stringtranslate.com

Economía de combustible en los automóviles

Monitor de consumo de combustible de un Honda Airwave 2006. El consumo de combustible que se muestra es de 18,1 km/L (5,5 L/100 km; 43 mpg ‑US ).
Un Briggs and Stratton Flyer de 1916. Originalmente un experimento para crear un automóvil que ahorrara combustible en los Estados Unidos, el vehículo pesaba solo 135 lb (61,2 kg) y era una adaptación de un pequeño motor de gasolina diseñado originalmente para propulsar una bicicleta. [1]

El consumo de combustible de un automóvil se relaciona con la distancia recorrida por el vehículo y la cantidad de combustible consumido . El consumo se puede expresar en términos del volumen de combustible necesario para recorrer una distancia o la distancia recorrida por unidad de volumen de combustible consumido. Dado que el consumo de combustible de los vehículos es un factor significativo en la contaminación del aire y que la importación de combustible para motores puede representar una parte importante del comercio exterior de una nación , muchos países imponen requisitos de ahorro de combustible.

Se utilizan distintos métodos para aproximarse al rendimiento real del vehículo. La energía del combustible es necesaria para superar diversas pérdidas ( resistencia al viento , arrastre de los neumáticos y otras) que se producen al impulsar el vehículo y al proporcionar energía a los sistemas del vehículo, como el encendido o el aire acondicionado. Se pueden emplear diversas estrategias para reducir las pérdidas en cada una de las conversiones entre la energía química del combustible y la energía cinética del vehículo. El comportamiento del conductor puede afectar al ahorro de combustible; las maniobras como la aceleración repentina y el frenado brusco desperdician energía.

Los autos eléctricos no queman combustible directamente y, por lo tanto, no tienen economía de combustible per se, pero se han creado medidas de equivalencia, como millas por galón de gasolina equivalente , para intentar compararlos.

Cantidades y unidades de medida

Conversión de mpg a L/100 km: azul, galón estadounidense ; rojo, galón imperial

La eficiencia de combustible de los vehículos de motor se puede expresar de múltiples maneras:

La fórmula para convertir a millas por galón estadounidense (3,7854 L) de L/100 km es , donde es el valor de L/100 km. Para millas por galón imperial (4,5461 L), la fórmula es .

En algunas partes de Europa, los dos ciclos de medición estándar para el valor de "litros/100 km" son el tráfico "urbano" con velocidades de hasta 50 km/h desde un arranque en frío y, a continuación, el viaje "extraurbano" a distintas velocidades de hasta 120 km/h que sigue a la prueba urbana. También se cita una cifra combinada que muestra el combustible total consumido dividido por la distancia total recorrida en ambas pruebas.

El ahorro de combustible se puede expresar de dos maneras:

Unidades de combustible por distancia fija
Generalmente se expresa en litros por cada 100 kilómetros (L/100 km), y se utiliza en la mayoría de los países europeos, China, Sudáfrica, Australia y Nueva Zelanda. La ley irlandesa permite el uso de millas por galón imperial , junto con litros por cada 100 kilómetros. [2] La ley canadiense requiere que el ahorro de combustible se mida tanto en litros por cada 100 kilómetros como en millas por galón imperial . [3] [4] [5] Los litros por cada 100 kilómetros se pueden utilizar junto con las millas por galón imperial en el Reino Unido. La pegatina de la ventana de los coches nuevos de EE. UU. muestra el consumo de combustible del vehículo en galones estadounidenses por cada 100 millas, además del número tradicional de mpg. [6] Un número más bajo significa más eficiente, mientras que un número más alto significa menos eficiente.
Unidades de distancia por unidad fija de combustible
Las millas por galón (mpg) se utilizan comúnmente en los Estados Unidos, el Reino Unido y Canadá (junto con L/100 km). Los kilómetros por litro (km/L) se utilizan más comúnmente en otras partes de América, Asia, partes de África y Oceanía. En el Levante se utiliza km/20 L, conocido como kilómetros por tanaka , un recipiente de metal que tiene un volumen de veinte litros. Cuando se utiliza mpg, es necesario identificar el tipo de galón: el galón imperial es 4,54609 litros y el galón estadounidense es 3,785 litros. Cuando se utiliza una medida expresada como distancia por unidad de combustible, un número mayor significa más eficiente, mientras que un número menor significa menos eficiente.

Conversiones de unidades:

Estadística

La proporción de camiones en los vehículos estadounidenses producidos se ha triplicado desde 1975. Aunque la eficiencia de combustible de los vehículos ha aumentado dentro de cada categoría, la tendencia general hacia tipos de vehículos menos eficientes ha contrarrestado algunos de los beneficios de una mayor economía de combustible y la reducción de las emisiones de dióxido de carbono. [7] Sin el cambio hacia los SUV, el uso de energía por unidad de distancia podría haber caído un 30% más de lo que cayó entre 2010 y 2022. [8]

Si bien la eficiencia térmica (conversión mecánica de energía química en combustible) de los motores de petróleo ha aumentado desde el comienzo de la era automotriz , este no es el único factor que influye en el ahorro de combustible. El diseño del automóvil en su conjunto y el patrón de uso afectan al ahorro de combustible. El ahorro de combustible publicado está sujeto a variaciones entre jurisdicciones debido a variaciones en los protocolos de prueba.

Uno de los primeros estudios para determinar el ahorro de combustible en los Estados Unidos fue el Mobil Economy Run , un evento que se llevó a cabo todos los años desde 1936 (excepto durante la Segunda Guerra Mundial ) hasta 1968. Fue diseñado para proporcionar números reales y eficientes de ahorro de combustible durante una prueba de costa a costa en carreteras reales y con condiciones climáticas y de tráfico regulares. La Mobil Oil Corporation lo patrocinó y el United States Auto Club (USAC) sancionó y operó la carrera. En estudios más recientes, el ahorro de combustible promedio para un automóvil de pasajeros nuevo en los Estados Unidos mejoró de 17 mpg (13,8 L/100 km) en 1978 a más de 22 mpg (10,7 L/100 km) en 1982. [9] El ahorro de combustible promedio [a] para automóviles, camionetas ligeras y SUV nuevos del año modelo 2020 en los Estados Unidos fue de 25,4 millas por galón estadounidense (9,3 L/100 km). [10] Los automóviles del año modelo 2019 (por ejemplo, vehículos eléctricos) clasificados como "de tamaño mediano" por la EPA de EE. UU. oscilaron entre 12 y 56 mpg en EE. UU. (20 a 4,2 L/100 km) [11] Sin embargo, debido a las preocupaciones ambientales causadas por las emisiones de CO 2 , se están introduciendo nuevas regulaciones de la UE para reducir las emisiones promedio de los automóviles vendidos a partir de 2012 a 130 g/km de CO 2 , equivalente a 4,5 L/100 km (52 ​​mpg en EE. UU. , 63 mpg imp ) para un automóvil con combustible diésel y 5,0 L/100 km (47 mpg en EE. UU. , 56 mpg imp ) para un automóvil con combustible de gasolina (gasolina). [12]

El consumo promedio de toda la flota no se ve afectado inmediatamente por el consumo de combustible de los vehículos nuevos : por ejemplo, el promedio de la flota de automóviles de Australia en 2004 fue de 11,5 L/100 km (20,5 mpg en EE. UU. ), [13] en comparación con el consumo promedio de los automóviles nuevos en el mismo año de 9,3 L/100 km (25,3 mpg en EE. UU .) [14].

Estudios de velocidad y economía de combustible

Estadísticas de consumo de combustible de 1997 para varios modelos de EE. UU.

En 2010 se estudió el ahorro de combustible a velocidades constantes con vehículos seleccionados. El estudio más reciente [15] indica un mayor ahorro de combustible a velocidades más altas que los estudios anteriores; por ejemplo, algunos vehículos logran un mejor ahorro de combustible a 100 km/h (62 mph) en lugar de a 70 km/h (43 mph), [15] aunque no su mejor ahorro, como el Oldsmobile Cutlass Ciera de 1994 con el motor LN2 de 2,2 L, que tiene su mejor ahorro a 90 km/h (56 mph) (8,1 L/100 km (29 mpg ‑US )), y obtiene un mejor ahorro a 105 km/h (65 mph) que a 72 km/h (45 mph) (9,4 L/100 km (25 mpg ‑US ) frente a 22 mpg ‑US (11 L/100 km)). La proporción de conducción en carreteras de alta velocidad varía entre el 4% en Irlanda y el 41% en los Países Bajos.

Cuando el límite de velocidad de 55 mph (89 km/h) establecido por la Ley Nacional de Velocidad Máxima de Estados Unidos se impuso entre 1974 y 1995, hubo quejas de que el ahorro de combustible podía disminuir en lugar de aumentar. El Toyota Celica de 1997 obtuvo una mejor eficiencia de combustible a 105 km/h (65 mph) que a 65 km/h (40 mph) (5,41 L/100 km (43,5 mpg -US ) frente a 5,53 L/100 km (42,5 mpg -US )), aunque incluso mejor a 60 mph (97 km/h) que a 65 mph (105 km/h) (48,4 mpg -US (4,86 L/100 km) frente a 43,5 mpg -US (5,41 L/100 km)), y su mejor economía (52,6 mpg -US (4,47 L/100 km)) a solo 25 mph (40 km/h). Otros vehículos evaluados obtuvieron entre un 1,4 y un 20,2 % más de ahorro de combustible a 90 km/h (56 mph) que a 105 km/h (65 mph). Su mejor economía de combustible se alcanzó a velocidades de 40 a 90 km/h (25 a 56 mph) (ver gráfico). [15]

Los funcionarios esperaban que el límite de 55 mph (89 km/h), combinado con una prohibición de iluminación ornamental, ninguna venta de gasolina los domingos y un recorte del 15% en la producción de gasolina, reduciría el consumo total de gasolina en 200.000 barriles al día, lo que representa una caída del 2,2% con respecto a los niveles de consumo anualizado de gasolina de 1973. [16] [b] Esto se basó en parte en la creencia de que los automóviles alcanzan la máxima eficiencia entre 40 y 50 mph (65 y 80 km/h) y que los camiones y autobuses eran más eficientes a 55 mph (89 km/h). [18]

En 1998, la Junta de Investigación del Transporte de los Estados Unidos publicó una nota a pie de página en la que se indicaba que el límite máximo de velocidad nacional de 1974 (NMSL) reducía el consumo de combustible entre un 0,2 y un 1,0 por ciento. [19] Las carreteras interestatales rurales, las más visiblemente afectadas por el NMSL, representaban el 9,5% de las millas recorridas por vehículos en los Estados Unidos en 1973, [20] pero estas carreteras de libre circulación suelen proporcionar un viaje más eficiente en términos de consumo de combustible que las carreteras convencionales. [21] [22] [23]

Discusión de estadísticas

Un supermini europeo razonablemente moderno y muchos coches medianos, incluidos los station wagon, pueden recorrer autopista con un consumo de 5 L/100 km (47 mpg en EE. UU./56 mpg imp.) o 6,5 L/100 km en el tráfico urbano (36 mpg en EE. UU./43 mpg imp.), con emisiones de dióxido de carbono de alrededor de 140 g/km.

Un automóvil norteamericano de tamaño mediano recorre 21 mpg (EE. UU.) (11 L/100 km) en ciudad, 27 mpg (EE. UU.) (9 L/100 km) en carretera; un SUV de tamaño completo generalmente recorre 13 mpg (EE. UU.) (18 L/100 km) en ciudad y 16 mpg (EE. UU.) (15 L/100 km) en carretera. Las camionetas pickup varían considerablemente; mientras que una camioneta liviana con motor de 4 cilindros puede alcanzar 28 mpg (8 L/100 km), una camioneta V8 de tamaño completo con cabina extendida solo recorre 13 mpg (EE. UU.) (18 L/100 km) en ciudad y 15 mpg (EE. UU.) (15 L/100 km) en carretera.

El consumo medio de combustible de todos los vehículos en circulación es mayor en Europa que en Estados Unidos porque el mayor coste del combustible modifica el comportamiento del consumidor . En el Reino Unido, un galón de gasolina sin impuestos costaba 1,97 dólares, pero con impuestos costaba 6,06 dólares en 2005. El coste medio en Estados Unidos era de 2,61 dólares. [24]

Los coches fabricados en Europa son, por lo general, más eficientes en el consumo de combustible que los vehículos estadounidenses. Si bien en Europa hay muchos coches diésel de mayor eficiencia, los vehículos de gasolina europeos también son, en promedio, más eficientes que los vehículos de gasolina en Estados Unidos. La mayoría de los vehículos europeos citados en el estudio de CSI funcionan con motores diésel, que tienden a lograr una mayor eficiencia de combustible que los motores de gasolina. Vender esos coches en Estados Unidos es difícil debido a las normas de emisiones, señala Walter McManus, un experto en economía de combustible del Instituto de Investigación del Transporte de la Universidad de Michigan. "En su mayor parte, los diésel europeos no cumplen las normas de emisiones estadounidenses", dijo McManus en 2007. Otra razón por la que muchos modelos europeos no se comercializan en Estados Unidos es que los sindicatos se oponen a que las tres grandes empresas importen nuevos modelos fabricados en el extranjero independientemente de la economía de combustible mientras despiden a trabajadores en su país. [25]

Un ejemplo de las capacidades de ahorro de combustible de los automóviles europeos es el microcoche Smart Fortwo cdi, que puede alcanzar hasta 3,4 l/100 km (69,2 mpg en EE. UU.) utilizando un motor diésel de tres cilindros turboalimentado de 41 bhp (30 kW). El Fortwo es producido por Daimler AG y solo lo vende una empresa en los Estados Unidos. Además, el récord mundial en ahorro de combustible de los automóviles de producción lo tiene el Grupo Volkswagen , con modelos de producción especiales (etiquetados como "3L") del Volkswagen Lupo y el Audi A2 , que consumen tan solo 3 l/100 km (94 mpg -imp ; 78 mpg -US ). [26] [ aclaración necesaria ]

Los motores diésel suelen alcanzar una mayor eficiencia energética que los motores de gasolina. Los motores diésel de turismos tienen una eficiencia energética de hasta el 41 %, aunque lo más habitual es que sea del 30 %, y los motores de gasolina de hasta el 37,3 %, aunque lo más habitual es que sea del 20 %. Un margen habitual es un 25 % más de kilómetros por galón para un turbodiésel eficiente.

Por ejemplo, el modelo actual Skoda Octavia, que utiliza motores Volkswagen, tiene un consumo de combustible combinado europeo de 5,70 l /100 km para el motor de gasolina de 105 CV (78 kW) y de 4,50 l/100 km para el motor diésel de 105 CV (78 kW) (y más pesado). La mayor relación de compresión ayuda a aumentar la eficiencia energética, pero el combustible diésel también contiene aproximadamente un 10% más de energía por unidad de volumen que la gasolina, lo que contribuye a reducir el consumo de combustible para una potencia dada.

En 2002, Estados Unidos tenía 85.174.776 camiones, y su promedio era de 13,5 millas por galón estadounidense (17,4 L/100 km; 16,2 mpg -imp ). Los camiones grandes, de más de 33.000 libras (15.000 kg), tenían un promedio de 5,7 millas por galón estadounidense (41 L/100 km; 6,8 mpg -imp ). [27]

La economía promedio de los automóviles en los Estados Unidos en 2002 fue de 22,0 millas por galón estadounidense (10,7 L/100 km; 26,4 mpg -imp ). Para 2010 esto había aumentado a 23,0 millas por galón estadounidense (10,2 L/100 km; 27,6 mpg -imp ). La economía de combustible promedio en los Estados Unidos disminuyó gradualmente hasta 1973, cuando alcanzó un mínimo de 13,4 millas por galón estadounidense (17,6 L/100 km; 16,1 mpg -imp ) y gradualmente ha aumentado desde entonces, como resultado del mayor costo del combustible. [28] Un estudio indica que un aumento del 10% en los precios de la gasolina eventualmente producirá un aumento del 2,04% en la economía de combustible. [29] Un método de los fabricantes de automóviles para aumentar la eficiencia del combustible es el aligeramiento en el que se sustituyen materiales más livianos para mejorar el rendimiento y el manejo del motor. [30]

Diferencias en los estándares de pruebas

Es posible que vehículos idénticos tengan distintas cifras de consumo de combustible según los métodos de prueba de la jurisdicción. [31]

Lexus IS 250 – gasolina 2.5 L 4GR-FSE V6 , 204 hp (153 kW), automático de 6 velocidades, tracción trasera

Consideraciones energéticas

Dado que la fuerza total que se opone al movimiento del vehículo (a velocidad constante) multiplicada por la distancia recorrida por el vehículo representa el trabajo que debe realizar el motor del vehículo, el estudio del ahorro de combustible (la cantidad de energía consumida por unidad de distancia recorrida) requiere un análisis detallado de las fuerzas que se oponen al movimiento de un vehículo. En términos de física, Fuerza = tasa a la que la cantidad de trabajo generado (energía entregada) varía con la distancia recorrida, o:

Nota: La cantidad de trabajo generado por la fuente de energía del vehículo (energía entregada por el motor) sería exactamente proporcional a la cantidad de energía de combustible consumida por el motor si la eficiencia del motor es la misma independientemente de la potencia de salida, pero este no es necesariamente el caso debido a las características de funcionamiento del motor de combustión interna.

Para un vehículo cuya fuente de energía es un motor térmico (un motor que utiliza calor para realizar trabajo útil), la cantidad de energía de combustible que consume un vehículo por unidad de distancia (carretera llana) depende de:

  1. La eficiencia termodinámica del motor térmico ;
  2. Pérdidas por fricción dentro del tren de transmisión ;
  3. Resistencia a la rodadura dentro de las ruedas y entre la carretera y las ruedas;
  4. Subsistemas no motrices alimentados por el motor, como el aire acondicionado , la refrigeración del motor y el alternador ;
  5. Resistencia aerodinámica al moverse a través del aire;
  6. Energía convertida por los frenos de fricción en calor residual o pérdidas por el frenado regenerativo en vehículos híbridos ;
  7. Combustible consumido mientras el motor no proporciona potencia pero sigue funcionando, como en ralentí , menos las cargas del subsistema. [33]
Disipación de energía en conducción en ciudad y carretera para un automóvil de gasolina de tamaño mediano

Idealmente, un automóvil que viaja a una velocidad constante sobre un terreno nivelado en el vacío con ruedas sin fricción podría viajar a cualquier velocidad sin consumir energía más allá de la necesaria para que el automóvil alcance la velocidad adecuada. Menos idealmente, cualquier vehículo debe gastar energía para superar las fuerzas de carga de la carretera, que consisten en la resistencia aerodinámica, la resistencia a la rodadura de los neumáticos y la energía inercial que se pierde cuando el vehículo se desacelera mediante frenos de fricción. Con un frenado regenerativo ideal , la energía inercial podría recuperarse por completo, pero hay pocas opciones para reducir la resistencia aerodinámica o la resistencia a la rodadura aparte de optimizar la forma del vehículo y el diseño de los neumáticos. La energía de carga de la carretera o la energía demandada en las ruedas se puede calcular evaluando la ecuación de movimiento del vehículo durante un ciclo de conducción específico. [34] El tren motriz del vehículo debe proporcionar esta energía mínima para mover el vehículo y perderá una gran cantidad de energía adicional en el proceso de convertir la energía del combustible en trabajo y transmitirla a las ruedas. En general, las fuentes de pérdida de energía al mover un vehículo se pueden resumir de la siguiente manera:

Las disminuciones en el consumo de combustible causadas por cargas eléctricas son más pronunciadas a velocidades más bajas, porque la mayoría de las cargas eléctricas son constantes, mientras que la carga del motor aumenta con la velocidad. Por lo tanto, a una velocidad más baja, una mayor proporción de la potencia del motor se utiliza para cargas eléctricas. Los autos híbridos experimentan el mayor efecto en el consumo de combustible a causa de las cargas eléctricas debido a este efecto proporcional.

Tecnologías que mejoran el ahorro de combustible

Tecnología específica del motor

Otras tecnologías de vehículos

Tecnologías futuras

Las tecnologías que pueden mejorar la eficiencia del combustible, pero que aún no están en el mercado, incluyen:

Existen muchos productos de consumo en el mercado de repuestos que supuestamente aumentan el ahorro de combustible; muchas de estas afirmaciones han sido desacreditadas. En los Estados Unidos, la Agencia de Protección Ambiental mantiene una lista de dispositivos que han sido probados por laboratorios independientes y pone los resultados de las pruebas a disposición del público. [39]

Comportamientos que maximizan el ahorro de combustible

Los gobiernos, diversas organizaciones ambientalistas y empresas como Toyota y Shell Oil Company han instado históricamente a los conductores a mantener una presión de aire adecuada en los neumáticos y a adoptar hábitos de aceleración y desaceleración cuidadosos. El control del consumo de combustible estimula el comportamiento que maximiza el ahorro de combustible. [40]

Una colaboración de cinco años entre Michelin y Anglian Water demuestra que se pueden ahorrar 60.000 litros de combustible en la presión de los neumáticos. La flota de 4.000 furgonetas y coches de Anglian Water ya dura toda su vida útil, lo que demuestra el impacto que tiene la presión de los neumáticos en la eficiencia del combustible. [41]

El ahorro de combustible como parte de los regímenes de gestión de la calidad

Los sistemas de gestión medioambiental EMAS , además de una buena gestión de la flota, incluyen el registro del consumo de combustible de la misma. La gestión de la calidad utiliza esos datos para orientar las medidas que se aplican a las flotas. De esta forma se puede comprobar si la adquisición, la conducción y el mantenimiento en conjunto han contribuido a modificar el consumo global de la flota.

Normas de ahorro de combustible y procedimientos de prueba

* carretera ** combinada

Australia

Desde octubre de 2008, todos los automóviles nuevos debían venderse con una pegatina en el parabrisas que mostraba el consumo de combustible y las emisiones de CO 2 . [44] Las cifras de consumo de combustible se expresan como urbano , extraurbano y combinado , medido de acuerdo con los Reglamentos ECE 83 y 101, que se basan en el ciclo de conducción europeo ; anteriormente, solo se daba el número combinado .

Australia también utiliza un sistema de clasificación de estrellas, de una a cinco estrellas, que combina los gases de efecto invernadero con la contaminación, calificando cada uno de 0 a 10, siendo diez la mejor. Para obtener 5 estrellas se necesita una puntuación combinada de 16 o más, por lo que un coche con un 10 para economía (efecto invernadero) y un 6 para emisiones o 6 para economía y 10 para emisiones, o cualquier valor intermedio, obtendría la calificación más alta de 5 estrellas. [45] El coche con la calificación más baja es el Ssangyong Korrando con transmisión automática, con una estrella, mientras que el más alto fue el híbrido Toyota Prius. El Fiat 500, Fiat Punto y Fiat Ritmo, así como el Citroën C3, también recibieron 5 estrellas. [46] La calificación de efecto invernadero depende de la economía de combustible y del tipo de combustible utilizado. Una calificación de efecto invernadero de 10 requiere 60 o menos gramos de CO 2 por km, mientras que una calificación de cero es más de 440 g/km de CO 2 . El Toyota Prius, con la calificación más alta en emisiones de gases de efecto invernadero de todos los coches de 2009, es el Prius, con 106 g/km de CO2 y 4,4 l/100 km (64 mpg -imp ; 53 mpg -US ). Otros coches también recibieron la misma calificación de 8,5 en emisiones de gases de efecto invernadero. El Ferrari 575, con la calificación más baja, fue el Ferrari 575, con 499 g/km de CO2 y 21,8 l/100 km (13,0 mpg -imp ; 10,8 mpg -US ). El Bentley también recibió una calificación de cero, con 465 g/km de CO2 . El Honda Insight 2004-2005 , con el mejor consumo de combustible de todos los años, con 3,4 l/100 km (83 mpg -imp ; 69 mpg -US ).

Canadá

Los fabricantes de vehículos siguen un procedimiento de pruebas de laboratorio controlado para generar los datos de consumo de combustible que envían al Gobierno de Canadá. Este método controlado de pruebas de consumo de combustible, que incluye el uso de combustibles estandarizados, ciclos de prueba y cálculos, se utiliza en lugar de la conducción en carretera para garantizar que todos los vehículos se prueben en condiciones idénticas y que los resultados sean consistentes y repetibles.

Los vehículos de prueba seleccionados se someten a un "rodaje" de unos 6.000 km antes de la prueba. A continuación, el vehículo se monta en un dinamómetro de chasis programado para tener en cuenta la eficiencia aerodinámica, el peso y la resistencia a la rodadura del vehículo. Un conductor capacitado hace funcionar el vehículo a través de ciclos de conducción estandarizados que simulan viajes en la ciudad y en la carretera. Las clasificaciones de consumo de combustible se derivan de las emisiones generadas durante los ciclos de conducción. [47]

LA PRUEBA DE LOS 5 CICLOS:

  1. El test urbano simula la conducción urbana en tráfico con frecuentes arranques y paradas a una velocidad media de 34 km/h y una velocidad máxima de 90 km/h. La prueba dura aproximadamente 31 minutos e incluye 23 paradas. La prueba comienza con un arranque del motor en frío, que es similar a arrancar un vehículo después de haber estado estacionado durante la noche durante el verano. La fase final de la prueba repite los primeros ocho minutos del ciclo pero con un arranque del motor en caliente. Esto simula el reinicio de un vehículo después de que se haya calentado, conducido y luego parado durante un corto período de tiempo. Más de cinco minutos del tiempo de prueba se pasan al ralentí, para representar la espera en los semáforos. La temperatura ambiente de la celda de prueba comienza a 20 °C y termina a 30 °C.
  2. La prueba en carretera simula una combinación de conducción en carretera abierta y en carretera rural, con una velocidad media de 78 km/h y una velocidad máxima de 97 km/h. La prueba dura aproximadamente 13 minutos y no incluye ninguna parada. La prueba comienza con el motor en caliente. La temperatura ambiente de la celda de prueba comienza a 20 °C y termina a 30 °C.
  3. En la prueba de funcionamiento a bajas temperaturas , se utiliza el mismo ciclo de conducción que en la prueba urbana estándar , excepto que la temperatura ambiente de la celda de prueba se establece en -7 °C.
  4. En la prueba de aire acondicionado , la temperatura ambiente de la celda de prueba se eleva a 35 °C. A continuación, se utiliza el sistema de control de climatización del vehículo para reducir la temperatura interior del habitáculo. Partiendo con el motor caliente, la prueba alcanza una velocidad media de 35 km/h y una velocidad máxima de 88 km/h. Se incluyen cinco paradas, con el motor en ralentí funcionando el 19% del tiempo.
  5. La prueba de alta velocidad/aceleración rápida tiene una media de 78 km/h y alcanza una velocidad máxima de 129 km/h. Se incluyen cuatro paradas y la aceleración rápida alcanza un máximo de 13,6 km/h por segundo. El motor arranca caliente y no se utiliza el aire acondicionado. La temperatura ambiente de la celda de prueba se mantiene constante a 25 °C.

Las pruebas 1, 3, 4 y 5 se promedian para crear la tasa de consumo de combustible en conducción urbana.

Las pruebas 2, 4 y 5 se promedian para crear la tasa de consumo de combustible en carretera. [47]

Europa

Etiqueta irlandesa de ahorro de combustible

En la Unión Europea, los vehículos de pasajeros se prueban comúnmente utilizando dos ciclos de conducción, y los ahorros de combustible correspondientes se informan como "urbanos" y "extraurbanos", en litros cada 100 km y (en el Reino Unido) en millas por galón imperial.

La economía urbana se mide utilizando el ciclo de prueba conocido como ECE-15, introducido por primera vez en 1970 por la Directiva CE 70/220/EWG y finalizado por la Directiva CEE 90/C81/01 en 1999. Simula un viaje urbano de 4.052 m (2,518 millas) a una velocidad media de 18,7 km/h (11,6 mph) y a una velocidad máxima de 50 km/h (31 mph).

El ciclo de conducción extraurbana o EUDC dura 400 segundos (6 minutos 40 segundos) a una velocidad media de 62,6 km/h (39 mph) y una velocidad máxima de 120 km/h (74,6 mph). [48]

Los datos de consumo de combustible de la UE suelen ser considerablemente inferiores a los correspondientes resultados de las pruebas de la EPA de EE. UU. para el mismo vehículo. Por ejemplo, el Honda CR-Z 2011 con transmisión manual de seis velocidades tiene una clasificación de 6,1/4,4 L/100 km en Europa [49] y 7,6/6,4 L/100 km (31/37 mpg) en los Estados Unidos. [50]

En la Unión Europea, la publicidad debe mostrar los datos sobre las emisiones de dióxido de carbono (CO 2 ) y el consumo de combustible de forma clara, tal como se describe en el Instrumento Estatutario del Reino Unido de 2004 N.º 1661. [51] Desde septiembre de 2005, en el Reino Unido está disponible una pegatina "Green Rating" con código de colores que clasifica el ahorro de combustible según las emisiones de CO 2 : A: <= 100 g/km, B: 100–120, C: 121–150, D: 151–165, E: 166–185, F: 186–225 y G: 226+. Dependiendo del tipo de combustible utilizado, para la gasolina A corresponde a unos 4,1 L/100 km (69 mpg ‑imp ; 57 mpg ‑US ) y G a unos 9,5 L/100 km (30 mpg ‑imp ; 25 mpg ‑US ). [52] Irlanda tiene una etiqueta muy similar, pero los rangos son ligeramente diferentes, con A: <= 120 g/km, B: 121–140, C: 141–155, D: 156–170, E: 171–190, F: 191–225 y G: 226+. [53] A partir de 2020, la UE exige a los fabricantes una media de emisiones de CO 2 de 95 g/km o menos, o pagar una prima por exceso de emisiones . [54]

En el Reino Unido, la ASA (Advertising Standards Agency) ha afirmado que las cifras de consumo de combustible son engañosas. Esto suele ocurrir con los vehículos europeos, ya que las cifras de MPG (millas por galón) que se pueden anunciar no suelen ser las mismas que las de la conducción en el "mundo real".

La ASA ha dicho que los fabricantes de automóviles pueden utilizar "trampas" para preparar sus vehículos para las pruebas obligatorias de eficiencia de combustible y emisiones de una manera que los haga parecer lo más "limpios" posible. Esta práctica es común en las pruebas de vehículos de gasolina y diésel, pero los vehículos híbridos y eléctricos no son inmunes, ya que los fabricantes aplican estas técnicas a la eficiencia de combustible.

Los expertos en automóviles [¿ quiénes? ] también afirman que las cifras oficiales de MPG proporcionadas por los fabricantes no representan los valores reales de MPG de la conducción en el mundo real. [55] Se han creado sitios web para mostrar las cifras de MPG del mundo real, basadas en datos de fuentes colectivas de usuarios reales, frente a las cifras oficiales de MPG. [56]

Las lagunas importantes de las pruebas actuales de la UE permiten a los fabricantes de automóviles realizar una serie de "trampas" para mejorar los resultados. Los fabricantes de automóviles pueden:

Según los resultados de un estudio de 2014 del Consejo Internacional de Transporte Limpio (ICCT), la brecha entre las cifras oficiales y las reales de ahorro de combustible en Europa ha aumentado de un 10% en 2001 a un 38% en 2013. El análisis concluyó que, en el caso de los vehículos particulares, la diferencia entre los valores oficiales de CO2 y los de carretera aumentó de un 8% en 2001 a un 31% en 2013, y de un 45% en el caso de los vehículos de empresa en 2013. El informe se basa en datos de más de medio millón de vehículos particulares y de empresa en toda Europa. El análisis fue elaborado por el ICCT junto con la Organización Holandesa para la Investigación Científica Aplicada (TNO) y el Instituto Alemán de Investigación Energética y Ambiental de Heidelberg (IFEU). [58]

En la actualización de 2018 de los datos del ICCT la diferencia entre las cifras oficiales y las reales fue nuevamente del 38%. [59]

Japón

Los criterios de evaluación utilizados en Japón reflejan las condiciones de conducción habituales, ya que el conductor japonés típico no conduce tan rápido como en otras regiones a nivel internacional ( Límites de velocidad en Japón ).

Modo 10-15

El ciclo de prueba de conducción en modo 10-15 es la prueba oficial de certificación de emisiones y economía de combustible para vehículos ligeros nuevos en Japón. La economía de combustible se expresa en km/L (kilómetros por litro) y las emisiones se expresan en g/km. La prueba se lleva a cabo en un dinamómetro y consta de 25 pruebas que cubren ralentí, aceleración, marcha constante y desaceleración, y simulan las condiciones típicas de conducción urbana y/o en autopistas japonesas. El patrón de conducción comienza con un arranque en caliente, dura 660 segundos (11 minutos) y se ejecuta a velocidades de hasta 70 km/h (43,5 mph). [60] [61] La distancia del ciclo es de 6,34 km (3,9 mi), la velocidad media de 25,6 km/h (15,9 mph) y la duración de 892 segundos (14,9 minutos), incluido el segmento inicial de 15 modos. [61]

JC08

En diciembre de 2006 se estableció una nueva prueba más exigente, llamada JC08, para la nueva norma de Japón que entra en vigor en 2015, pero ya la utilizan varios fabricantes de automóviles para los nuevos vehículos. La prueba JC08 es significativamente más larga y rigurosa que la prueba del modo 10-15. El patrón de funcionamiento con JC08 se extiende hasta 1200 segundos (20 minutos), y hay mediciones de arranque en frío y en caliente y la velocidad máxima es de 82 km/h (51,0 mph). Las clasificaciones de economía de combustible de JC08 son inferiores a las del ciclo del modo 10-15, pero se espera que sean más reales. [60] El Toyota Prius se convirtió en el primer automóvil en cumplir con las nuevas Normas de Economía de Combustible de Japón de 2015 medidas según la prueba JC08. [62]

Nueva Zelanda

A partir del 7 de abril de 2008, todos los vehículos de hasta 3,5 toneladas de peso bruto del vehículo que se vendan de forma distinta a la venta privada deben tener una pegatina de ahorro de combustible (si está disponible) que muestre la calificación de media estrella a seis estrellas, siendo los vehículos más económicos los que tienen más estrellas y los que más combustible consumen menos, junto con el ahorro de combustible en l/100 km y el costo anual estimado de combustible para conducir 14.000 km (a los precios actuales del combustible). Las pegatinas también deben aparecer en los vehículos que se alquilen por más de 4 meses. Todos los vehículos nuevos tienen una calificación actual que va desde 6,9 ​​l/100 km (41 mpg ‑imp ; 34 mpg ‑US ) a 3,8 l/100 km (74 mpg ‑imp ; 62 mpg ‑US ) y reciben respectivamente de 4,5 a 5,5 estrellas. [63]

Arabia Saudita

El Reino de Arabia Saudita anunció en noviembre de 2014 nuevas normas de ahorro de combustible para vehículos ligeros, que entraron en vigor el 1 de enero de 2016 y se implementarán de manera gradual a partir del 1 de enero de 2018 ( norma saudita SASO-2864). Se realizará una revisión de los objetivos en diciembre de 2018, momento en el que se establecerán los objetivos para el período 2021-2025.

Estados Unidos

Consumo de combustible de vehículos de motor desde 1949 hasta 2021

Ley de Impuestos sobre la Energía de EE.UU.

La Ley del Impuesto sobre la Energía de 1978 [64] en los EE. UU. estableció un impuesto a los vehículos de alto consumo de gasolina sobre la venta de vehículos nuevos cuyo consumo de combustible no alcance ciertos niveles legales. El impuesto se aplica solo a los automóviles (no a los camiones) y lo recauda el IRS . Su propósito es desincentivar la producción y compra de vehículos ineficientes en cuanto al consumo de combustible. El impuesto se aplicó gradualmente a lo largo de diez años con tasas que aumentaron con el tiempo. Se aplica solo a los fabricantes e importadores de vehículos, aunque presumiblemente parte o la totalidad del impuesto se traslada a los consumidores de automóviles en forma de precios más altos. Solo los vehículos nuevos están sujetos al impuesto, por lo que no se impone ningún impuesto sobre las ventas de automóviles usados. El impuesto se gradúa para aplicar una tasa impositiva más alta para los vehículos menos eficientes en cuanto al consumo de combustible. Para determinar la tasa impositiva, los fabricantes prueban todos los vehículos en sus laboratorios para comprobar el consumo de combustible. La Agencia de Protección Ambiental de los EE. UU. confirma una parte de esas pruebas en un laboratorio de la EPA.

En algunos casos, este impuesto puede aplicarse solo a ciertas variantes de un modelo determinado; por ejemplo, el Pontiac GTO 2004-2006 (versión de importación cautiva del Holden Monaro ) incurrió en el impuesto cuando se ordenó con la transmisión automática de cuatro velocidades, pero no incurrió en el impuesto cuando se ordenó con la transmisión manual de seis velocidades. [65]

Procedimiento de pruebas de la EPA hasta el año 2007

El programa de conducción en dinamómetro urbano (UDDS) o de "ciudad" utilizado en el procedimiento de prueba federal de la EPA
El ciclo de conducción económica de combustible en carretera (HWFET) utilizado en el procedimiento de prueba federal de la EPA

Dos pruebas de economía de combustible separadas simulan la conducción en ciudad y en carretera: el programa de conducción "urbana" o Urban Dynamometer Driving Schedule (UDDS) o FTP-72 se define en 40 CFR 86.I y consiste en arrancar con un motor frío y hacer 23 paradas durante un período de 31 minutos para una velocidad promedio de 20 mph (32 km/h) y con una velocidad máxima de 56 mph (90 km/h).

El programa de "carretera" o Highway Fuel Economy Driving Schedule (HWFET) se define en 40 CFR 600.I y utiliza un motor calentado y no hace paradas, con un promedio de 48 mph (77 km/h) con una velocidad máxima de 60 mph (97 km/h) en una distancia de 10 millas (16 km). Se utiliza un promedio ponderado de los ahorros de combustible en ciudad (55%) y en carretera (45%) para determinar la clasificación combinada y el impuesto por consumo excesivo. [66] [67] [68] Esta clasificación es la que también se utiliza para las regulaciones de ahorro de combustible promedio corporativo de vehículos livianos .

El procedimiento se ha actualizado a FTP-75 , agregando un ciclo de "inicio en caliente" que repite el ciclo de "inicio en frío" después de una pausa de 10 minutos.

Como las cifras de la EPA casi siempre habían indicado una mejor eficiencia que la eficiencia de combustible en el mundo real, la EPA modificó el método a partir de 2008. Hay estimaciones actualizadas disponibles para vehículos hasta el año modelo 1985. [66] [69]

Procedimiento de prueba de la EPA: 2008 y años posteriores

La calcomanía de Monroney 2008 resalta el ahorro de combustible.

La EPA de EE. UU. modificó el procedimiento de prueba a partir del año modelo 2008 y agregó tres nuevas pruebas de Procedimiento de Prueba Federal Suplementario (SFTP) para incluir la influencia de una mayor velocidad de conducción, una aceleración más fuerte, una temperatura más fría y el uso del aire acondicionado. [70]

SFTP US06 es un circuito de alta velocidad/aceleración rápida que dura 10 minutos, cubre 8 millas (13 km), tiene un promedio de 48 mph (77 km/h) y alcanza una velocidad máxima de 80 mph (130 km/h). Se incluyen cuatro paradas y la aceleración rápida alcanza un máximo de 8,46 mph (13,62 km/h) por segundo. El motor arranca caliente y no se utiliza el aire acondicionado. La temperatura ambiente varía entre 68 °F (20 °C) y 86 °F (30 °C).

SFTO SC03 es la prueba de aire acondicionado, que eleva la temperatura ambiente a 95 °F (35 °C) y pone en funcionamiento el sistema de control de climatización del vehículo. Con una duración de 9,9 minutos, el circuito de 3,6 millas (5,8 km) alcanza una velocidad media de 22 mph (35 km/h) y alcanza una velocidad máxima de 54,8 mph (88,2 km/h). Se incluyen cinco paradas, el motor funciona al ralentí el 19 por ciento del tiempo y se alcanza una aceleración de 5,1 mph por segundo. Las temperaturas del motor comienzan tibias.

Por último, un ciclo de temperatura fría utiliza los mismos parámetros que el ciclo de ciudad actual, excepto que la temperatura ambiente se establece en 20 °F (−7 °C).

Las pruebas de la EPA para medir el ahorro de combustible no incluyen pruebas de carga eléctrica más allá del control de climatización, lo que puede explicar parte de la discrepancia entre la EPA y la eficiencia de combustible en el mundo real. Una carga eléctrica de 200 W puede producir una reducción de 0,4 km/L (0,94 mpg) en la eficiencia en la prueba FTP de 75 ciclos. [36]

A partir del año modelo 2017, el método de cálculo cambió para mejorar la precisión de los valores estimados de economía de combustible en ciudad y carretera de 5 ciclos derivados únicamente de las pruebas FTP y HFET, con menor incertidumbre para vehículos de bajo consumo de combustible. [71]

Vehículos eléctricos e híbridos

Adhesivo Monroney 2010 para un híbrido enchufable que muestra el ahorro de combustible en modo totalmente eléctrico y en modo solo gasolina

A raíz de las afirmaciones de eficiencia realizadas para vehículos como Chevrolet Volt y Nissan Leaf , el Laboratorio Nacional de Energía Renovable recomendó utilizar la nueva fórmula de eficiencia de combustible para vehículos de la EPA que proporciona diferentes valores según el combustible utilizado. [72] En noviembre de 2010, la EPA introdujo las primeras clasificaciones de economía de combustible en las pegatinas Monroney para vehículos eléctricos enchufables .

Para la etiqueta de economía de combustible del híbrido enchufable Chevy Volt, la EPA calificó el vehículo por separado para el modo totalmente eléctrico expresado en millas por galón equivalentes de gasolina (MPG-e) y para el modo solo de gasolina expresado en millas por galón convencionales. La EPA también estimó una calificación general de economía de combustible combinada de ciudad/carretera con gasolina y electricidad expresada en millas por galón equivalentes de gasolina (MPG-e). La etiqueta también incluye una tabla que muestra la economía de combustible y la electricidad consumida para cinco escenarios diferentes: 30 millas (48 km), 45 millas (72 km), 60 millas (97 km) y 75 millas (121 km) conducidas entre una carga completa y un escenario de nunca cargar. Esta información se incluyó para que los consumidores conocieran la variabilidad del resultado de la economía de combustible según las millas recorridas entre cargas. También se incluyó la economía de combustible para un escenario de solo gasolina (nunca cargar). Para el modo solo eléctrico, también se muestra el consumo de energía estimado en kWh por 100 millas (160 km). [73] [74]

Etiqueta de Monroney 2010 que muestra el equivalente de economía de combustible combinada en ciudad/carretera de la EPA para un automóvil totalmente eléctrico , en este caso un Nissan Leaf 2010

Para la etiqueta de economía de combustible del automóvil eléctrico Nissan Leaf , la EPA evaluó la economía de combustible combinada en términos de millas por galón equivalentes de gasolina , con una clasificación separada para la conducción en ciudad y en carretera. Esta equivalencia de economía de combustible se basa en el consumo de energía estimado en kWh por cada 100 millas, y también se muestra en la etiqueta Monroney. [75]

En mayo de 2011, la Administración Nacional de Seguridad del Tráfico en las Carreteras (NHTSA) y la EPA emitieron una norma final conjunta que establece nuevos requisitos para una etiqueta de economía de combustible y medio ambiente que es obligatoria para todos los automóviles y camiones de pasajeros nuevos a partir del año modelo 2013, y voluntaria para los modelos 2012. La norma incluye nuevas etiquetas para vehículos de combustible alternativo y propulsión alternativa disponibles en el mercado estadounidense, como híbridos enchufables , vehículos eléctricos , vehículos de combustible flexible , vehículos de pila de combustible de hidrógeno y vehículos de gas natural . [76] [77] La ​​métrica común de economía de combustible adoptada para permitir la comparación de vehículos de combustible alternativo y tecnología avanzada con vehículos de motor de combustión interna convencionales es millas por galón de gasolina equivalente (MPGe). Un galón de gasolina equivalente significa la cantidad de kilovatios-hora de electricidad, pies cúbicos de gas natural comprimido (GNC) o kilogramos de hidrógeno que es igual a la energía en un galón de gasolina. [76]

Las nuevas etiquetas también incluyen por primera vez una estimación de cuánto combustible o electricidad se necesita para conducir 100 millas (160 km), lo que proporciona a los consumidores estadounidenses el consumo de combustible por distancia recorrida, la métrica comúnmente utilizada en muchos otros países. La EPA explicó que el objetivo es evitar la métrica tradicional de millas por galón que puede ser potencialmente engañosa cuando los consumidores comparan las mejoras de ahorro de combustible, y conocida como la "ilusión de MPG" [78] - esta ilusión surge porque la relación recíproca (es decir, no lineal) entre el costo (equivalentemente, el volumen de combustible consumido) por unidad de distancia recorrida y el valor de MPG significa que las diferencias en los valores de MPG no son directamente significativas - solo las proporciones lo son (en términos matemáticos, la función recíproca no conmuta con la suma y la resta; en general, una diferencia en los valores recíprocos no es igual al recíproco de su diferencia). Se ha afirmado que muchos consumidores no son conscientes de esto y, por lo tanto, comparan los valores de MPG restándolos, lo que puede dar una imagen engañosa de las diferencias relativas en el ahorro de combustible entre diferentes pares de vehículos; por ejemplo, un aumento de 10 a 20 MPG corresponde a una mejora del 100% en el ahorro de combustible, mientras que un aumento de 50 a 60 MPG es solo una mejora del 20%, aunque en ambos casos la diferencia es de 10 MPG. [79] La EPA explicó que la nueva métrica de galones por 100 millas proporciona una medida más precisa de la eficiencia del combustible [76] [80] ; en particular, es equivalente a la medida métrica normal de ahorro de combustible, litros por 100 kilómetros (L/100 km).

Normas CAFE

Curva del kilometraje promedio de los automóviles para los años modelo entre 1978 y 2014

Las regulaciones de Economía de Combustible Promedio Corporativo (CAFE) en los Estados Unidos, promulgadas por primera vez por el Congreso en 1975, [81] son ​​regulaciones federales destinadas a mejorar la economía de combustible promedio de los automóviles y camionetas ligeras (camiones, furgonetas y vehículos utilitarios deportivos ) vendidos en los EE. UU. a raíz del Embargo de petróleo árabe de 1973. Históricamente, es la economía de combustible promedio ponderada por ventas de la flota de un fabricante de automóviles de pasajeros o camionetas ligeras del año modelo actual , fabricados para la venta en los Estados Unidos. Según los estándares CAFE para camiones 2008-2011, esto cambia a un modelo de "huella" donde se permite que los camiones más grandes consuman más combustible. Los estándares se limitaban a vehículos por debajo de cierto peso, pero esas clases de peso se ampliaron en 2011.

Regulaciones federales y estatales

The Clean Air Act of 1970 prohibited states from establishing their own air pollution standards. However, the legislation authorized the EPA to grant a waiver to California, allowing the state to set higher standards.[82] The law provides a “piggybacking” provision that allows other states to adopt vehicle emission limits that are the same as California's.[83] California's waivers were routinely granted until 2007, when the George W. Bush administration rejected the state's bid to adopt global warming pollution limits for cars and light trucks.[84] California and 15 other states that were trying to put in place the same emissions standards sued in response.[85] The case was tied up in court until the Obama administration reversed the policy in 2009 by granting the waiver.[86]

In August 2012, President Obama announced new standards for American-made automobiles of an average of 54.5 miles per gallon by the year 2025.[87][88] In April 2018, EPA Administrator Scott Pruitt announced that the Trump administration planned to roll back the 2012 federal standards and would also seek to curb California's authority to set its own standards.[82] Although the Trump administration was reportedly considering a compromise to allow state and national standards to stay in place,[89] on 21 February 2019 the White House declared that it had abandoned these negotiations.[90] A government report subsequently found that, in 2019, new light-duty vehicle fuel economy fell 0.2 miles per gallon (to 24.9 miles per gallon) and pollution increased 3 grams per mile traveled (to 356 grams per mile). A decrease in fuel economy and an increase in pollution had not occurred for the previous five years.[91] The Obama-era rule was officially rolled back on 31 March 2020 during the Trump administration,[92] but the rollback was reversed on 20 December 2021 during the Biden administration.[93]

Fuel economy of trucks

Trucks are usually bought as an investment good. They are meant to earn money. As the Diesel fuel burnt in heavy trucks accounts for around 30%[94] of the total costs for a freight forwarding company there is always a lot of interest in both the haulage industry and the truck builder industry to strive for best fuel economy. For truck buyers the fuel economy measured by standard procedures is only a first guideline. Professional trucking companies measure the fuel economy of their trucks and truck fleets in real usage. Fuel economy of trucks in real usage is determined by four important factors:[94] The truck technology that is constantly improved by the various OEMs. The driver's driving style contributes a lot to the real fuel economy (different from the test cycles where a standard driving style is used). The maintenance condition of the vehicle influences the fuel efficiency – again different from standardized procedures where the trucks are always presented in flawless condition. Last but not least the usage of the vehicle influences the fuel consumption: Hilly roads and heavy loads will increase the fuel consumption of a vehicle.

Effect on pollution

Fuel efficiency directly affects emissions causing pollution by affecting the amount of fuel used. However, it also depends on the fuel source used to drive the vehicle concerned. Cars for example, can run on a number of fuel types other than gasoline, such as natural gas, LPG or biofuel or electricity which creates various quantities of atmospheric pollution.

A kilogram of carbon, whether contained in petrol, diesel, kerosene, or any other hydrocarbon fuel in a vehicle, leads to approximately 3.6 kg of CO2 emissions.[95] Due to the carbon content of gasoline, its combustion emits 2.3 kg/L (19.4 lb/US gal) of CO2; since diesel fuel is more energy dense per unit volume, diesel emits 2.6 kg/L (22.2 lb/US gal).[95] This figure is only the CO2 emissions of the final fuel product and does not include additional CO2 emissions created during the drilling, pumping, transportation and refining steps required to produce the fuel. Additional measures to reduce overall emission includes improvements to the efficiency of air conditioners, lights and tires.

Unit conversions

US Gallons
Imperial gallons

Conversion from mpg

Conversion from km/L and L/100 km

See also

Annotations

  1. ^ Specifically, the production-weighted harmonic mean
  2. ^ The 2.2% drop figure was calculated by finding daily consumption to be 9,299,684 barrels of petroleum. Obtain 1973's petroleum consumption from transportation sector at 2.1e from the Energy Consumption by Sector section, then convert to barrels using A1 in the Thermal Conversion Factors section (assume "conventional motor gasoline" since ethanol-based or purportedly smog-reducing gas was not common in 1973).[17]

References

  1. ^ Page, Walter Hines; Page, Arthur Wilson (1916). "Man and His Machines". The World's Work. Vol. XXXIII. Garden City, New York: Doubleday, Page & Co.
  2. ^ "What counts as 'good' MPG nowadays?". 21 December 2016.
  3. ^ "Fuel Consumption Ratings". Government of Canada. January 2011. Retrieved 8 June 2011.
  4. ^ "FAQs – Transport Canada". Archived from the original on 3 September 2012. Retrieved 6 November 2012.
  5. ^ "The Passenger Car (Fuel Consumption and CO2 Emissions Information) Regulations 2001". 2001. Retrieved 11 November 2014.
  6. ^ The New Fuel Economy Label at FuelEconomy.gov
  7. ^ "Highlights of the Automotive Trends Report". EPA.gov. U.S. Environmental Protection Agency (EPA). 12 December 2022. Archived from the original on 2 September 2023.
  8. ^ Cazzola, Pierpaolo; Paoli, Leonardo; Teter, Jacob (November 2023). "Trends in the Global Vehicle Fleet 2023 / Managing the SUV Shift and the EV Transition" (PDF). Global Fuel Economy Initiative (GFEI). p. 3. doi:10.7922/G2HM56SV. Archived (PDF) from the original on 26 November 2023.
  9. ^ Paul R. Portney; Ian W.H. Parry; Howard K. Gruenspecht; Winston Harrington (November 2003). "The Economics of Fuel Economy Standards" (PDF). Resources for the Future. Archived from the original (PDF) on 1 December 2007. Retrieved 4 January 2008. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ "Highlights of the Automotive Trends Report". US EPA. November 2021. Retrieved 30 November 2021.
  11. ^ "2019 Best and Worst Fuel Economy Vehicles". US EPA. Retrieved 23 June 2019.
  12. ^ Reducing CO2 emissions from passenger cars – Policies – Climate Action – European Commission. Ec.europa.eu (9 December 2010). Retrieved 21 September 2011.
  13. ^ Myth: Cars are becoming more fuel efficient. Ptua.org.au. Retrieved 21 September 2011.
  14. ^ a b c Comparison of Passenger Vehicle Fuel Economy and GHG Emission Standards Around the World at Pew Center on Global Climate Change Archived 13 April 2008 at the Wayback Machine. (PDF). Retrieved 21 September 2011.
  15. ^ a b c Steady Speed Fuel Economy Archived 24 September 2012 at the Wayback Machine "The two earlier studies by the Federal Highway Administration (FHWA) indicate maximum fuel efficiency was achieved at speeds of 35 to 40 mph (55 to 65 km/h). The recent FHWA study indicates greater fuel efficiency at higher speeds."
  16. ^ Cowan, Edward (27 November 1973). "Politics and Energy: Nixon's Silence on Rationing Reflects Hope That Austerity Can Be Avoided". The New York Times. p. 30.
  17. ^ Staff (28 June 2008). Annual Energy Review (PDF) (2007 ed.). Washington, DC: Energy Information Administration. Archived from the original (PDF) on 26 September 2018.
  18. ^ "55 Mile-per-hour Speed Limit Approved by House". United Press International. 4 December 1973. p. 30. Retrieved 22 July 2008. (subscription required)
  19. ^ "Special Report 254: Managing Speed" (PDF). Transportation Research Board: 189. Retrieved 17 September 2014. Bloomquist (1984) estimated that the 1974 National Maximum Speed Limit (NMSL) reduced fuel consumption by 0.2 to 1.0 percent. {{cite journal}}: Cite journal requires |journal= (help)
  20. ^ "Highway Statistics 1973 (Table VM-2: VEHICLE MILES, BY STATE AND HIGHWAY SYSTEM-1973)" (PDF). Federal Highway Administration: 76. Archived from the original (PDF) on 4 March 2013. Retrieved 17 September 2014. {{cite journal}}: Cite journal requires |journal= (help)
  21. ^ a b "Lexus IS250 2.5L 6cyl, Auto 6 speed Sedan, 5 seats, 2WD". Archived from the original on 4 August 2012.
  22. ^ a b IS 250 Kraftstoffverbrauch kombiniert 8,9 L/100 km (innerorts 12,5 L/ außerorts 6,9 L) bei CO2-Emissionen von 209 g/km nach dem vorgeschriebenen EU-Messverfahren "LEXUS – Lexus – IS – Sportlimousine – Cabriolet – Cabrio – Kabrio – Coupé – Coupe – Hochleistung IS F – High-Performance-Fahrzeug IS F". Archived from the original on 2 April 2010. Retrieved 22 April 2010.
  23. ^ a b 2009 Lexus IS 250 6 cyl, 2.5 L, Automatic (S6), Premium http://www.fueleconomy.gov/feg/findacar.htm
  24. ^ "Gas prices too high? Try Europe". Christian Science Monitor. 26 August 2005. Archived from the original on 18 September 2012.
  25. ^ "U.S. 'stuck in reverse' on fuel economy". NBC News. 28 February 2007. Archived from the original on 6 December 2014.
  26. ^ "VW Lupo: Rough road to fuel economy".
  27. ^ Heavy Vehicles and Characteristics Archived 2012-07-23 at the Wayback Machine Table 5.4
  28. ^ Light Vehicles and Characteristics Archived 2012-09-15 at the Wayback Machine Table 4.1
  29. ^ How Do Gasoline Prices Affect Fleet Fuel Economy? Archived 2012-10-21 at the Wayback Machine
  30. ^ Dee-Ann Durbin of the Associated Press, June 17, 2014, Mercury News, Auto industry gets serious about lighter materials Archived 2015-04-15 at the Wayback Machine, Retrieved April 11, 2015, "...Automakers have been experimenting for decades with lightweighting... the effort is gaining urgency with the adoption of tougher gas mileage standards. ..."
  31. ^ Yang, Zifei; Bandivadekar, Anup. "Light-duty vehicle greenhouse gas and fuel economy standards" (PDF). International Council on Clean Transportation. Retrieved 1 December 2017.
  32. ^ "Lexus IS – Driving in every sense". Lexus Canada.
  33. ^ "TRANSPORTATION RESEARCH BOARD SPECIAL REPORT 286 TIRES AND PASSENGER VEHICLE FUEL ECONOMY, Transportation Research Board, National Academy of Sciences p.62-65 of pdf, p.39-42 of the report. Retrieved 22 October 2014" (PDF).
  34. ^ Wheels, online road load, and MPG calculator. Virtual-car.org (3 August 2009). Retrieved 21 September 2011.
  35. ^ An Overview of Current Automatic, Manual and Continuously Variable Transmission Efficiencies and Their Projected Future Improvements. SAE.org (1 March 1999). Retrieved 21 September 2011.
  36. ^ a b Automotive Electrical Systems Circa 2005 Archived 3 February 2009 at the Wayback Machine. Spectrum.ieee.org. Retrieved 21 September 2011.
  37. ^ Low-rolling resistance tires
  38. ^ Chandler, David (9 February 2009). "More power from bumps in the road". Retrieved 8 October 2009.
  39. ^ Gas Saving and Emission Reduction Devices Evaluation | Cars and Light Trucks | US EPA. Epa.gov. Retrieved 21 September 2011.
  40. ^ https://onfuel.appspot.com keep track of fuel efficiency
  41. ^ "Anglian Water spot on with pressure test". Tyrepress. 29 October 2015. Retrieved 30 October 2015.
  42. ^ Chinese Fuel Economy Laws. Treehugger.com. Retrieved 21 September 2011.
  43. ^ Cox, Lisa (30 March 2019). "'Woefully dirty': Government accused over Australia's failure to cut vehicle emissions". The Guardian.
  44. ^ Vehicles & the Environment. Infrastructure.gov.au. Retrieved 21 September 2011.
  45. ^ Information on Green Vehicle Guide Ratings and Measurement. Australian Department of Infrastructure and Transport
  46. ^ Green Vehicle Guide Archived 22 April 2006 at the Wayback Machine. Green Vehicle Guide. Retrieved 21 September 2011.
  47. ^ a b "5-cycle testing". nrcan.gc.ca. 30 April 2018.
  48. ^ Vehicle test cycles. Herkules.oulu.fi. Retrieved 21 September 2011.
  49. ^ "News & Events". www.honda.de. Retrieved 2 May 2023.
  50. ^ "2011 Honda CR-Z Specs and Features". Retrieved 2 May 2023.[permanent dead link]
  51. ^ Guidance notes and examples Archived 13 April 2008 at the Wayback Machine. (PDF). Retrieved 21 September 2011.
  52. ^ Fuel Economy Label Archived 14 August 2008 at the Wayback Machine. Dft.gov.uk. Retrieved 21 September 2011.
  53. ^ Vehicle Labelling Archived 7 July 2008 at the Wayback Machine. Environ.ie (1 July 2008). Retrieved 21 September 2011.
  54. ^ "Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (Text with EEA relevance.)". European Union. 25 April 2019. Annex 1, Part A.6 NEDC2020, Fleet Target is 95 g/km. (45) Manufacturers whose average specific emissions of CO2 exceed those permitted under this Regulation should pay an excess emissions premium with respect to each calendar year.
  55. ^ "Why the EC figures do not represent true MPG". Honest John. Retrieved 14 November 2015.
  56. ^ "Real Life Fuel Economy (MPG) Register". Honest John. Retrieved 14 November 2015.
  57. ^ "Cars and Garages: Diagnose Problems, Estimate Costs & Find Garages". carsandgarages.co.uk.
  58. ^ Mike Millikin (28 September 2014). "ICCT: gap between official and real-world fuel economy figures in Europe reaches ~38%; call to implement WLTP ASAP". Green Car Congress. Retrieved 28 September 2014.
  59. ^ From laboratory to road: A 2018 update ICCT, 2019
  60. ^ a b Japan Automobile Manufacturers Association (JAMA) (2009). "From 10•15 to JC08: Japan's new economy formula". News from JAMA. Retrieved 9 April 2012. Issue No. 2, 2009.
  61. ^ a b "Japanese 10–15 Mode". Diesel.net. Retrieved 9 April 2012.
  62. ^ "Prius Certified to Japanese 2015 Fuel Economy Standards with JC08 Test Cycle". Green Car Congress. 11 August 2007. Retrieved 9 April 2012.
  63. ^ "Vehicle Fuel Economy Labelling – FAQs". Archived from the original on 10 July 2008. Retrieved 2 May 2023.
  64. ^ Frequently Asked Questions. Fueleconomy.gov. Retrieved 21 September 2011.
  65. ^ Steven Cole Smith (28 April 2005). "2005 Pontiac GTO". Orlando Sentinel via Cars.com. Archived from the original on 11 May 2015. Retrieved 21 February 2011.
  66. ^ a b "Dynamometer Driver's Aid". US EPA. Archived from the original on 30 March 2014. Retrieved 11 January 2011.
  67. ^ How the EPA Tests and Rates Fuel Economy. Auto.howstuffworks.com (7 September 2005). Retrieved 21 September 2011.
  68. ^ Gasoline Vehicles: Learn More About the Label. Retrieved 10 July 2020.
  69. ^ Find a Car 1985 to 2009. Fueleconomy.gov. Retrieved 21 September 2011.
  70. ^ "2008 Ratings Changes". US EPA. Retrieved 17 April 2013.
  71. ^ US EPA United States Environmental Protection Agency. "Basic Search". Iaspub.epa.gov. Retrieved 1 September 2022.
  72. ^ Roth, Dan. (1 October 2009) REPORT: EPA planning to address outlandish fuel economy claims of electric cars. Autoblog.com. Retrieved 21 September 2011.
  73. ^ "Volt receives EPA ratings and label: 93 mpg-e all-electric, 37 mpg gas-only, 60 mpg-e combined". Green Car Congress. 24 November 2010. Retrieved 24 November 2010.
  74. ^ US Environmental Protection Agency and US Department of Energy (4 May 2011). "2011 Chevrolet Volt". Fueleconomy.gov. Retrieved 21 May 2011.
  75. ^ Nick Bunkley (22 November 2010). "Nissan Says Its Electric Leaf Gets Equivalent of 99 M.P.G." The New York Times. Retrieved 23 November 2010.
  76. ^ a b c EPA (May 2011). "Fact Sheet: New Fuel Economy and Environment Labels for a New Generation of Vehicles". US Environmental Protection Agency. Retrieved 25 May 2011. EPA-420-F-11-017
  77. ^ "EPA, DOT unveil the next generation of fuel economy labels". Green Car Congress. 25 May 2011. Retrieved 25 May 2011.
  78. ^ "Not All Fuel Efficiency Is Equal: Understanding the Miles-Per-Gallon Illusion". Bloomberg.com. 14 January 2014. Archived from the original on 15 January 2014. Retrieved 11 November 2014.
  79. ^ "The MPG Illusion". 3 June 2013. Retrieved 11 November 2014.
  80. ^ John M. Broder (25 May 2011). "New Mileage Stickers Include Greenhouse Gas Data". The New York Times. Retrieved 26 May 2011.
  81. ^ "CAFE Overview: "What is the origin of CAFE?"". NHTSA. Archived from the original on 3 February 2009. Retrieved 9 July 2008.
  82. ^ a b Tabuchi, Hiroko (2 April 2018). "Calling car pollution standards 'too high,' EPA sets up fight with California". The New York Times.
  83. ^ Giovinazzo, Christopher (September 2003). "California's Global Warming Bill: Will Fuel Economy Preemption Curb California's Air Pollution Leadership". Ecology Law Quarterly. 30 (4): 901–902.
  84. ^ Tabuchi, Hiroko (19 December 2007). "EPA Denies California's Emissions Waiver". The New York Times.
  85. ^ Richburg, Keith (3 January 2008). "California Sues EPA Over Emissions Rules". The Washington Post.
  86. ^ Wang, Ucilia (30 June 2009). "EPA grants California emissions waiver". Greentech Media.
  87. ^ "Obama Administration Finalizes Historic 54.5 MPG Fuel Efficiency Standards". White House. 28 August 2012. Retrieved 28 November 2019.
  88. ^ Fraser, Laura (Winter 2012–2013). "Shifting Gears". NRDC's OnEarth. p. 63.
  89. ^ Tabuchi, Hiroko (5 April 2018). "Quietly, Trump officials and California seek deal on emissions". The New York Times.
  90. ^ Phillips, Anna M. (21 February 2019). "Trump administration confirms it has ended fuel-economy talks with California". Los Angeles Times. Retrieved 11 May 2019.
  91. ^ Associated Press (6 January 2021). "For first time in 5 years, US gas mileage down, emissions up". Orange County Register. Retrieved 7 January 2021.
  92. ^ "Trump rollback of mileage standards guts climate change push". Yahoo News. 31 March 2020. Retrieved 2 May 2023.
  93. ^ Kaufman, Alexander; D'Angelo, Chris (20 December 2021). "EPA Reverses Trump's Fuel Mileage Rules On New Cars". HuffPost. Retrieved 20 December 2021.
  94. ^ a b Hilgers, Michael (2021). Commercial Vehicle Technology: Fuel consumption and consumption optimization. Wilfried Achenbach. Berlin. ISBN 978-3-662-60841-8.OCLC 1237865094  .{{cite book}}: CS1 maint: location missing publisher (link)
  95. ^ ab "Datos sobre emisiones: Emisiones promedio de dióxido de carbono resultantes de la gasolina y el combustible diésel". Oficina de Transporte y Calidad del Aire . Agencia de Protección Ambiental de los Estados Unidos . Febrero de 2005. Archivado desde el original el 28 de febrero de 2009. Consultado el 28 de julio de 2009 .

Enlaces externos