and activation products in nuclear waste disposal". Journal of Contaminant Hydrology. 102 (3): 180–186. Bibcode:2008JCHyd.102..180G. doi:10.1016/j.jconhyd.2008.10.006. ISSN 0169-7722. PMID 19008015.
  325. ^ a b "Kernkraft: 6 Fakten über unseren Atommüll und dessen Entsorgung". www.spektrum.de (in German). Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  326. ^ Rosborg, B.; Werme, L. (30 September 2008). "The Swedish nuclear waste program and the long-term corrosion behaviour of copper". Journal of Nuclear Materials. 379 (1): 142–153. Bibcode:2008JNuM..379..142R. doi:10.1016/j.jnucmat.2008.06.025. ISSN 0022-3115.
  327. ^ Shrader-Frechette, Kristin (1 December 2005). "Mortgaging the future: Dumping ethics with nuclear waste". Science and Engineering Ethics. 11 (4): 518–520. doi:10.1007/s11948-005-0023-2. ISSN 1471-5546. PMID 16279752. S2CID 43721467.
  328. ^ Shrader-Frechette, Kristin (1 November 1991). "Ethical Dilemmas and Radioactive Waste: A Survey of the Issues". Environmental Ethics. 13 (4): 327–343. doi:10.5840/enviroethics199113438.
  329. ^ "Radioactive waste leaking at German storage site: report | DW | 16.04.2018". DW.COM. Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  330. ^ Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier (June 2014). "Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes". Bioelectrochemistry. 97: 162–168. doi:10.1016/j.bioelechem.2013.10.001. ISSN 1878-562X. PMID 24177136.
  331. ^ Butler, Declan (27 May 2014). "Nuclear-waste facility on high alert over risk of new explosions". Nature. doi:10.1038/nature.2014.15290. ISSN 1476-4687. S2CID 130354940.
  332. ^ a b "World Nuclear Industry Status Report 2021" (PDF). Archived (PDF) from the original on 7 December 2023. Retrieved 24 November 2021.
  333. ^ "Technical assessment of nuclear energy with respect to the 'do no significant harm' criteria of Regulation (EU) 2020/852 ('Taxonomy Regulation')" (PDF). European Commission Joint Research Centre. 2021. p. 8. Archived (PDF) from the original on 2021-04-26. Retrieved 2021-11-27.
  334. ^ "As nuclear waste piles up, scientists seek the best long-term storage solutions". cen.acs.org. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  335. ^ Qvist, Staffan A.; Brook, Barry W. (13 May 2015). "Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data". PLOS ONE. 10 (5): e0124074. Bibcode:2015PLoSO..1024074Q. doi:10.1371/journal.pone.0124074. PMC 4429979. PMID 25970621.
  336. ^ "Report: World can Rid Itself of Fossil Fuel Dependence in as little as 10 years". Discovery. Archived from the original on 2019-02-01. Retrieved 2019-01-31.
  337. ^ a b c Brook, Barry W. (2012). "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case". Energy Policy. 42: 4–8. Bibcode:2012EnPol..42....4B. doi:10.1016/j.enpol.2011.11.041.
  338. ^ a b Loftus, Peter J.; Cohen, Armond M.; Long, Jane C. S.; Jenkins, Jesse D. (January 2015). "A critical review of global decarbonization scenarios: what do they tell us about feasibility?" (PDF). WIREs Climate Change. 6 (1): 93–112. Bibcode:2015WIRCC...6...93L. doi:10.1002/wcc.324. S2CID 4835733. Archived from the original (PDF) on 2019-08-06. Retrieved 2019-12-01.
  339. ^ Neuman, Scott (4 November 2021). "Earth has 11 years to cut emissions to avoid dire climate scenarios, a report says". NPR. Archived from the original on 30 May 2022. Retrieved 9 November 2021.
  340. ^ Friedlingstein, Pierre; Jones, Matthew W.; et al. (4 November 2021). "Global Carbon Budget 2021" (PDF). Earth System Science Data Discussions: 1–191. doi:10.5194/essd-2021-386. S2CID 240490309. Archived from the original (PDF) on 24 November 2021. Retrieved 26 November 2021.
  341. ^ Tromans, Stephen (1 March 2019). "State support for nuclear new build". The Journal of World Energy Law & Business. 12 (1): 36–51. doi:10.1093/jwelb/jwy035.
  342. ^ "Nuclear power is too costly, too slow, so it's zero use to Australia's emissions plan". TheGuardian.com. 18 October 2021. Retrieved 24 November 2021.
  343. ^ "Renewables vs. Nuclear: 256-0". World Nuclear Industry Status Report. 12 October 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  344. ^ "UK poised to confirm funding for mini nuclear reactors for carbon-free energy". The Guardian. 15 October 2021. Retrieved 24 November 2021. Small modular reactors were first developed in the 1950s for use in nuclear-powered submarines. Since then Rolls-Royce has designed reactors for seven classes of submarine and two separate land-based prototype reactors.
  345. ^ ""Advanced" Isn't Always Better | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  346. ^ "Small Modular Reactors – Was ist von den neuen Reaktorkonzepten zu erwarten?". BASE (in German). Archived from the original on 6 June 2022. Retrieved 24 November 2021.
  347. ^ Makhijani, Arjun; Ramana, M. V. (4 July 2021). "Can small modular reactors help mitigate climate change?". Bulletin of the Atomic Scientists. 77 (4): 207–214. Bibcode:2021BuAtS..77d.207M. doi:10.1080/00963402.2021.1941600. ISSN 0096-3402. S2CID 236163222.
  348. ^ "Can Sodium Save Nuclear Power?". Scientific American. Archived from the original on 29 July 2021. Retrieved 24 November 2021.
  349. ^ a b c "Beyond ITER". The ITER Project. Information Services, Princeton Plasma Physics Laboratory. Archived from the original on 2006-11-07. Retrieved 2011-02-05. – Projected fusion power timeline.
  350. ^ a b "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
  351. ^ a b Turrell, Arthur (28 August 2021). "The race to give nuclear fusion a role in the climate emergency". The Guardian. Retrieved 26 November 2021.
  352. ^ a b Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
  353. ^ a b Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
  354. ^ a b "Land Needs for Wind, Solar Dwarf Nuclear Plant's Footprint". nei.org. NEI. July 9, 2015. Archived from the original on January 7, 2019. Retrieved January 6, 2019.
  355. ^ a b "THE ULTIMATE FAST FACTS GUIDE TO NUCLEAR ENERGY" (PDF). United States Department of Energy. 2019-01-01. Archived (PDF) from the original on 2022-06-07. Retrieved 2022-06-07.
  356. ^ "Quadrennial technology review concepts in integrated analysis" (PDF). September 2015. p. 388. Archived (PDF) from the original on 2020-03-07. Retrieved 2019-01-12.
  357. ^ "4th Generation Nuclear Power – OSS Foundation". Ossfoundation.us. Archived from the original on 2014-02-01. Retrieved 2014-01-24.
  358. ^ Gerstner, E. (2009). "Nuclear energy: The hybrid returns" (PDF). Nature. 460 (7251): 25–28. doi:10.1038/460025a. PMID 19571861. S2CID 205047403. Archived (PDF) from the original on 2013-12-20. Retrieved 2013-06-19.
  359. ^ Roth, J. Reece (1986). Introduction to fusion energy. Charlottesville, Va.: Ibis Pub. ISBN 978-0-935005-07-3.
  360. ^ Hamacher, T. & Bradshaw, A. M. (October 2001). "Fusion as a Future Power Source: Recent Achievements and Prospects" (PDF). World Energy Council. Archived from the original (PDF) on 2004-05-06. Retrieved 2010-09-16.
  361. ^ "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
  362. ^ Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
  363. ^ Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
  364. ^ Gibbs, W. Wayt (2013-12-30). "Triple-threat method sparks hope for fusion". Nature. 505 (7481): 9–10. Bibcode:2014Natur.505....9G. doi:10.1038/505009a. PMID 24380935.
  365. ^ "Overview of EFDA Activities". www.efda.org. European Fusion Development Agreement. Archived from the original on 2006-10-01. Retrieved 2006-11-11.
  366. ^ "US announces $46 million in funds to eight nuclear fusion companies" (Press release). 31 May 2023. Archived from the original on 9 June 2023. Retrieved 13 June 2023.

Further reading

External links