stringtranslate.com

Ecología

La ecología (del griego antiguo οἶκος ( oîkos )  'casa' y -λογία ( -logía )  'estudio de') [A] es la ciencia natural de las relaciones entre los organismos vivos , incluidos los humanos , y su entorno físico . La ecología considera los organismos a nivel individual, poblacional , comunitario , ecosistémico y de biosfera . La ecología se superpone con las ciencias estrechamente relacionadas de la biogeografía , la biología evolutiva , la genética , la etología y la historia natural .

La ecología es una rama de la biología que estudia la abundancia , biomasa y distribución de los organismos en el contexto del medio ambiente. Abarca los procesos vitales, las interacciones y las adaptaciones ; el movimiento de materiales y energía a través de las comunidades vivas; el desarrollo sucesional de los ecosistemas; la cooperación, la competencia y la depredación dentro y entre especies ; y los patrones de biodiversidad y su efecto en los procesos ecosistémicos.

La ecología tiene aplicaciones prácticas en la biología de la conservación , la gestión de humedales , la gestión de recursos naturales ( agroecología , agricultura , silvicultura , agroforestería , pesca , minería , turismo ), la planificación urbana ( ecología urbana ), la salud comunitaria , la economía , las ciencias básicas y aplicadas y la interacción social humana ( ecología humana ).

La palabra ecología ( en alemán : Ökologie ) fue acuñada en 1866 por el científico alemán Ernst Haeckel . La ciencia de la ecología tal como la conocemos hoy comenzó con un grupo de botánicos estadounidenses en la década de 1890. [1] Los conceptos evolutivos relacionados con la adaptación y la selección natural son piedras angulares de la teoría ecológica moderna .

Los ecosistemas son sistemas de organismos que interactúan dinámicamente, las comunidades que forman y los componentes no vivos ( abióticos ) de su entorno. Los procesos ecosistémicos, como la producción primaria , el ciclo de nutrientes y la construcción de nichos , regulan el flujo de energía y materia a través de un entorno. Los ecosistemas tienen mecanismos de retroalimentación biofísica que moderan los procesos que actúan sobre los componentes vivos ( bióticos ) y abióticos del planeta. Los ecosistemas sostienen las funciones que sustentan la vida y brindan servicios ecosistémicos como la producción de biomasa (alimentos, combustibles, fibras y medicamentos), la regulación del clima , los ciclos biogeoquímicos globales , la filtración de agua , la formación del suelo , el control de la erosión , la protección contra inundaciones y muchas otras características naturales de valor científico, histórico, económico o intrínseco.

Niveles, alcance y escala de la organización

El ámbito de la ecología contiene una amplia gama de niveles de organización que interactúan y abarcan fenómenos desde el nivel micro (por ejemplo, las células ) hasta la escala planetaria (por ejemplo, la biosfera ) . Los ecosistemas, por ejemplo, contienen recursos abióticos y formas de vida que interactúan (es decir, organismos individuales que se agregan en poblaciones que se agregan en comunidades ecológicas distintas). Debido a que los ecosistemas son dinámicos y no necesariamente siguen una ruta sucesional lineal, los cambios pueden ocurrir rápida o lentamente durante miles de años antes de que los procesos biológicos produzcan etapas sucesionales forestales específicas. El área de un ecosistema puede variar mucho, desde diminuta a vasta. Un solo árbol tiene poca importancia para la clasificación de un ecosistema forestal, pero es críticamente relevante para los organismos que viven en él y sobre él. [2] Pueden existir varias generaciones de una población de pulgones durante la vida útil de una sola hoja. Cada uno de esos pulgones, a su vez, sustenta diversas comunidades bacterianas . [3] La naturaleza de las conexiones en las comunidades ecológicas no se puede explicar conociendo los detalles de cada especie de forma aislada, porque el patrón emergente no se revela ni se predice hasta que se estudia el ecosistema como un todo integrado. [4] Sin embargo, algunos principios ecológicos sí presentan propiedades colectivas en las que la suma de los componentes explica las propiedades del todo, como por ejemplo que las tasas de natalidad de una población sean iguales a la suma de los nacimientos individuales durante un período de tiempo designado. [5]

Las principales subdisciplinas de la ecología, la ecología de poblaciones (o de comunidades ) y la ecología de ecosistemas , presentan diferencias no solo en escala sino también en dos paradigmas contrastantes en el campo. La primera se centra en la distribución y abundancia de los organismos, mientras que la segunda se centra en los flujos de materiales y energía. [6]

Jerarquía

Los comportamientos del sistema deben organizarse primero en diferentes niveles de la organización. Los comportamientos correspondientes a los niveles superiores se producen a un ritmo lento. Por el contrario, los niveles inferiores de la organización muestran un ritmo rápido. Por ejemplo, las hojas de los árboles responden rápidamente a cambios momentáneos en la intensidad de la luz, la concentración de CO2 y similares. El crecimiento del árbol responde más lentamente e integra estos cambios de corto plazo.

O'Neill y otros (1986) [7] : 76 

La escala de la dinámica ecológica puede funcionar como un sistema cerrado, como los pulgones que migran a un solo árbol, y al mismo tiempo permanecer abierta a influencias de escala más amplia, como la atmósfera o el clima. Por lo tanto, los ecólogos clasifican los ecosistemas jerárquicamente analizando datos recopilados de unidades de escala más fina, como las asociaciones de vegetación , el clima y los tipos de suelo , e integran esta información para identificar patrones emergentes de organización uniforme y procesos que operan a escalas locales, regionales, de paisaje y cronológicas.

Para estructurar el estudio de la ecología en un marco conceptualmente manejable, el mundo biológico se organiza en una jerarquía anidada , que va en escala desde los genes , a las células , a los tejidos , a los órganos , a los organismos , a las especies , a las poblaciones , a los gremios , a las comunidades , a los ecosistemas , a los biomas , y hasta el nivel de la biosfera . [8] Este marco forma una panarquía [9] y exhibe comportamientos no lineales ; esto significa que "el efecto y la causa son desproporcionados, de modo que pequeños cambios en variables críticas, como el número de fijadores de nitrógeno , pueden conducir a cambios desproporcionados, tal vez irreversibles, en las propiedades del sistema". [10] : 14 

Biodiversidad

La biodiversidad se refiere a la variedad de la vida y sus procesos. Incluye la variedad de organismos vivos, las diferencias genéticas entre ellos, las comunidades y los ecosistemas en los que se encuentran y los procesos ecológicos y evolutivos que los mantienen funcionando, pero en constante cambio y adaptación.

Noss y Carpenter (1994) [11] : 5 

La biodiversidad (abreviatura de "diversidad biológica") describe la diversidad de la vida, desde los genes hasta los ecosistemas, y abarca todos los niveles de la organización biológica. El término tiene varias interpretaciones y hay muchas formas de indexar, medir, caracterizar y representar su compleja organización. [12] [13] [14] La biodiversidad incluye la diversidad de especies , la diversidad de ecosistemas y la diversidad genética , y los científicos están interesados ​​en la forma en que esta diversidad afecta los complejos procesos ecológicos que operan en y entre estos niveles respectivos. [13] [15] [16] La biodiversidad desempeña un papel importante en los servicios ecosistémicos que, por definición, mantienen y mejoran la calidad de vida humana. [14] [17] [18] Las prioridades de conservación y las técnicas de gestión requieren diferentes enfoques y consideraciones para abordar el alcance ecológico completo de la biodiversidad. El capital natural que sustenta a las poblaciones es fundamental para mantener los servicios ecosistémicos [19] [20] y la migración de especies (por ejemplo, las migraciones de peces fluviales y el control de insectos aviares) se ha implicado como un mecanismo por el cual se experimentan esas pérdidas de servicios. [21] La comprensión de la biodiversidad tiene aplicaciones prácticas para los planificadores de la conservación a nivel de especies y ecosistemas, ya que hacen recomendaciones de gestión a empresas consultoras, gobiernos y la industria. [22]

Hábitat

Biodiversidad de un arrecife de coral . Los corales se adaptan a su entorno y lo modifican formando esqueletos de carbonato de calcio . Esto proporciona condiciones de crecimiento para las generaciones futuras y forma un hábitat para muchas otras especies. [23]
El pájaro picoancho de cola larga construye su nido

El hábitat de una especie describe el entorno en el que se sabe que se encuentra una especie y el tipo de comunidad que se forma como resultado. [24] Más específicamente, "los hábitats pueden definirse como regiones en el espacio ambiental que se componen de múltiples dimensiones, cada una representando una variable ambiental biótica o abiótica; es decir, cualquier componente o característica del entorno relacionado directamente (por ejemplo, biomasa y calidad del forraje) o indirectamente (por ejemplo, elevación) con el uso de una ubicación por parte del animal". [25] : 745  Por ejemplo, un hábitat podría ser un entorno acuático o terrestre que puede categorizarse además como un ecosistema montañoso o alpino . Los cambios de hábitat proporcionan evidencia importante de competencia en la naturaleza donde una población cambia en relación con los hábitats que ocupan la mayoría de los otros individuos de la especie. Por ejemplo, una población de una especie de lagarto tropical ( Tropidurus hispidus ) tiene un cuerpo aplanado en relación con las principales poblaciones que viven en la sabana abierta. La población que vive en un afloramiento rocoso aislado se esconde en grietas donde su cuerpo aplanado ofrece una ventaja selectiva. Los cambios de hábitat también ocurren en el ciclo de vida de los anfibios y en los insectos que pasan de hábitats acuáticos a terrestres. A veces se usan los términos biotopo y hábitat de manera intercambiable, pero el primero se aplica al entorno de una comunidad, mientras que el segundo se aplica al entorno de una especie. [24] [26] [27]

Nicho

Los montículos de termitas con chimeneas de distintas alturas regulan el intercambio de gases, la temperatura y otros parámetros ambientales necesarios para mantener la fisiología interna de toda la colonia. [28] [29]

Las definiciones de nicho datan de 1917, [30] pero G. Evelyn Hutchinson hizo avances conceptuales en 1957 [31] [32] al introducir una definición ampliamente adoptada: "el conjunto de condiciones bióticas y abióticas en las que una especie es capaz de persistir y mantener tamaños de población estables". [30] : 519  El nicho ecológico es un concepto central en la ecología de los organismos y se subdivide en el nicho fundamental y el nicho realizado . El nicho fundamental es el conjunto de condiciones ambientales bajo las cuales una especie es capaz de persistir. El nicho realizado es el conjunto de condiciones ambientales más ecológicas bajo las cuales una especie persiste. [30] [32] [33] El nicho hutchinsoniano se define más técnicamente como un " hiperespacio euclidiano cuyas dimensiones se definen como variables ambientales y cuyo tamaño es una función del número de valores que los valores ambientales pueden asumir para los cuales un organismo tiene aptitud positiva ". [34] : 71 

Los patrones biogeográficos y las distribuciones de rango se explican o predicen a través del conocimiento de los rasgos de una especie y los requisitos de nicho. [35] Las especies tienen rasgos funcionales que están adaptados de manera única al nicho ecológico. Un rasgo es una propiedad, fenotipo o característica medible de un organismo que puede influir en su supervivencia. Los genes juegan un papel importante en la interacción del desarrollo y la expresión ambiental de los rasgos. [36] Las especies residentes desarrollan rasgos que se adaptan a las presiones de selección de su entorno local. Esto tiende a brindarles una ventaja competitiva y desalienta a las especies adaptadas de manera similar de tener un rango geográfico superpuesto. El principio de exclusión competitiva establece que dos especies no pueden coexistir indefinidamente viviendo del mismo recurso limitante ; una siempre superará a la otra. Cuando especies adaptadas de manera similar se superponen geográficamente, una inspección más cercana revela diferencias ecológicas sutiles en su hábitat o requisitos dietéticos. [37] Sin embargo, algunos modelos y estudios empíricos sugieren que las perturbaciones pueden estabilizar la coevolución y la ocupación compartida del nicho de especies similares que habitan comunidades ricas en especies. [38] El hábitat más el nicho se denomina ecotopo , que se define como el conjunto de variables ambientales y biológicas que afectan a una especie entera. [24]

Construcción de nichos

Los organismos están sujetos a presiones ambientales, pero también modifican sus hábitats. La retroalimentación reguladora entre los organismos y su entorno puede afectar las condiciones desde escalas locales (por ejemplo, un estanque de castores ) hasta escalas globales, a lo largo del tiempo e incluso después de la muerte, como troncos en descomposición o depósitos de esqueletos de sílice de organismos marinos. [39] El proceso y el concepto de ingeniería de ecosistemas están relacionados con la construcción de nichos , pero el primero se relaciona solo con las modificaciones físicas del hábitat, mientras que el segundo también considera las implicaciones evolutivas de los cambios físicos en el medio ambiente y la retroalimentación que esto causa en el proceso de selección natural. Los ingenieros de ecosistemas se definen como: "organismos que modulan directa o indirectamente la disponibilidad de recursos para otras especies, al causar cambios en el estado físico de los materiales bióticos o abióticos. Al hacerlo, modifican, mantienen y crean hábitats". [40] : 373 

El concepto de ingeniería de ecosistemas ha estimulado una nueva apreciación de la influencia que tienen los organismos en el ecosistema y el proceso evolutivo. El término "construcción de nichos" se utiliza con más frecuencia en referencia a los mecanismos de retroalimentación poco apreciados de la selección natural que imparten fuerzas sobre el nicho abiótico. [28] [41] Un ejemplo de selección natural a través de la ingeniería de ecosistemas se da en los nidos de insectos sociales , incluidas las hormigas, las abejas, las avispas y las termitas. Existe una homeostasis emergente u homeorhesis en la estructura del nido que regula, mantiene y defiende la fisiología de toda la colonia. Los montículos de termitas, por ejemplo, mantienen una temperatura interna constante mediante el diseño de chimeneas de aire acondicionado. La estructura de los nidos en sí está sujeta a las fuerzas de la selección natural. Además, un nido puede sobrevivir a lo largo de generaciones sucesivas, de modo que la progenie hereda tanto el material genético como un nicho heredado que se construyó antes de su tiempo. [5] [28] [29]

Bioma

Los biomas son unidades de organización más grandes que categorizan regiones de los ecosistemas de la Tierra, principalmente de acuerdo con la estructura y composición de la vegetación. [42] Existen diferentes métodos para definir los límites continentales de los biomas dominados por diferentes tipos funcionales de comunidades vegetales que están limitadas en distribución por el clima, la precipitación, el tiempo y otras variables ambientales. Los biomas incluyen la selva tropical , el bosque templado latifoliado y mixto , el bosque templado caducifolio , la taiga , la tundra , el desierto cálido y el desierto polar . [43] Otros investigadores han categorizado recientemente otros biomas, como los microbiomas humano y oceánico . Para un microbio , el cuerpo humano es un hábitat y un paisaje. [44] Los microbiomas se descubrieron en gran medida a través de los avances en genética molecular , que han revelado una riqueza oculta de diversidad microbiana en el planeta. El microbioma oceánico juega un papel importante en la biogeoquímica ecológica de los océanos del planeta. [45]

Biosfera

La escala más grande de organización ecológica es la biosfera: la suma total de los ecosistemas del planeta. Las relaciones ecológicas regulan el flujo de energía, nutrientes y clima hasta la escala planetaria. Por ejemplo, la historia dinámica de la composición de CO2 y O2 de la atmósfera planetaria se ha visto afectada por el flujo biogénico de gases provenientes de la respiración y la fotosíntesis, con niveles que fluctúan a lo largo del tiempo en relación con la ecología y la evolución de plantas y animales. [46] La teoría ecológica también se ha utilizado para explicar fenómenos de regulación autoemergente a escala planetaria: por ejemplo, la hipótesis de Gaia es un ejemplo de holismo aplicado a la teoría ecológica. [47] La ​​hipótesis de Gaia afirma que existe un ciclo de retroalimentación emergente generado por el metabolismo de los organismos vivos que mantiene la temperatura central de la Tierra y las condiciones atmosféricas dentro de un estrecho rango de tolerancia autorregulado. [48]

Ecología de poblaciones

La ecología de poblaciones estudia la dinámica de las poblaciones de especies y cómo estas poblaciones interactúan con el entorno más amplio. [5] Una población está formada por individuos de la misma especie que viven, interactúan y migran a través del mismo nicho y hábitat. [49]

Una ley primaria de la ecología de poblaciones es el modelo de crecimiento maltusiano [50] que establece que "una población crecerá (o disminuirá) exponencialmente mientras el entorno experimentado por todos los individuos de la población permanezca constante". [50] : 18  Los modelos de población simplificados generalmente comienzan con cuatro variables: muerte, nacimiento, inmigración y emigración .

Un ejemplo de un modelo de población introductorio describe una población cerrada, como una isla, donde no se producen inmigración ni emigración. Las hipótesis se evalúan con referencia a una hipótesis nula que establece que los procesos aleatorios crean los datos observados. En estos modelos de islas, la tasa de cambio de la población se describe mediante:

donde N es el número total de individuos en la población, b y d son las tasas per cápita de nacimiento y muerte respectivamente, y r es la tasa per cápita de cambio de población. [50] [51]

Utilizando estas técnicas de modelado, el principio de crecimiento poblacional de Malthus fue posteriormente transformado en un modelo conocido como ecuación logística por Pierre Verhulst :

donde N(t) es el número de individuos medido como densidad de biomasa en función del tiempo, t , r es la tasa máxima de cambio per cápita comúnmente conocida como tasa intrínseca de crecimiento, y es el coeficiente de hacinamiento, que representa la reducción en la tasa de crecimiento de la población por individuo agregado. La fórmula establece que la tasa de cambio en el tamaño de la población ( ) crecerá hasta acercarse al equilibrio, donde ( ), cuando las tasas de aumento y hacinamiento están equilibradas, . Un modelo análogo común fija el equilibrio, como K , que se conoce como la "capacidad de carga".

La ecología de poblaciones se basa en estos modelos introductorios para comprender mejor los procesos demográficos en poblaciones de estudio reales. Los tipos de datos que se utilizan comúnmente incluyen el ciclo de vida , la fecundidad y la supervivencia, y se analizan utilizando técnicas matemáticas como el álgebra matricial . La información se utiliza para gestionar las reservas de vida silvestre y establecer cuotas de cosecha. [51] [52] En los casos en que los modelos básicos son insuficientes, los ecólogos pueden adoptar diferentes tipos de métodos estadísticos, como el criterio de información de Akaike , [53] o utilizar modelos que pueden volverse matemáticamente complejos a medida que "varias hipótesis en competencia se confrontan simultáneamente con los datos". [54]

Metapoblaciones y migración

El concepto de metapoblaciones se definió en 1969 [55] como "una población de poblaciones que se extinguen localmente y recolonizan". [56] : 105  La ecología de metapoblaciones es otro enfoque estadístico que se utiliza a menudo en la investigación de la conservación . [57] Los modelos de metapoblaciones simplifican el paisaje en parches de diferentes niveles de calidad, [58] y las metapoblaciones están vinculadas por los comportamientos migratorios de los organismos. La migración animal se distingue de otros tipos de movimiento porque implica la salida y el regreso estacional de los individuos de un hábitat. [59] La migración también es un fenómeno a nivel de población, como las rutas de migración seguidas por las plantas a medida que ocupaban los entornos postglaciales del norte. Los ecólogos de plantas utilizan registros de polen que se acumulan y estratifican en los humedales para reconstruir el momento de la migración y dispersión de las plantas en relación con los climas históricos y contemporáneos. Estas rutas de migración implicaron una expansión del rango a medida que las poblaciones de plantas se expandían de un área a otra. Existe una taxonomía más amplia de movimiento, como el desplazamiento diario, la búsqueda de alimento, el comportamiento territorial, la estasis y la dispersión. La dispersión suele distinguirse de la migración porque implica el movimiento permanente en un solo sentido de individuos desde su población de nacimiento a otra población. [60] [61]

En la terminología de metapoblaciones, los individuos que migran se clasifican como emigrantes (cuando abandonan una región) o inmigrantes (cuando entran en una región), y los sitios se clasifican como fuentes o sumideros. Un sitio es un término genérico que se refiere a los lugares donde los ecólogos toman muestras de poblaciones, como estanques o áreas de muestreo definidas en un bosque. Los parches fuente son sitios productivos que generan un suministro estacional de juveniles que migran a otras ubicaciones de parches. Los parches sumideros son sitios improductivos que solo reciben migrantes; la población en el sitio desaparecerá a menos que sea rescatada por un parche fuente adyacente o las condiciones ambientales se vuelvan más favorables. Los modelos de metapoblaciones examinan la dinámica de los parches a lo largo del tiempo para responder posibles preguntas sobre la ecología espacial y demográfica. La ecología de las metapoblaciones es un proceso dinámico de extinción y colonización. Pequeños parches de menor calidad (es decir, sumideros) se mantienen o rescatan por una afluencia estacional de nuevos inmigrantes. Una estructura metapoblacional dinámica evoluciona de año en año, donde algunos parches son sumideros en años secos y son fuentes cuando las condiciones son más favorables. Los ecólogos utilizan una combinación de modelos informáticos y estudios de campo para explicar la estructura de la metapoblación. [62] [63]

Ecología comunitaria

Las interacciones interespecíficas, como la depredación, son un aspecto clave de la ecología de la comunidad .

La ecología de comunidades examina cómo las interacciones entre las especies y su entorno afectan la abundancia, distribución y diversidad de especies dentro de las comunidades.

Johnson y Stinchcomb (2007) [64] : 250 

La ecología de comunidades es el estudio de las interacciones entre un conjunto de especies que habitan la misma área geográfica. Los ecólogos de comunidades estudian los determinantes de los patrones y procesos de dos o más especies que interactúan. La investigación en ecología de comunidades puede medir la diversidad de especies en pastizales en relación con la fertilidad del suelo. También puede incluir el análisis de la dinámica depredador-presa, la competencia entre especies de plantas similares o las interacciones mutualistas entre cangrejos y corales.

Ecología de los ecosistemas

Estos ecosistemas, como podemos llamarlos, son de los más diversos tipos y tamaños. Forman una categoría de los numerosos sistemas físicos del universo, que abarcan desde el universo en su conjunto hasta el átomo.

Tansley (1935) [65] : 299 

Un bosque ribereño en las Montañas Blancas, New Hampshire (EE. UU.) es un ejemplo de ecología de ecosistemas.

Los ecosistemas pueden ser hábitats dentro de biomas que forman un todo integrado y un sistema que responde dinámicamente y que tiene complejos tanto físicos como biológicos. La ecología de los ecosistemas es la ciencia que determina los flujos de materiales (por ejemplo, carbono, fósforo) entre diferentes depósitos (por ejemplo, biomasa de árboles, materia orgánica del suelo). Los ecólogos de ecosistemas intentan determinar las causas subyacentes de estos flujos. La investigación en ecología de ecosistemas puede medir la producción primaria (g C/m^2) en un humedal en relación con las tasas de descomposición y consumo (g C/m^2/año). Esto requiere una comprensión de las conexiones comunitarias entre las plantas (es decir, los productores primarios) y los descomponedores (por ejemplo, hongos y bacterias). [66]

El concepto subyacente de un ecosistema se remonta a 1864 en la obra publicada de George Perkins Marsh ("El hombre y la naturaleza"). [67] [68] Dentro de un ecosistema, los organismos están vinculados a los componentes físicos y biológicos de su entorno al que están adaptados. [65] Los ecosistemas son sistemas adaptativos complejos donde la interacción de los procesos de la vida forma patrones autoorganizados en diferentes escalas de tiempo y espacio. [69] Los ecosistemas se clasifican ampliamente como terrestres , de agua dulce , atmosféricos o marinos . Las diferencias surgen de la naturaleza de los entornos físicos únicos que dan forma a la biodiversidad dentro de cada uno. Una adición más reciente a la ecología de los ecosistemas son los tecnoecosistemas , que se ven afectados por la actividad humana o son principalmente el resultado de ella. [5]

Redes alimentarias

Red alimentaria generalizada de aves acuáticas de la bahía de Chesapeake

Una red alimentaria es la red ecológica arquetípica . Las plantas capturan la energía solar y la utilizan para sintetizar azúcares simples durante la fotosíntesis . A medida que las plantas crecen, acumulan nutrientes y son consumidas por los herbívoros que pastan , y la energía se transfiere a través de una cadena de organismos por consumo. Las vías de alimentación lineales simplificadas que se mueven desde una especie trófica basal hasta un consumidor superior se denominan cadena alimentaria . Las cadenas alimentarias en una comunidad ecológica crean una red alimentaria compleja. Las redes alimentarias son un tipo de mapa conceptual que se utiliza para ilustrar y estudiar las vías de los flujos de energía y materiales. [7] [70] [71]

Las mediciones empíricas generalmente se limitan a un hábitat específico, como una cueva o un estanque, y los principios extraídos de estudios a pequeña escala se extrapolan a sistemas más grandes. [72] Las relaciones alimentarias requieren investigaciones extensas, por ejemplo, en el contenido intestinal de los organismos, que puede ser difícil de descifrar, o se pueden usar isótopos estables para rastrear el flujo de dietas nutritivas y energía a través de una red alimentaria. [73] A pesar de estas limitaciones, las redes alimentarias siguen siendo una herramienta valiosa para comprender los ecosistemas comunitarios. [74]

Las redes alimentarias ilustran principios importantes de la ecología : algunas especies tienen muchos vínculos alimentarios débiles (por ejemplo, los omnívoros ), mientras que otras están más especializadas y tienen menos vínculos alimentarios más fuertes (por ejemplo, los depredadores primarios ). Estos vínculos explican cómo las comunidades ecológicas se mantienen estables a lo largo del tiempo [75] [76] y, con el tiempo, pueden ilustrar una red de vida "completa". [71] [77] [78] [79]

La alteración de las cadenas alimentarias puede tener un impacto dramático en la ecología de especies individuales o de ecosistemas enteros. Por ejemplo, se ha demostrado que la sustitución de una especie de hormiga por otra (invasora) afecta la forma en que los elefantes reducen la cobertura arbórea y, por lo tanto, la depredación de los leones sobre las cebras . [80] [81]

Niveles tróficos

Una pirámide trófica (a) y una red alimentaria (b) que ilustran las relaciones ecológicas entre las criaturas que son típicas de un ecosistema terrestre boreal del norte . La pirámide trófica representa aproximadamente la biomasa (generalmente medida como peso seco total) en cada nivel. Las plantas generalmente tienen la mayor biomasa. Los nombres de las categorías tróficas se muestran a la derecha de la pirámide. Algunos ecosistemas, como muchos humedales, no se organizan como una pirámide estricta, porque las plantas acuáticas no son tan productivas como las plantas terrestres de larga vida, como los árboles. Las pirámides tróficas ecológicas suelen ser de uno de tres tipos: 1) pirámide de números, 2) pirámide de biomasa o 3) pirámide de energía. [5] : 598 

Un nivel trófico (del griego troph , τροφή, trophē, que significa "alimento" o "alimentación") es "un grupo de organismos que adquieren una mayoría considerable de su energía del nivel adyacente inferior (según las pirámides ecológicas ) más cercano a la fuente abiótica". [82] : 383  Los vínculos en las redes alimentarias conectan principalmente las relaciones de alimentación o el trofismo entre las especies. La biodiversidad dentro de los ecosistemas se puede organizar en pirámides tróficas, en las que la dimensión vertical representa las relaciones de alimentación que se alejan más de la base de la cadena alimentaria hacia los depredadores superiores, y la dimensión horizontal representa la abundancia o biomasa en cada nivel. [83] Cuando la abundancia o biomasa relativa de cada especie se clasifica en su respectivo nivel trófico, naturalmente se clasifican en una "pirámide de números". [84]

Las especies se clasifican ampliamente como autótrofos (o productores primarios ), heterótrofos (o consumidores ) y detritívoros (o descomponedores ). Los autótrofos son organismos que producen su propio alimento (la producción es mayor que la respiración) mediante la fotosíntesis o la quimiosíntesis . Los heterótrofos son organismos que deben alimentarse de otros para nutrirse y obtener energía (la respiración supera la producción). [5] Los heterótrofos se pueden subdividir en diferentes grupos funcionales, incluidos los consumidores primarios (herbívoros estrictos), los consumidores secundarios ( depredadores carnívoros que se alimentan exclusivamente de herbívoros) y los consumidores terciarios (depredadores que se alimentan de una mezcla de herbívoros y depredadores). [85] Los omnívoros no encajan perfectamente en una categoría funcional porque comen tejidos tanto vegetales como animales. Se ha sugerido que los omnívoros tienen una mayor influencia funcional como depredadores porque, en comparación con los herbívoros, son relativamente ineficientes en el pastoreo. [86]

Los niveles tróficos son parte de la visión holística o de sistemas complejos de los ecosistemas. [87] [88] Cada nivel trófico contiene especies no relacionadas que se agrupan porque comparten funciones ecológicas comunes, lo que da una visión macroscópica del sistema. [89] Si bien la noción de niveles tróficos proporciona información sobre el flujo de energía y el control de arriba hacia abajo dentro de las redes alimentarias, se ve afectada por la prevalencia de la omnívora en los ecosistemas reales. Esto ha llevado a algunos ecólogos a "reiterar que la noción de que las especies se agregan claramente en niveles tróficos discretos y homogéneos es una ficción". [90] : 815  No obstante, estudios recientes han demostrado que existen niveles tróficos reales, pero "por encima del nivel trófico de los herbívoros, las redes alimentarias se caracterizan mejor como una red enmarañada de omnívoros". [91] : 612 

Especies clave

Nutrias marinas , un ejemplo de especie clave

Una especie clave es una especie que está conectada a un número desproporcionadamente grande de otras especies en la red alimentaria . Las especies clave tienen niveles más bajos de biomasa en la pirámide trófica en relación con la importancia de su papel. Las muchas conexiones que tiene una especie clave significan que mantiene la organización y la estructura de comunidades enteras. La pérdida de una especie clave resulta en una serie de efectos en cascada dramáticos (denominados cascadas tróficas ) que alteran la dinámica trófica, otras conexiones de la red alimentaria y pueden causar la extinción de otras especies. [92] [93] El término especie clave fue acuñado por Robert Paine en 1969 y es una referencia a la característica arquitectónica de la piedra angular , ya que la eliminación de una especie clave puede resultar en un colapso de la comunidad, al igual que la eliminación de la piedra angular en un arco puede resultar en la pérdida de estabilidad del arco. [94]

Las nutrias marinas ( Enhydra lutris ) se citan comúnmente como un ejemplo de especie clave porque limitan la densidad de erizos de mar que se alimentan de algas marinas . Si se eliminan las nutrias marinas del sistema, los erizos pastan hasta que los bancos de algas marinas desaparecen, y esto tiene un efecto dramático en la estructura de la comunidad. [95] Se cree, por ejemplo, que la caza de nutrias marinas ha llevado indirectamente a la extinción de la vaca marina de Steller ( Hydrodamalis gigas ). [96] Si bien el concepto de especie clave se ha utilizado ampliamente como una herramienta de conservación , ha sido criticado por estar mal definido desde una postura operativa. Es difícil determinar experimentalmente qué especies pueden tener un papel clave en cada ecosistema. Además, la teoría de la red alimentaria sugiere que las especies clave pueden no ser comunes, por lo que no está claro con qué generalidad se puede aplicar el modelo de especies clave. [95] [97]

Complejidad

La complejidad se entiende como un gran esfuerzo computacional necesario para unir numerosas partes interactuantes que exceden la capacidad de memoria iterativa de la mente humana. Los patrones globales de diversidad biológica son complejos. Esta biocomplejidad surge de la interacción entre los procesos ecológicos que operan e influyen en los patrones a diferentes escalas que se van graduando entre sí, como las áreas de transición o los ecotonos que abarcan paisajes. La complejidad surge de la interacción entre los niveles de organización biológica a medida que la energía y la materia se integran en unidades más grandes que se superponen a las partes más pequeñas. "Lo que eran totalidades en un nivel se convierten en partes en uno superior". [98] : 209  Los patrones de pequeña escala no necesariamente explican los fenómenos de gran escala, de lo contrario capturados en la expresión (acuñada por Aristóteles) 'la suma es mayor que las partes'. [99] [100] [E]

"La complejidad en ecología es de al menos seis tipos distintos: espacial, temporal, estructural, de proceso, conductual y geométrica". [101] : 3  A partir de estos principios, los ecólogos han identificado fenómenos emergentes y autoorganizados que operan en diferentes escalas ambientales de influencia, que van desde lo molecular hasta lo planetario, y que requieren diferentes explicaciones en cada nivel integrador . [48] [102] La complejidad ecológica se relaciona con la resiliencia dinámica de los ecosistemas que transitan hacia múltiples estados estables cambiantes dirigidos por fluctuaciones aleatorias de la historia. [9] [103] Los estudios ecológicos a largo plazo proporcionan registros importantes para comprender mejor la complejidad y la resiliencia de los ecosistemas en escalas temporales más largas y espaciales más amplias. Estos estudios son administrados por la Red Ecológica Internacional a Largo Plazo (LTER). [104] El experimento más largo que existe es el Experimento de la Hierba del Parque , que se inició en 1856. [105] Otro ejemplo es el estudio Hubbard Brook , que ha estado en funcionamiento desde 1960. [106]

Holismo

El holismo sigue siendo una parte fundamental de la base teórica de los estudios ecológicos contemporáneos. El holismo aborda la organización biológica de la vida que se autoorganiza en capas de sistemas completos emergentes que funcionan de acuerdo con propiedades no reducibles. Esto significa que los patrones de orden superior de un sistema funcional completo, como un ecosistema , no se pueden predecir ni comprender mediante una simple suma de las partes. [107] "Las nuevas propiedades emergen porque los componentes interactúan, no porque se cambie la naturaleza básica de los componentes". [5] : 8 

Los estudios ecológicos son necesariamente holísticos en oposición a reduccionistas . [36] [102] [108] El holismo tiene tres significados o usos científicos que se identifican con la ecología: 1) la complejidad mecanicista de los ecosistemas, 2) la descripción práctica de patrones en términos reduccionistas cuantitativos donde se pueden identificar correlaciones pero no se entiende nada acerca de las relaciones causales sin referencia al sistema completo, lo que conduce a 3) una jerarquía metafísica por la cual las relaciones causales de sistemas más grandes se entienden sin referencia a las partes más pequeñas. El holismo científico difiere del misticismo que se ha apropiado del mismo término. Un ejemplo de holismo metafísico se identifica en la tendencia al aumento del espesor exterior en las conchas de diferentes especies. La razón de un aumento del espesor se puede entender a través de la referencia a los principios de selección natural a través de la depredación sin la necesidad de hacer referencia o comprender las propiedades biomoleculares de las conchas exteriores. [109]

Relación con la evolución

La ecología y la biología evolutiva se consideran disciplinas hermanas de las ciencias de la vida. La selección natural , la historia de vida , el desarrollo , la adaptación , las poblaciones y la herencia son ejemplos de conceptos que se entrelazan por igual en la teoría ecológica y evolutiva. Los rasgos morfológicos, conductuales y genéticos, por ejemplo, se pueden mapear en árboles evolutivos para estudiar el desarrollo histórico de una especie en relación con sus funciones y roles en diferentes circunstancias ecológicas. En este marco, las herramientas analíticas de los ecólogos y evolucionistas se superponen a medida que organizan, clasifican e investigan la vida a través de principios sistemáticos comunes, como la filogenética o el sistema de taxonomía de Linneo . [110] Las dos disciplinas a menudo aparecen juntas, como en el título de la revista Trends in Ecology and Evolution . [111] No existe un límite claro que separe la ecología de la evolución, y difieren más en sus áreas de enfoque aplicado. Ambas disciplinas descubren y explican propiedades y procesos emergentes y únicos que operan en diferentes escalas espaciales o temporales de organización. [36] [48] Si bien el límite entre la ecología y la evolución no siempre es claro, los ecólogos estudian los factores abióticos y bióticos que influyen en los procesos evolutivos, [112] [113] y la evolución puede ser rápida y ocurrir en escalas de tiempo ecológicas tan cortas como una generación. [114]

Ecología del comportamiento

Exhibición social y variación de color en especies de camaleones con diferentes adaptaciones ( Bradypodion spp.). Los camaleones cambian el color de su piel para que coincida con su entorno como un mecanismo de defensa conductual y también usan el color para comunicarse con otros miembros de su especie, como los patrones dominantes (izquierda) versus sumisos (derecha) que se muestran en las tres especies (AC) anteriores. [115]

Todos los organismos pueden exhibir comportamientos. Incluso las plantas expresan un comportamiento complejo, que incluye la memoria y la comunicación. [116] La ecología del comportamiento es el estudio del comportamiento de un organismo en su entorno y sus implicaciones ecológicas y evolutivas. La etología es el estudio del movimiento o comportamiento observable en los animales. Esto podría incluir investigaciones de espermatozoides móviles de plantas, fitoplancton móvil , zooplancton nadando hacia el óvulo femenino, el cultivo de hongos por gorgojos , la danza de apareamiento de una salamandra o reuniones sociales de amebas . [117] [118] [119] [120] [121]

La adaptación es el concepto central unificador de la ecología del comportamiento. [122] Los comportamientos pueden registrarse como rasgos y heredarse de la misma manera que el color de los ojos y del pelo. Los comportamientos pueden evolucionar por medio de la selección natural como rasgos adaptativos que confieren utilidades funcionales que aumentan la aptitud reproductiva. [123] [124]

Mutualismo: Las cigarras ( Eurymela fenestrata ) son protegidas por las hormigas ( Iridomyrmex purpureus ) en una relación mutualista . Las hormigas protegen a las cigarras de los depredadores y estimulan la alimentación de las cigarras, y a cambio, las cigarras que se alimentan de plantas exudan melaza de su ano que proporciona energía y nutrientes a las hormigas que las cuidan. [125]

Las interacciones depredador-presa son un concepto introductorio a los estudios de la red alimentaria, así como a la ecología del comportamiento. [126] Las especies presa pueden exhibir diferentes tipos de adaptaciones conductuales a los depredadores, como evitarlos, huir o defenderse. Muchas especies presa se enfrentan a múltiples depredadores que difieren en el grado de peligro que representan. Para adaptarse a su entorno y enfrentar las amenazas depredadoras, los organismos deben equilibrar sus presupuestos energéticos a medida que invierten en diferentes aspectos de su historia de vida, como el crecimiento, la alimentación, el apareamiento, la socialización o la modificación de su hábitat. Las hipótesis planteadas en la ecología del comportamiento generalmente se basan en principios adaptativos de conservación, optimización o eficiencia. [33] [112] [127] Por ejemplo, "[l]a hipótesis de evitación de depredadores sensible a la amenaza predice que las presas deberían evaluar el grado de amenaza planteado por diferentes depredadores y adaptar su comportamiento de acuerdo con los niveles actuales de riesgo" [128] o "[l]a distancia óptima de inicio del vuelo ocurre donde se maximiza la aptitud post-encuentro esperada, lo que depende de la aptitud inicial de la presa, los beneficios obtenibles al no huir, los costos energéticos de escape y la pérdida de aptitud esperada debido al riesgo de depredación". [129]

En la ecología del comportamiento animal se observan exhibiciones y posturas sexuales elaboradas . Las aves del paraíso , por ejemplo, cantan y exhiben adornos elaborados durante el cortejo . Estas exhibiciones tienen un doble propósito: señalar individuos sanos o bien adaptados y genes deseables. Las exhibiciones son impulsadas por la selección sexual como un anuncio de la calidad de los rasgos entre los pretendientes . [130]

Ecología cognitiva

La ecología cognitiva integra teorías y observaciones de la ecología evolutiva y la neurobiología , principalmente la ciencia cognitiva , para entender el efecto que la interacción animal con su hábitat tiene sobre sus sistemas cognitivos y cómo esos sistemas restringen el comportamiento dentro de un marco ecológico y evolutivo. [131] "Hasta hace poco, sin embargo, los científicos cognitivos no han prestado suficiente atención al hecho fundamental de que los rasgos cognitivos evolucionaron bajo entornos naturales particulares. Con la consideración de la presión de selección sobre la cognición, la ecología cognitiva puede aportar coherencia intelectual al estudio multidisciplinario de la cognición". [132] [133] Como un estudio que involucra el "acoplamiento" o interacciones entre el organismo y el medio ambiente, la ecología cognitiva está estrechamente relacionada con el enactivismo , [131] un campo basado en la visión de que "...debemos ver al organismo y al medio ambiente como unidos en una especificación y selección recíprocas...". [134]

Ecología social

Los comportamientos socioecológicos son notables en los insectos sociales , los mohos mucilaginosos , las arañas sociales , la sociedad humana y las ratas topo desnudas donde ha evolucionado el eusocialismo . Los comportamientos sociales incluyen comportamientos recíprocamente beneficiosos entre parientes y compañeros de nido [119] [124] [135] y evolucionan a partir de la selección de parentesco y grupo. La selección de parentesco explica el altruismo a través de relaciones genéticas, por las cuales un comportamiento altruista que conduce a la muerte es recompensado por la supervivencia de copias genéticas distribuidas entre los parientes supervivientes. Los insectos sociales, incluidas las hormigas , las abejas y las avispas , son los más estudiados por este tipo de relación porque los zánganos machos son clones que comparten la misma composición genética que todos los demás machos de la colonia. [124] Por el contrario, los seleccionistas de grupo encuentran ejemplos de altruismo entre parientes no genéticos y lo explican a través de la selección que actúa sobre el grupo; por lo que se vuelve selectivamente ventajoso para los grupos si sus miembros expresan comportamientos altruistas entre sí. Los grupos con miembros predominantemente altruistas sobreviven mejor que los grupos con miembros predominantemente egoístas. [124] [136]

Coevolución

Los abejorros y las flores que polinizan han coevolucionado, de modo que ambos se han vuelto dependientes uno del otro para sobrevivir.
Parasitismo: un arácnido opiliónico es parasitado por ácaros . El opilión es consumido, mientras que los ácaros se benefician al viajar y alimentarse de su huésped.

Las interacciones ecológicas se pueden clasificar ampliamente en una relación de anfitrión y una relación de asociado. Un anfitrión es cualquier entidad que alberga a otra que se llama asociado. [137] Las relaciones entre especies que son mutua o recíprocamente beneficiosas se denominan mutualismos . Los ejemplos de mutualismo incluyen hormigas cultivadoras de hongos que emplean simbiosis agrícola, bacterias que viven en los intestinos de insectos y otros organismos, el complejo de polinización de la avispa de los higos y la polilla de la yuca , líquenes con hongos y algas fotosintéticas , y corales con algas fotosintéticas. [138] [139] Si existe una conexión física entre anfitrión y asociado, la relación se llama simbiosis . Aproximadamente el 60% de todas las plantas, por ejemplo, tienen una relación simbiótica con hongos micorrízicos arbusculares que viven en sus raíces formando una red de intercambio de carbohidratos por nutrientes minerales . [140]

Los mutualismos indirectos ocurren cuando los organismos viven separados. Por ejemplo, los árboles que viven en las regiones ecuatoriales del planeta suministran oxígeno a la atmósfera que sustenta a las especies que viven en regiones polares distantes del planeta. Esta relación se llama comensalismo porque muchos otros reciben los beneficios del aire limpio sin costo o daño para los árboles que suministran el oxígeno. [5] [141] Si el asociado se beneficia mientras que el anfitrión sufre, la relación se llama parasitismo . Aunque los parásitos imponen un costo a su anfitrión (por ejemplo, a través del daño a sus órganos reproductivos o propágulos , negando los servicios de un socio beneficioso), su efecto neto sobre la aptitud del anfitrión no es necesariamente negativo y, por lo tanto, se vuelve difícil de pronosticar. [142] [143] La coevolución también está impulsada por la competencia entre especies o entre miembros de la misma especie bajo la bandera del antagonismo recíproco, como las gramíneas que compiten por el espacio de crecimiento. La hipótesis de la Reina Roja , por ejemplo, postula que los parásitos rastrean y se especializan en los sistemas de defensa genéticos localmente comunes de su anfitrión que impulsan la evolución de la reproducción sexual para diversificar la constitución genética de las poblaciones que responden a la presión antagónica. [144] [145]

Biogeografía

La biogeografía (una amalgama de biología y geografía ) es el estudio comparativo de la distribución geográfica de los organismos y la correspondiente evolución de sus rasgos en el espacio y el tiempo. [146] La revista Journal of Biogeography se estableció en 1974. [147] La ​​biogeografía y la ecología comparten muchas de sus raíces disciplinarias. Por ejemplo, la teoría de la biogeografía de islas , publicada por Robert MacArthur y Edward O. Wilson en 1967 [148] se considera uno de los fundamentos de la teoría ecológica. [149]

La biogeografía tiene una larga historia en las ciencias naturales en lo que respecta a la distribución espacial de plantas y animales. La ecología y la evolución proporcionan el contexto explicativo para los estudios biogeográficos. [146] Los patrones biogeográficos son el resultado de procesos ecológicos que influyen en las distribuciones de rango, como la migración y la dispersión . [149] y de procesos históricos que dividen poblaciones o especies en diferentes áreas. Los procesos biogeográficos que resultan en la división natural de las especies explican gran parte de la distribución moderna de la biota de la Tierra. La división de linajes en una especie se llama biogeografía vicarianza y es una subdisciplina de la biogeografía. [150] También existen aplicaciones prácticas en el campo de la biogeografía relacionadas con los sistemas y procesos ecológicos. Por ejemplo, el rango y la distribución de la biodiversidad y las especies invasoras en respuesta al cambio climático es una preocupación seria y un área activa de investigación en el contexto del calentamiento global . [151] [152]

Teoría de selección r/K

Un concepto de ecología de poblaciones es la teoría de selección r/K, [D] uno de los primeros modelos predictivos en ecología utilizados para explicar la evolución de la historia de vida . La premisa detrás del modelo de selección r/K es que las presiones de selección natural cambian según la densidad de población . Por ejemplo, cuando una isla es colonizada por primera vez, la densidad de individuos es baja. El aumento inicial en el tamaño de la población no está limitado por la competencia, dejando una abundancia de recursos disponibles para un rápido crecimiento de la población. Estas primeras fases del crecimiento de la población experimentan fuerzas de selección natural independientes de la densidad , lo que se llama r -selección. A medida que la población se vuelve más poblada, se acerca a la capacidad de carga de la isla, lo que obliga a los individuos a competir más intensamente por menos recursos disponibles. En condiciones de hacinamiento, la población experimenta fuerzas de selección natural dependientes de la densidad, llamadas K -selección. [153]

En el modelo de selección r/K , la primera variable r es la tasa intrínseca de aumento natural del tamaño de la población y la segunda variable K es la capacidad de carga de una población. [33] Diferentes especies desarrollan diferentes estrategias de historia de vida que abarcan un continuo entre estas dos fuerzas selectivas. Una especie r -seleccionada es aquella que tiene altas tasas de natalidad, bajos niveles de inversión parental y altas tasas de mortalidad antes de que los individuos alcancen la madurez. La evolución favorece altas tasas de fecundidad en especies r -seleccionadas. Muchos tipos de insectos y especies invasoras exhiben características r -seleccionadas . En contraste, una especie K -seleccionada tiene bajas tasas de fecundidad, altos niveles de inversión parental en las crías y bajas tasas de mortalidad a medida que los individuos maduran. Los humanos y los elefantes son ejemplos de especies que exhiben características K -seleccionadas, incluyendo la longevidad y la eficiencia en la conversión de más recursos en menos crías. [148] [154]

Ecología molecular

La importante relación entre la ecología y la herencia genética es anterior a las técnicas modernas de análisis molecular. La investigación ecológica molecular se hizo más factible con el desarrollo de tecnologías genéticas rápidas y accesibles, como la reacción en cadena de la polimerasa (PCR) . El auge de las tecnologías moleculares y la afluencia de preguntas de investigación en este nuevo campo ecológico dieron como resultado la publicación de Molecular Ecology en 1992. [155] La ecología molecular utiliza varias técnicas analíticas para estudiar los genes en un contexto evolutivo y ecológico. En 1994, John Avise también jugó un papel destacado en esta área de la ciencia con la publicación de su libro Molecular Markers, Natural History and Evolution . [156] Las tecnologías más nuevas abrieron una ola de análisis genético en organismos que alguna vez fueron difíciles de estudiar desde un punto de vista ecológico o evolutivo, como bacterias, hongos y nematodos . La ecología molecular engendró un nuevo paradigma de investigación para investigar cuestiones ecológicas que de otro modo se considerarían intratables. Las investigaciones moleculares revelaron detalles previamente ocultos en las pequeñas complejidades de la naturaleza y mejoraron la resolución de preguntas de sondeo sobre la ecología conductual y biogeográfica. [156] Por ejemplo, la ecología molecular reveló un comportamiento sexual promiscuo y múltiples parejas masculinas en golondrinas de árboles que anteriormente se pensaba que eran socialmente monógamas . [157] En un contexto biogeográfico, la unión entre la genética, la ecología y la evolución resultó en una nueva subdisciplina llamada filogeografía . [158]

Ecología humana

La historia de la vida en la Tierra ha sido una historia de interacción entre los seres vivos y su entorno. En gran medida, la forma física y los hábitos de la vegetación y la vida animal de la Tierra han sido moldeados por el medio ambiente. Considerando todo el lapso de tiempo terrestre, el efecto opuesto, en el que la vida modifica realmente su entorno, ha sido relativamente leve. Sólo en el lapso de tiempo representado por el presente siglo una especie, el hombre, ha adquirido un poder significativo para alterar la naturaleza de su mundo.

Rachel Carson, “Primavera silenciosa” [159]

La ecología es tanto una ciencia biológica como una ciencia humana. [5] La ecología humana es una investigación interdisciplinaria sobre la ecología de nuestra especie. "La ecología humana puede definirse: (1) desde un punto de vista bioecológico como el estudio del hombre como el dominante ecológico en las comunidades y sistemas de plantas y animales; (2) desde un punto de vista bioecológico como simplemente otro animal que afecta y es afectado por su entorno físico; y (3) como un ser humano, de alguna manera diferente de la vida animal en general, que interactúa con entornos físicos y modificados de una manera distintiva y creativa. Una ecología humana verdaderamente interdisciplinaria probablemente se ocupará de las tres". [160] : 3  El término se introdujo formalmente en 1921, pero muchos sociólogos, geógrafos, psicólogos y otras disciplinas se interesaron por las relaciones humanas con los sistemas naturales siglos antes, especialmente a fines del siglo XIX. [160] [161]

Las complejidades ecológicas que los seres humanos están enfrentando a través de la transformación tecnológica del bioma planetario han traído el Antropoceno . El conjunto único de circunstancias ha generado la necesidad de una nueva ciencia unificadora llamada sistemas humanos y naturales acoplados que se basa en, pero va más allá del campo de la ecología humana. [107] Los ecosistemas se vinculan con las sociedades humanas a través de las funciones críticas y abarcadoras de soporte de vida que sostienen. En reconocimiento de estas funciones y la incapacidad de los métodos tradicionales de valoración económica para ver el valor de los ecosistemas, ha habido un aumento del interés en el capital social - natural , que proporciona los medios para poner un valor al stock y uso de información y materiales derivados de los bienes y servicios de los ecosistemas . Los ecosistemas producen, regulan, mantienen y suministran servicios de necesidad crítica y beneficiosos para la salud humana (cognitiva y fisiológica), las economías, e incluso proporcionan una función de información o referencia como una biblioteca viviente que da oportunidades para la ciencia y el desarrollo cognitivo en los niños involucrados en la complejidad del mundo natural. Los ecosistemas se relacionan de manera importante con la ecología humana, ya que son la base fundamental de la economía global, ya que cada mercancía y la capacidad de intercambio provienen en última instancia de los ecosistemas de la Tierra. [107] [162] [163] [164]

Ecología de la restauración

La gestión de los ecosistemas no es sólo una cuestión de ciencia ni es simplemente una extensión de la gestión tradicional de los recursos; ofrece un replanteamiento fundamental de cómo los seres humanos pueden trabajar con la naturaleza.

Grumbine (1994) [165] : 27 

La ecología es una ciencia empleada en la restauración, reparando sitios perturbados mediante la intervención humana, en la gestión de recursos naturales y en evaluaciones de impacto ambiental . Edward O. Wilson predijo en 1992 que el siglo XXI "será la era de la restauración en ecología". [166] La ciencia ecológica ha experimentado un auge en la inversión industrial de restauración de ecosistemas y sus procesos en sitios abandonados después de una perturbación. Los administradores de recursos naturales, en silvicultura , por ejemplo, emplean ecólogos para desarrollar, adaptar e implementar métodos basados ​​en ecosistemas en las fases de planificación, operación y restauración del uso de la tierra. Otro ejemplo de conservación se ve en la costa este de los Estados Unidos en Boston, MA. La ciudad de Boston implementó la Ordenanza de Humedales, [167] mejorando la estabilidad de sus entornos de humedales mediante la implementación de enmiendas del suelo que mejorarán el almacenamiento y el flujo de agua subterránea, y la poda o eliminación de vegetación que podría dañar la calidad del agua. [ cita requerida ] La ciencia ecológica se utiliza en los métodos de cosecha sostenible, gestión de enfermedades e incendios, en la gestión de poblaciones de peces, para integrar el uso de la tierra con áreas y comunidades protegidas, y la conservación en paisajes geopolíticos complejos. [22] [165] [168] [169]

Relación con el medio ambiente

El ambiente de los ecosistemas incluye tanto parámetros físicos como atributos bióticos. Está interconectado dinámicamente y contiene recursos para los organismos en cualquier momento a lo largo de su ciclo de vida. [5] [170] Al igual que la ecología, el término ambiente tiene diferentes significados conceptuales y se superpone con el concepto de naturaleza. El ambiente "incluye el mundo físico, el mundo social de las relaciones humanas y el mundo construido de la creación humana". [171] : 62  El ambiente físico es externo al nivel de organización biológica bajo investigación, incluyendo factores abióticos como la temperatura, la radiación, la luz, la química, el clima y la geología. El ambiente biótico incluye genes, células, organismos, miembros de la misma especie ( conespecíficos ) y otras especies que comparten un hábitat. [172]

Sin embargo, la distinción entre ambientes externos e internos es una abstracción que analiza la vida y el medio ambiente en unidades o hechos que son inseparables en la realidad. Existe una interpenetración de causa y efecto entre el medio ambiente y la vida. Las leyes de la termodinámica , por ejemplo, se aplican a la ecología por medio de su estado físico. Con una comprensión de los principios metabólicos y termodinámicos, se puede rastrear una contabilidad completa del flujo de energía y material a través de un ecosistema. De esta manera, las relaciones ambientales y ecológicas se estudian a través de referencia a partes materiales conceptualmente manejables y aisladas . Sin embargo, después de que los componentes ambientales efectivos se comprenden a través de la referencia a sus causas, se vinculan conceptualmente nuevamente como un todo integrado, o sistema holocenótico como se lo llamó alguna vez. Esto se conoce como el enfoque dialéctico de la ecología. El enfoque dialéctico examina las partes pero integra el organismo y el medio ambiente en un todo dinámico (o umwelt ). El cambio en un factor ecológico o ambiental puede afectar simultáneamente el estado dinámico de todo un ecosistema. [36] [173]

Perturbación y resiliencia

Una perturbación es cualquier proceso que cambia o elimina biomasa de una comunidad, como un incendio, una inundación, una sequía o la depredación. [174] Las perturbaciones son a la vez causa y producto de fluctuaciones naturales dentro de una comunidad ecológica. [175] [174] [176] [177] La ​​biodiversidad puede proteger a los ecosistemas de las perturbaciones. [177]

El efecto de una perturbación es a menudo difícil de predecir, pero hay numerosos ejemplos en los que una sola especie puede perturbar masivamente un ecosistema. Por ejemplo, un protozoo unicelular ha sido capaz de matar hasta el 100% de los erizos de mar en algunos arrecifes de coral en el Mar Rojo y el Océano Índico Occidental . Los erizos de mar permiten que los complejos ecosistemas de arrecifes prosperen al comer algas que de otro modo inhibirían el crecimiento de los corales. [178] De manera similar, las especies invasoras pueden causar estragos en los ecosistemas. Por ejemplo, las pitones birmanas invasoras han causado una disminución del 98% de los pequeños mamíferos en los Everglades . [179]

Metabolismo y atmósfera primitiva

El metabolismo –la velocidad a la que la energía y los recursos materiales se absorben del entorno, se transforman dentro de un organismo y se asignan al mantenimiento, el crecimiento y la reproducción– es un rasgo fisiológico fundamental.

Ernest y otros [180] : 991 

La Tierra se formó hace aproximadamente 4.500 millones de años. [181] A medida que se enfrió y se formaron una corteza y océanos, su atmósfera pasó de estar dominada por hidrógeno a estar compuesta principalmente de metano y amoníaco . Durante los siguientes mil millones de años, la actividad metabólica de la vida transformó la atmósfera en una mezcla de dióxido de carbono , nitrógeno y vapor de agua. Estos gases cambiaron la forma en que la luz del sol llegaba a la superficie de la Tierra y los efectos de invernadero atrapaban el calor. Había fuentes sin explotar de energía libre dentro de la mezcla de gases reductores y oxidantes que prepararon el escenario para que evolucionaran los ecosistemas primitivos y, a su vez, la atmósfera también evolucionó. [182]

La hoja es el sitio principal de la fotosíntesis en muchas plantas superiores.

A lo largo de la historia, la atmósfera de la Tierra y los ciclos biogeoquímicos han estado en un equilibrio dinámico con los ecosistemas planetarios. La historia se caracteriza por períodos de transformación significativa seguidos de millones de años de estabilidad. [183] ​​La evolución de los primeros organismos, probablemente microbios metanógenos anaeróbicos , comenzó el proceso al convertir el hidrógeno atmosférico en metano (4H 2 + CO 2 → CH 4 + 2H 2 O). La fotosíntesis anoxigénica redujo las concentraciones de hidrógeno y aumentó el metano atmosférico , al convertir el sulfuro de hidrógeno en agua u otros compuestos de azufre (por ejemplo, 2H 2 S + CO 2 + h v → CH 2 O + H 2 O + 2S). Las primeras formas de fermentación también aumentaron los niveles de metano atmosférico. La transición a una atmósfera predominantemente de oxígeno (la Gran Oxidación ) no comenzó hasta hace aproximadamente 2.4–2.3 mil millones de años, pero los procesos fotosintéticos comenzaron entre 0.3 y 1 mil millones de años antes. [183] ​​[184]

Radiación: calor, temperatura y luz.

La biología de la vida opera dentro de un cierto rango de temperaturas. El calor es una forma de energía que regula la temperatura. El calor afecta las tasas de crecimiento, la actividad, el comportamiento y la producción primaria . La temperatura depende en gran medida de la incidencia de la radiación solar . La variación espacial latitudinal y longitudinal de la temperatura afecta en gran medida a los climas y, en consecuencia, a la distribución de la biodiversidad y los niveles de producción primaria en diferentes ecosistemas o biomas en todo el planeta. El calor y la temperatura se relacionan de manera importante con la actividad metabólica. Los poiquilotermos , por ejemplo, tienen una temperatura corporal que está en gran medida regulada y depende de la temperatura del entorno externo. Por el contrario, los homeotermos regulan su temperatura corporal interna gastando energía metabólica . [112] [113] [173]

Existe una relación entre la luz, la producción primaria y los presupuestos energéticos ecológicos . La luz solar es la principal fuente de energía para los ecosistemas del planeta. La luz está compuesta de energía electromagnética de diferentes longitudes de onda . La energía radiante del sol genera calor, proporciona fotones de luz medidos como energía activa en las reacciones químicas de la vida y también actúa como catalizador de la mutación genética . [112] [113] [173] Las plantas, las algas y algunas bacterias absorben la luz y asimilan la energía a través de la fotosíntesis . Los organismos capaces de asimilar energía mediante la fotosíntesis o mediante la fijación inorgánica de H 2 S son autótrofos . Los autótrofos, responsables de la producción primaria, asimilan la energía de la luz que se almacena metabólicamente como energía potencial en forma de enlaces entálpicos bioquímicos . [112] [113] [173]

Entornos físicos

Agua

Las condiciones de los humedales, como aguas poco profundas, alta productividad vegetal y sustratos anaeróbicos, proporcionan un entorno adecuado para importantes procesos físicos, biológicos y químicos. Debido a estos procesos, los humedales desempeñan un papel vital en los ciclos globales de nutrientes y elementos.

Cronk y Fennessy (2001) [185] : 29 

La difusión del dióxido de carbono y el oxígeno es aproximadamente 10.000 veces más lenta en el agua que en el aire. Cuando los suelos se inundan, pierden oxígeno rápidamente, volviéndose hipóxicos (un ambiente con una concentración de O 2 inferior a 2 mg/litro) y finalmente completamente anóxicos donde las bacterias anaeróbicas prosperan entre las raíces. El agua también influye en la intensidad y la composición espectral de la luz, ya que se refleja en la superficie del agua y las partículas sumergidas. [185] Las plantas acuáticas exhiben una amplia variedad de adaptaciones morfológicas y fisiológicas que les permiten sobrevivir, competir y diversificarse en estos ambientes. Por ejemplo, sus raíces y tallos contienen grandes espacios de aire ( aerénquima ) que regulan el transporte eficiente de gases (por ejemplo, CO 2 y O 2 ) utilizados en la respiración y la fotosíntesis. Las plantas de agua salada ( halófitas ) tienen adaptaciones especializadas adicionales, como el desarrollo de órganos especiales para desprenderse de la sal y osmorregular sus concentraciones internas de sal (NaCl), para vivir en ambientes estuarinos , salobres u oceánicos . Los microorganismos anaeróbicos del suelo en ambientes acuáticos utilizan nitrato , iones de manganeso , iones férricos , sulfato , dióxido de carbono y algunos compuestos orgánicos ; otros microorganismos son anaerobios facultativos y utilizan oxígeno durante la respiración cuando el suelo se vuelve más seco. La actividad de los microorganismos del suelo y la química del agua reducen los potenciales de oxidación-reducción del agua. El dióxido de carbono, por ejemplo, se reduce a metano (CH 4 ) por bacterias metanogénicas. [185] La fisiología de los peces también está especialmente adaptada para compensar los niveles de sal ambiental a través de la osmorregulación. Sus branquias forman gradientes electroquímicos que median la excreción de sal en agua salada y la absorción en agua dulce. [186]

Gravedad

La forma y la energía de la tierra se ven afectadas significativamente por las fuerzas gravitacionales. A gran escala, la distribución de las fuerzas gravitacionales en la tierra es desigual e influye en la forma y el movimiento de las placas tectónicas , así como en los procesos geomorfológicos como la orogenia y la erosión . Estas fuerzas gobiernan muchas de las propiedades geofísicas y distribuciones de los biomas ecológicos en toda la Tierra. A escala de los organismos, las fuerzas gravitacionales proporcionan señales direccionales para el crecimiento de plantas y hongos ( gravitropismo ), señales de orientación para las migraciones de animales e influyen en la biomecánica y el tamaño de los animales. [112] Los rasgos ecológicos, como la asignación de biomasa en los árboles durante el crecimiento, están sujetos a fallas mecánicas ya que las fuerzas gravitacionales influyen en la posición y la estructura de las ramas y las hojas. [187] Los sistemas cardiovasculares de los animales están adaptados funcionalmente para superar la presión y las fuerzas gravitacionales que cambian según las características de los organismos (por ejemplo, altura, tamaño, forma), su comportamiento (por ejemplo, bucear, correr, volar) y el hábitat ocupado (por ejemplo, agua, desiertos cálidos, tundra fría). [188]

Presión

La presión climática y osmótica impone restricciones fisiológicas a los organismos, especialmente a aquellos que vuelan y respiran a grandes altitudes o se sumergen en las profundidades del océano. [189] Estas restricciones influyen en los límites verticales de los ecosistemas en la biosfera, ya que los organismos son fisiológicamente sensibles y están adaptados a las diferencias de presión atmosférica y osmótica del agua. [112] Por ejemplo, los niveles de oxígeno disminuyen con la disminución de la presión y son un factor limitante para la vida a mayores altitudes. [190] El transporte de agua por las plantas es otro proceso ecofisiológico importante afectado por los gradientes de presión osmótica. [191] [192] [193] La presión del agua en las profundidades de los océanos requiere que los organismos se adapten a estas condiciones. Por ejemplo, los animales buceadores como las ballenas , los delfines y las focas están especialmente adaptados para lidiar con los cambios en el sonido debido a las diferencias de presión del agua. [194] Las diferencias entre las especies de mixinos proporcionan otro ejemplo de adaptación a la presión de las profundidades marinas a través de adaptaciones proteicas especializadas. [195]

Viento y turbulencia

La arquitectura de la inflorescencia en las gramíneas está sujeta a las presiones físicas del viento y moldeada por las fuerzas de la selección natural que facilitan la polinización por el viento ( anemofilia ). [196] [197]

Las fuerzas turbulentas en el aire y el agua afectan el medio ambiente y la distribución, forma y dinámica de los ecosistemas. A escala planetaria, los ecosistemas se ven afectados por los patrones de circulación de los vientos alisios globales . La energía eólica y las fuerzas turbulentas que crea pueden influir en el calor, los nutrientes y los perfiles bioquímicos de los ecosistemas. [112] Por ejemplo, el viento que corre sobre la superficie de un lago crea turbulencia, mezclando la columna de agua e influyendo en el perfil ambiental para crear zonas con capas térmicas , lo que afecta la forma en que se estructuran los peces, las algas y otras partes del ecosistema acuático . [198] [199] La velocidad del viento y la turbulencia también influyen en las tasas de evapotranspiración y los presupuestos energéticos de las plantas y los animales. [185] [200] La velocidad del viento, la temperatura y el contenido de humedad pueden variar a medida que los vientos viajan a través de diferentes características y elevaciones del terreno. Por ejemplo, los vientos del oeste entran en contacto con las montañas costeras e interiores del oeste de América del Norte para producir una sombra de lluvia en el lado de sotavento de la montaña. El aire se expande y la humedad se condensa a medida que los vientos aumentan su altitud; esto se denomina elevación orográfica y puede causar precipitaciones. Este proceso ambiental produce divisiones espaciales en la biodiversidad, ya que las especies adaptadas a condiciones más húmedas se limitan a los valles montañosos costeros y no pueden migrar a través de los ecosistemas xéricos (por ejemplo, de la cuenca del Columbia en el oeste de América del Norte) para mezclarse con linajes hermanos que están segregados en los sistemas montañosos del interior. [201] [202]

Fuego

Los incendios forestales modifican el territorio dejando tras de sí un mosaico ambiental que diversifica el paisaje en diferentes estadios y hábitats de calidad variada (izquierda). Algunas especies están adaptadas a los incendios forestales, como los pinos, que abren sus piñas solo después de la exposición al fuego (derecha).

Las plantas convierten el dióxido de carbono en biomasa y emiten oxígeno a la atmósfera. Hace aproximadamente 350 millones de años (finales del período Devónico ), la fotosíntesis había elevado la concentración de oxígeno atmosférico por encima del 17%, lo que permitió que se produjera la combustión. [203] El fuego libera CO2 y convierte el combustible en cenizas y alquitrán. El fuego es un parámetro ecológico importante que plantea muchas cuestiones relacionadas con su control y supresión. [204] Si bien la cuestión del fuego en relación con la ecología y las plantas se reconoce desde hace mucho tiempo, [205] Charles Cooper llamó la atención sobre la cuestión de los incendios forestales en relación con la ecología de la supresión y la gestión de los incendios forestales en la década de 1960. [206] [207]

Los nativos norteamericanos estuvieron entre los primeros en influir en los regímenes de incendios al controlar su propagación cerca de sus hogares o al encender fuegos para estimular la producción de alimentos herbáceos y materiales de cestería. [208] El fuego crea una edad de ecosistema heterogénea y una estructura de dosel, y el suministro de nutrientes del suelo alterado y la estructura de dosel despejado abren nuevos nichos ecológicos para el establecimiento de plántulas. [209] [210] La mayoría de los ecosistemas están adaptados a los ciclos naturales de incendios. Las plantas, por ejemplo, están equipadas con una variedad de adaptaciones para lidiar con los incendios forestales. Algunas especies (por ejemplo, Pinus halepensis ) no pueden germinar hasta que sus semillas hayan sobrevivido a un incendio o hayan estado expuestas a ciertos compuestos del humo. La germinación de semillas desencadenada por el medio ambiente se llama serotinía . [211] [212] El fuego juega un papel importante en la persistencia y resiliencia de los ecosistemas. [176]

Suelos

El suelo es la capa superior viva de suciedad mineral y orgánica que cubre la superficie del planeta. Es el principal centro organizador de la mayoría de las funciones de los ecosistemas y tiene una importancia crítica en la ciencia agrícola y la ecología. La descomposición de la materia orgánica muerta (por ejemplo, las hojas del suelo del bosque) da como resultado suelos que contienen minerales y nutrientes que alimentan la producción vegetal. El conjunto de los ecosistemas de suelo del planeta se denomina pedosfera , donde una gran biomasa de la biodiversidad de la Tierra se organiza en niveles tróficos. Los invertebrados que se alimentan y trituran hojas más grandes, por ejemplo, crean trozos más pequeños para los organismos más pequeños en la cadena alimentaria. En conjunto, estos organismos son los detritívoros que regulan la formación del suelo. [213] [214] Las raíces de los árboles, los hongos, las bacterias, los gusanos, las hormigas, los escarabajos, los ciempiés, las arañas, los mamíferos, las aves, los reptiles, los anfibios y otras criaturas menos conocidas trabajan para crear la red trófica de la vida en los ecosistemas del suelo. Los suelos forman fenotipos compuestos donde la materia inorgánica se envuelve en la fisiología de una comunidad completa. A medida que los organismos se alimentan y migran a través de los suelos, desplazan físicamente los materiales, un proceso ecológico llamado bioturbación . Esto airea los suelos y estimula el crecimiento y la producción heterotrófica. Los microorganismos del suelo se ven influenciados por la dinámica trófica del ecosistema y se retroalimentan a ella. No se puede discernir un único eje de causalidad que separe los sistemas biológicos de los geomorfológicos en los suelos. [215] [216] Los estudios paleoecológicos de los suelos sitúan el origen de la bioturbación en una época anterior al período Cámbrico. Otros eventos, como la evolución de los árboles y la colonización de la tierra en el período Devónico, desempeñaron un papel importante en el desarrollo temprano del trofismo ecológico en los suelos. [214] [217] [218]

Biogeoquímica y clima

Los ecólogos estudian y miden los presupuestos de nutrientes para entender cómo se regulan, fluyen y reciclan estos materiales a través del medio ambiente. [112] [113] [173] Esta investigación ha llevado a comprender que existe una retroalimentación global entre los ecosistemas y los parámetros físicos de este planeta, incluidos los minerales, el suelo, el pH, los iones, el agua y los gases atmosféricos. Seis elementos principales ( hidrógeno , carbono , nitrógeno , oxígeno , azufre y fósforo ; H, C, N, O, S y P) forman la constitución de todas las macromoléculas biológicas y alimentan los procesos geoquímicos de la Tierra. Desde la escala más pequeña de la biología, el efecto combinado de miles de millones y miles de millones de procesos ecológicos amplifican y, en última instancia, regulan los ciclos biogeoquímicos de la Tierra. Comprender las relaciones y los ciclos mediados entre estos elementos y sus vías ecológicas tiene una importancia significativa para comprender la biogeoquímica global. [219]

La ecología de los presupuestos globales de carbono ofrece un ejemplo del vínculo entre la biodiversidad y la biogeoquímica. Se estima que los océanos de la Tierra contienen 40.000 gigatoneladas (Gt) de carbono, que la vegetación y el suelo contienen 2070 Gt y que las emisiones de combustibles fósiles son de 6,3 Gt de carbono por año. [220] Ha habido importantes reestructuraciones en estos presupuestos globales de carbono durante la historia de la Tierra, reguladas en gran medida por la ecología de la tierra. Por ejemplo, a través de la desgasificación volcánica de principios y mediados del Eoceno , la oxidación del metano almacenado en humedales y los gases del fondo marino aumentaron las concentraciones atmosféricas de CO 2 (dióxido de carbono) a niveles tan altos como 3500  ppm . [221]

En el Oligoceno , hace veinticinco a treinta y dos millones de años, hubo otra reestructuración significativa del ciclo global del carbono cuando las gramíneas desarrollaron un nuevo mecanismo de fotosíntesis, la fotosíntesis C 4 , y expandieron sus áreas de distribución. Esta nueva vía evolucionó en respuesta a la caída de las concentraciones atmosféricas de CO 2 por debajo de 550 ppm. [222] La abundancia y distribución relativas de la biodiversidad alteran la dinámica entre los organismos y su entorno de tal manera que los ecosistemas pueden ser tanto causa como efecto en relación con el cambio climático. Las modificaciones impulsadas por el hombre a los ecosistemas del planeta (por ejemplo, perturbaciones, pérdida de biodiversidad , agricultura) contribuyen al aumento de los niveles atmosféricos de gases de efecto invernadero. Se proyecta que la transformación del ciclo global del carbono en el próximo siglo aumentará las temperaturas planetarias, conducirá a fluctuaciones más extremas en el clima, alterará la distribución de las especies y aumentará las tasas de extinción. El efecto del calentamiento global ya se está registrando en el derretimiento de los glaciares, el derretimiento de los casquetes polares de las montañas y el aumento del nivel del mar. En consecuencia, la distribución de las especies está cambiando a lo largo de las costas y en las áreas continentales donde los patrones de migración y las zonas de reproducción están siguiendo los cambios predominantes en el clima. Grandes secciones de permafrost también se están derritiendo para crear un nuevo mosaico de áreas inundadas que tienen mayores tasas de actividad de descomposición del suelo que aumentan las emisiones de metano (CH 4 ). Existe preocupación por el aumento del metano atmosférico en el contexto del ciclo global del carbono, porque el metano es un gas de efecto invernadero que es 23 veces más eficaz en la absorción de la radiación de onda larga que el CO 2 en una escala de tiempo de 100 años. [223] Por lo tanto, existe una relación entre el calentamiento global, la descomposición y la respiración en los suelos y humedales que produce importantes retroalimentaciones climáticas y ciclos biogeoquímicos alterados a nivel global. [107] [224] [225] [226] [227] [228]

Historia

Primeros comienzos

Por ecología entendemos toda la ciencia de las relaciones del organismo con el medio ambiente, incluidas, en sentido amplio, todas las "condiciones de existencia". Así, la teoría de la evolución explica las relaciones de mantenimiento de los organismos de manera mecanicista como consecuencias necesarias de causas efectivas, y constituye así la base monista de la ecología.

Ernst Haeckel (1866) [229] : 140  [B]

La ecología tiene un origen complejo, debido en gran parte a su naturaleza interdisciplinaria. [230] Los filósofos griegos antiguos como Hipócrates y Aristóteles fueron de los primeros en registrar observaciones sobre la historia natural. Sin embargo, veían la vida en términos de esencialismo , donde las especies se conceptualizaban como cosas estáticas e inmutables, mientras que las variedades se consideraban aberraciones de un tipo idealizado . Esto contrasta con la comprensión moderna de la teoría ecológica , donde las variedades se consideran los fenómenos reales de interés y tienen un papel en los orígenes de las adaptaciones por medio de la selección natural . [5] [231] [232] Las primeras concepciones de la ecología, como el equilibrio y la regulación en la naturaleza, se remontan a Heródoto (fallecido c . 425 a. C.), quien describió uno de los primeros relatos de mutualismo en su observación de la "odontología natural". Observó que los cocodrilos del Nilo abrían la boca para dar a los playeros un acceso seguro para arrancar sanguijuelas , lo que proporcionaba nutrición al playero e higiene bucal al cocodrilo. [230] Aristóteles ejerció una influencia temprana en el desarrollo filosófico de la ecología. Él y su alumno Teofrasto realizaron extensas observaciones sobre las migraciones de plantas y animales, la biogeografía, la fisiología y su comportamiento, dando lugar a un análogo temprano del concepto moderno de nicho ecológico. [233] [234]

En ningún otro lugar se puede ver ilustrado con mayor claridad lo que puede llamarse la sensibilidad de un complejo orgánico de este tipo, expresada por el hecho de que todo lo que afecta a cualquier especie que pertenece a él debe tener rápidamente su influencia de algún tipo sobre el conjunto entero. Así se verá obligado a ver la imposibilidad de estudiar cualquier forma completamente sin relación con las otras formas, y la necesidad de realizar un estudio exhaustivo del conjunto como condición para una comprensión satisfactoria de cualquier parte.

Stephen Forbes (1887) [235]

Ernst Haeckel (izquierda) y Eugenius Warming (derecha), dos fundadores de la ecología

Los conceptos ecológicos como las cadenas alimentarias, la regulación de la población y la productividad se desarrollaron por primera vez en el siglo XVIII, a través de las obras publicadas del microscopista Antonie van Leeuwenhoek (1632-1723) y el botánico Richard Bradley (1688?-1732). [5] El biogeógrafo Alexander von Humboldt (1769-1859) fue un pionero en el pensamiento ecológico y fue uno de los primeros en reconocer los gradientes ecológicos, donde las especies se reemplazan o alteran en forma a lo largo de gradientes ambientales , como una clina que se forma a lo largo de un aumento en la elevación. Humboldt se inspiró en Isaac Newton , ya que desarrolló una forma de "física terrestre". Al estilo newtoniano, aportó una exactitud científica para la medición a la historia natural e incluso aludió a conceptos que son la base de una ley ecológica moderna sobre las relaciones entre especies y áreas. [236] [237] [238] Los historiadores naturales, como Humboldt, James Hutton y Jean-Baptiste Lamarck (entre otros) sentaron las bases de las ciencias ecológicas modernas. [239] El término "ecología" ( en alemán : Oekologie, Ökologie ) fue acuñado por Ernst Haeckel en su libro Generelle Morphologie der Organismen (1866). [240] Haeckel fue un zoólogo, artista, escritor y, más tarde en su vida, profesor de anatomía comparada. [229] [241]

Las opiniones difieren sobre quién fue el fundador de la teoría ecológica moderna. Algunos señalan la definición de Haeckel como el comienzo; [242] otros dicen que fue Eugenius Warming con la escritura de Ecología de las plantas: Una introducción al estudio de las comunidades vegetales (1895), [243] o los principios de Carl Linnaeus sobre la economía de la naturaleza que maduraron a principios del siglo XVIII. [244] [245] Linnaeus fundó una rama temprana de la ecología que llamó la economía de la naturaleza. [244] Sus obras influyeron en Charles Darwin, quien adoptó la frase de Linnaeus sobre la economía o política de la naturaleza en El origen de las especies . [229] Linnaeus fue el primero en enmarcar el equilibrio de la naturaleza como una hipótesis comprobable. Haeckel, que admiraba el trabajo de Darwin, definió la ecología en referencia a la economía de la naturaleza, lo que ha llevado a algunos a cuestionar si la ecología y la economía de la naturaleza son sinónimos. [245]

El diseño del primer experimento ecológico, llevado a cabo en un jardín de césped en la Abadía de Woburn en 1816, fue descrito por Charles Darwin en El origen de las especies . El experimento estudió el rendimiento de diferentes mezclas de especies plantadas en diferentes tipos de suelos. [246] [247]

Desde Aristóteles hasta Darwin, el mundo natural se consideraba predominantemente estático e inmutable. Antes de El origen de las especies , había poca apreciación o comprensión de las relaciones dinámicas y recíprocas entre los organismos, sus adaptaciones y el medio ambiente. [231] Una excepción es la publicación de 1789 Natural History of Selborne de Gilbert White (1720-1793), considerada por algunos como uno de los primeros textos sobre ecología. [248] Si bien Charles Darwin es conocido principalmente por su tratado sobre la evolución, [249] fue uno de los fundadores de la ecología del suelo , [250] e hizo notar el primer experimento ecológico en El origen de las especies . [246] La teoría evolutiva cambió la forma en que los investigadores abordaron las ciencias ecológicas. [251]

Desde 1900

La ecología moderna es una ciencia joven que atrajo la atención científica por primera vez hacia fines del siglo XIX (alrededor de la misma época en que los estudios evolutivos estaban ganando interés científico). La científica Ellen Swallow Richards adoptó el término " oecología " (que eventualmente se transformó en economía doméstica ) en los EE. UU. ya en 1892. [252]

A principios del siglo XX, la ecología pasó de ser una forma más descriptiva de historia natural a una forma más analítica de historia natural científica . [236] [239] [253] Frederic Clements publicó el primer libro estadounidense de ecología en 1905, [254] presentando la idea de las comunidades vegetales como un superorganismo . Esta publicación inició un debate entre el holismo ecológico y el individualismo que duró hasta la década de 1970. El concepto de superorganismo de Clements proponía que los ecosistemas progresan a través de etapas regulares y determinadas de desarrollo seral que son análogas a las etapas de desarrollo de un organismo. El paradigma clementsiano fue desafiado por Henry Gleason , [255] quien afirmó que las comunidades ecológicas se desarrollan a partir de la asociación única y coincidente de organismos individuales. Este cambio perceptivo volvió a poner el foco en las historias de vida de los organismos individuales y cómo esto se relaciona con el desarrollo de asociaciones comunitarias. [256]

La teoría de los superorganismos de Clements fue una aplicación exagerada de una forma idealista de holismo. [36] [109] El término "holismo" fue acuñado en 1926 por Jan Christiaan Smuts , un general sudafricano y figura histórica polarizadora que se inspiró en el concepto de superorganismo de Clements. [257] [C] Casi al mismo tiempo, Charles Elton fue pionero en el concepto de cadenas alimentarias en su libro clásico Animal Ecology . [84] Elton [84] definió las relaciones ecológicas utilizando conceptos de cadenas alimentarias, ciclos alimentarios y tamaño de los alimentos, y describió las relaciones numéricas entre diferentes grupos funcionales y su abundancia relativa. El "ciclo alimentario" de Elton fue reemplazado por "red alimentaria" en un texto ecológico posterior. [258] Alfred J. Lotka introdujo muchos conceptos teóricos aplicando principios termodinámicos a la ecología.

En 1942, Raymond Lindeman escribió un artículo fundamental sobre la dinámica trófica de la ecología, que se publicó póstumamente después de haber sido rechazado inicialmente por su énfasis teórico. La dinámica trófica se convirtió en la base de gran parte del trabajo posterior sobre el flujo de energía y material a través de los ecosistemas. Robert MacArthur avanzó la teoría matemática, las predicciones y las pruebas en ecología en la década de 1950, lo que inspiró una escuela resurgiente de ecólogos matemáticos teóricos. [239] [259] [260] La ecología también se ha desarrollado a través de contribuciones de otras naciones, incluido Vladimir Vernadsky de Rusia y su fundación del concepto de biosfera en la década de 1920 [261] y Kinji Imanishi de Japón y sus conceptos de armonía en la naturaleza y segregación de hábitats en la década de 1950. [262] El reconocimiento científico de las contribuciones a la ecología de las culturas que no hablan inglés se ve obstaculizado por las barreras del idioma y la traducción. [261]

Toda esta cadena de envenenamiento parece descansar sobre una base de diminutas plantas que deben haber sido los concentradores originales. Pero ¿qué sucede en el extremo opuesto de la cadena alimentaria, el ser humano que, probablemente ignorando toda esta secuencia de acontecimientos, ha preparado su aparejo de pesca, ha capturado una serie de peces en las aguas del lago Clear y los ha llevado a casa para freírlos para su cena?

Rachel Carson (1962) [263] : 48 

La ecología surgió en interés popular y científico durante el movimiento ambientalista de los años 1960-1970 . Existen fuertes vínculos históricos y científicos entre la ecología, la gestión ambiental y la protección. [239] El énfasis histórico y los escritos naturalistas poéticos que abogan por la protección de los lugares salvajes por parte de ecologistas notables en la historia de la biología de la conservación , como Aldo Leopold y Arthur Tansley , han sido vistos como muy alejados de los centros urbanos donde, se afirma, se encuentra la concentración de la contaminación y la degradación ambiental . [239] [264] Palamar (2008) [264] señala un eclipsamiento por el ambientalismo dominante de las mujeres pioneras de principios del siglo XX que lucharon por la ecología de la salud urbana (entonces llamada euténica ) [252] y provocaron cambios en la legislación ambiental. Mujeres como Ellen Swallow Richards y Julia Lathrop , entre otras, fueron precursoras de los movimientos ambientalistas más popularizados después de los años 1950.

En 1962, el libro Primavera silenciosa de la bióloga marina y ecologista Rachel Carson ayudó a movilizar el movimiento ambientalista al alertar al público sobre los pesticidas tóxicos , como el DDT , que se bioacumulan en el medio ambiente. Carson utilizó la ciencia ecológica para vincular la liberación de toxinas ambientales con la salud humana y del ecosistema . Desde entonces, los ecologistas han trabajado para unir su comprensión de la degradación de los ecosistemas del planeta con la política ambiental, la ley, la restauración y la gestión de los recursos naturales. [22] [239] [264] [265]

Véase también

Liza

Notas

  1. ^
    En la nota a pie de página de Ernst Haeckel (1866) donde se origina el término ecología, también le da el atributo al griego antiguo : χώρας , romanizadokhōrā , lit.  'χωρα', que significa "lugar de vivienda, área de distribución" —citado de Stauffer (1957).
  2. ^
    Esta es una copia de la definición original de Haeckel (Original: Haeckel, E. (1866) Generelle Morphologie der Organismen. Allgemeine Grundzige der organischen Formen-Wissenschaft, mechanisch begriindet durch die von Charles Darwin reformirte Descendenz-Theorie. 2 vols. Reimer, Berlín. ) traducido y citado de Stauffer (1957).
  3. ^
    Foster y Clark (2008) señalan cómo el holismo de Smut contrasta marcadamente con sus opiniones políticas raciales como el padre del apartheid .
  4. ^
    Introducido por primera vez en el libro de MacArthur y Wilson (1967) de notable mención en la historia y la ciencia teórica de la ecología, La teoría de la biogeografía de islas .
  5. ^
    Aristóteles escribió sobre este concepto en Metafísica (citado de la traducción de The Internet Classics Archive por WD Ross . Libro VIII, Parte 6): "Para volver a la dificultad que se ha planteado con respecto tanto a las definiciones como a los números, ¿cuál es la causa de su unidad? En el caso de todas las cosas que tienen varias partes y en las que la totalidad no es, por así decirlo, un mero montón, sino que el todo es algo además de las partes, hay una causa; pues incluso en los cuerpos el contacto es la causa de la unidad en algunos casos y en otros la viscosidad o alguna otra cualidad similar".

Referencias

  1. ^ SE Kingsland, "Documentos fundamentales: definición de la ecología como ciencia", en LA Real y JH Brown, eds., Fundamentos de la ecología: Documentos clásicos con comentarios . Chicago: U of Chicago Press, 1991. págs. 1–2.
  2. ^ Stadler, B.; Michalzik, B.; Müller, T. (1998). "Vinculación de la ecología de los pulgones con los flujos de nutrientes en un bosque de coníferas". Ecología . 79 (5): 1514–1525. doi :10.1890/0012-9658(1998)079[1514:LAEWNF]2.0.CO;2. ISSN  0012-9658.
  3. ^ Humphreys, NJ; Douglas, AE (1997). "Reparto de bacterias simbióticas entre generaciones de un insecto: un estudio cuantitativo de una Buchnera sp. en el pulgón del guisante (Acyrthosiphon pisum) criado a diferentes temperaturas". Applied and Environmental Microbiology . 63 (8): 3294–3296. Bibcode :1997ApEnM..63.3294H. doi :10.1128/AEM.63.8.3294-3296.1997. PMC 1389233 . PMID  16535678. 
  4. ^ Liere, Heidi; Jackson, Doug; Vandermeer, John; Wilby, Andrew (20 de septiembre de 2012). "Complejidad ecológica en un agroecosistema de café: heterogeneidad espacial, persistencia poblacional y control biológico". PLOS ONE . ​​7 (9): e45508. Bibcode :2012PLoSO...745508L. doi : 10.1371/journal.pone.0045508 . PMC 3447771 . PMID  23029061. 
  5. ^ abcdefghijkl Odum, EP; Barrett, GW (2005). Fundamentos de ecología. Brooks Cole. pág. 598. ISBN 978-0-534-42066-6Archivado del original el 28 de julio de 2020 . Consultado el 6 de enero de 2020 .
  6. ^ Steward TA Pickett; Jurek Kolasa; Clive G. Jones (1994). Comprensión ecológica: la naturaleza de la teoría y la teoría de la naturaleza . San Diego: Academic Press. ISBN 978-0-12-554720-8.
  7. ^ ab O'Neill, DL; Deangelis, DL; Waide, JB; Allen, TFH (1986). Un concepto jerárquico de los ecosistemas . Princeton University Press. pág. 253. ISBN 0-691-08436-X.
  8. ^ Nachtomy, Ohad; Shavit, Ayelet; Smith, Justin (2002). "Organismos leibnizianos, individuos anidados y unidades de selección". Teoría en biociencias . 121 (2): 205–230. doi :10.1007/s12064-002-0020-9. S2CID  23760946.
  9. ^ ab Holling, CS (2004). "Entendiendo la complejidad de los sistemas económicos, ecológicos y sociales". Ecosistemas . 4 (5): 390–405. doi :10.1007/s10021-001-0101-5. S2CID  7432683.
  10. ^ Levin, SA (1999). Dominio frágil: complejidad y bienes comunes. Reading, MA: Perseus Books. ISBN 978-0-7382-0319-5Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  11. ^ Noss, RF; Carpenter, AY (1994). Salvar el legado de la naturaleza: proteger y restaurar la biodiversidad. Island Press. pág. 443. ISBN 978-1-55963-248-5Archivado desde el original el 1 de agosto de 2020 . Consultado el 27 de junio de 2015 .
  12. ^ Noss, RF (1990). "Indicadores para el seguimiento de la biodiversidad: un enfoque jerárquico". Biología de la conservación . 4 (4): 355–364. Bibcode :1990ConBi...4..355N. doi :10.1111/j.1523-1739.1990.tb00309.x. JSTOR  2385928.
  13. ^ ab Scholes, RJ; Mace, GM; Turner, W.; Geller, GN; Jürgens, N.; Larigauderie, A.; Muchoney, D.; Walther, BA; Mooney, HA (2008). "Hacia un sistema global de observación de la biodiversidad" (PDF) . Science . 321 (5892): 1044–1045. doi :10.1126/science.1162055. PMID  18719268. S2CID  206514712. Archivado desde el original (PDF) el 10 de julio de 2011.
  14. ^ ab Cardinale, Bradley J.; Duffy, J. Emmett; Gonzalez, Andrew; Hooper, David U.; Perrings, Charles; Venail, Patrick; Narwani, Anita; Mace, Georgina M.; Tilman, David; Wardle, David A.; Kinzig, Ann P.; Daily, Gretchen C.; Loreau, Michel; Grace, James B.; Larigauderie, Anne; Srivastava, Diane S.; Naeem, Shahid (6 de junio de 2012). "La pérdida de biodiversidad y su impacto en la humanidad" (PDF) . Nature . 486 (7401): 59–67. Código Bibliográfico :2012Natur.486...59C. doi :10.1038/nature11148. PMID  22678280. S2CID  4333166. Archivado (PDF) del original el 21 de septiembre de 2017 . Consultado el 10 de agosto de 2019 .
  15. ^ Wilson, EO (2000). "Un mapa global de la biodiversidad". Science . 289 (5488): 2279. PMID  11041790.
  16. ^ Purvis, A.; Hector, A. (2000). "Obteniendo la medida de la biodiversidad" (PDF) . Nature . 405 (6783): 212–218. doi :10.1038/35012221. PMID  10821281. S2CID  4333920. Archivado desde el original (PDF) el 28 de abril de 2014.
  17. ^ Ostfeld, RS (2009). "Pérdida de biodiversidad y aumento de patógenos zoonóticos". Microbiología clínica e infecciones . 15 (s1): 40–43. doi : 10.1111/j.1469-0691.2008.02691.x . PMID  19220353.
  18. ^ Tierney, Geraldine L.; Faber-Langendoen, Don; Mitchell, Brian R.; Shriver, W. Gregory; Gibbs, James P. (2009). "Monitoreo y evaluación de la integridad ecológica de los ecosistemas forestales" (PDF) . Frontiers in Ecology and the Environment . 7 (6): 308–316. Bibcode :2009FrEE....7..308T. doi :10.1890/070176. Archivado desde el original (PDF) el 29 de diciembre de 2010 . Consultado el 1 de febrero de 2010 .
  19. ^ Ceballos, G.; Ehrlich, PR (2002). «Pérdidas de poblaciones de mamíferos y la crisis de extinción» (PDF) . Science . 296 (5569): 904–907. Bibcode :2002Sci...296..904C. doi :10.1126/science.1069349. PMID  11988573. S2CID  32115412. Archivado desde el original (PDF) el 20 de julio de 2011 . Consultado el 16 de marzo de 2010 .
  20. ^ Palumbi, Stephen R. ; Sandifer, Paul A.; Allan, J. David; Beck, Michael W.; Fautin, Daphne G.; Fogarty, Michael J.; Halpern, Benjamin S.; Incze, Lewis S.; Leong, Jo-Ann; et al. (2009). "Gestión de la biodiversidad oceánica para sustentar los servicios ecosistémicos marinos" (PDF) . Frontiers in Ecology and the Environment . 7 (4): 204–211. Bibcode :2009FrEE....7..204P. doi :10.1890/070135. hdl : 1808/13308 . Archivado desde el original (PDF) el 11 de junio de 2010.
  21. ^ Wilcove, DS; Wikelski, M. (2008). "Se va, se va, se fue: ¿está desapareciendo la migración animal?". PLOS Biology . 6 (7): e188. doi : 10.1371/journal.pbio.0060188 . PMC 2486312 . PMID  18666834. 
  22. ^ abc Hammond, H. (2009). Mantenimiento de sistemas completos en la corona de la Tierra: planificación de la conservación basada en ecosistemas para el bosque boreal. Slocan Park, BC: Silva Forest Foundation. p. 380. ISBN 978-0-9734779-0-0Archivado desde el original el 5 de diciembre de 2009 . Consultado el 31 de enero de 2010 .
  23. ^ Kiessling, W.; Simpson, C.; Foote, M. (2009). "Los arrecifes como cunas de la evolución y fuentes de biodiversidad en el Fanerozoico" (PDF) . Science . 327 (5962): 196–198. Bibcode :2010Sci...327..196K. doi :10.1126/science.1182241. PMID  20056888. S2CID  206523585. Archivado (PDF) desde el original el 12 de enero de 2011 . Consultado el 12 de abril de 2020 .
  24. ^ abc Whittaker, RH; Levin, SA; Root, RB (1973). "Nicho, hábitat y ecotopo" (PDF) . The American Naturalist . 107 (955): 321–338. doi :10.1086/282837. S2CID  84504783. Archivado desde el original (PDF) el 5 de septiembre de 2012.
  25. ^ Beyer, Hawthorne L.; Haydon, Daniel T.; Morales, Juan M.; Frair, Jacqueline L.; Hebblewhite, Mark; Mitchell, Michael; Matthiopoulos, Jason (2010). "La interpretación de las métricas de preferencia de hábitat en diseños de uso-disponibilidad". Philosophical Transactions of the Royal Society B . 365 (1550): 2245–2254. doi :10.1098/rstb.2010.0083. PMC 2894962 . PMID  20566501. 
  26. ^ Schoener, TW (1975). "Presencia y ausencia de cambios de hábitat en algunas especies de lagartijas de amplia distribución". Monografías ecológicas . 45 (3): 233–258. Bibcode :1975EcoM...45..233S. doi :10.2307/1942423. JSTOR  1942423.
  27. ^ Vitt, LJ; Caldwell, JP; Zani, PA; Titus, TA (1997). "El papel del cambio de hábitat en la evolución de la morfología de los lagartos: evidencia del Tropidurus tropical". Actas de la Academia Nacional de Ciencias . 94 (8): 3828–3832. Bibcode :1997PNAS...94.3828V. doi : 10.1073/pnas.94.8.3828 . PMC 20526 . PMID  9108063. 
  28. ^ abc Laland, KN; Odling-Smee, FJ; Feldman, MW (1999). "Consecuencias evolutivas de la construcción de nichos y sus implicaciones para la ecología". Actas de la Academia Nacional de Ciencias . 96 (18): 10242–10247. Bibcode :1999PNAS...9610242L. doi : 10.1073/pnas.96.18.10242 . PMC 17873 . PMID  10468593. 
  29. ^ ab Hughes, DP; Pierce, NE; Boomsma, JJ (2008). "Social insect symbionts: evolution in homeostatic fortresses" (PDF) . Tendencias en ecología y evolución . 23 (12): 672–677. Código bibliográfico :2008TEcoE..23..672H. doi :10.1016/j.tree.2008.07.011. PMID  18951653. Archivado desde el original (PDF) el 6 de junio de 2011 . Consultado el 28 de enero de 2010 .
  30. ^ abc Wiens, JJ; Graham, CH (2005). «Conservadurismo de nicho: integración de la evolución, la ecología y la biología de la conservación» (PDF) . Revista anual de ecología, evolución y sistemática . 36 : 519–539. doi :10.1146/annurev.ecolsys.36.102803.095431. Archivado desde el original (PDF) el 24 de octubre de 2012.
  31. ^ Hutchinson, GE (1957). Tratado de limnología . Nueva York: Wiley. pág. 1015. ISBN. 0-471-42572-9.
  32. ^ ab Hutchinson, GE (1957). "Observaciones finales". Simposios de Cold Spring Harbor sobre biología cuantitativa . 22 (797): 415–427. doi :10.1101/SQB.1957.022.01.039.
  33. ^ abc Begon, M.; Townsend, CR; Harper, JL (2005). Ecología: de los individuos a los ecosistemas (4.ª ed.). Wiley-Blackwell. pág. 752. ISBN 1-4051-1117-8Archivado desde el original el 30 de octubre de 2013 . Consultado el 14 de diciembre de 2010 .
  34. ^ DL, Hardesty (1975). "El concepto de nicho: sugerencias para su uso en ecología humana". Ecología humana . 3 (2): 71–85. doi :10.1007/BF01552263. JSTOR  4602315. S2CID  84328940.
  35. ^ Pearman, PB; Guisan, A.; Broennimann, O.; Randin, CF (2008). "Dinámica de nicho en el espacio y el tiempo". Tendencias en ecología y evolución . 23 (3): 149–158. Bibcode :2008TEcoE..23..149P. doi :10.1016/j.tree.2007.11.005. PMID  18289716.
  36. ^ abcde Levins, R.; Lewontin, R. (1980). "Dialéctica y reduccionismo en ecología" (PDF) . Synthese . 43 : 47–78. doi :10.1007/bf00413856. S2CID  46984334. Archivado desde el original (PDF) el 10 de mayo de 2013.
  37. ^ Hardin, G. (1960). "El principio de exclusión competitiva". Science . 131 (3409): 1292–1297. Bibcode :1960Sci...131.1292H. doi :10.1126/science.131.3409.1292. PMID  14399717. S2CID  18542809.
  38. ^ Scheffer, M.; van Nes, EH (2006). "Similitud autoorganizada, la emergencia evolutiva de grupos de especies similares". Actas de la Academia Nacional de Ciencias . 103 (16): 6230–6235. Bibcode :2006PNAS..103.6230S. doi : 10.1073/pnas.0508024103 . PMC 1458860 . PMID  16585519. 
  39. ^ Hastings, Alan; Byers, James E.; Crooks, Jeffrey A.; Cuddington, Kim; Jones, Clive G.; Lambrinos, John G.; Talley, Theresa S.; Wilson, William G. (2007). "Ingeniería de ecosistemas en el espacio y el tiempo". Ecology Letters . 10 (2): 153–164. Bibcode :2007EcolL..10..153H. doi :10.1111/j.1461-0248.2006.00997.x. PMID  17257103. S2CID  44870405.
  40. ^ Jones, Clive G.; Lawton, John H.; Shachak, Moshe (1994). "Los organismos como ingenieros de ecosistemas". Oikos . 69 (3): 373–386. Bibcode :1994Oikos..69..373J. doi :10.2307/3545850. JSTOR  3545850.
  41. ^ Wright, JP; Jones, CG (2006). "El concepto de organismos como ingenieros de ecosistemas diez años después: progreso, limitaciones y desafíos". BioScience . 56 (3): 203–209. doi : 10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2 . ISSN  0006-3568.
  42. ^ Palmer, M.; White, PS (1994). "Sobre la existencia de comunidades ecológicas" (PDF) . Journal of Vegetation Sciences . 5 (2): 279–282. Bibcode :1994JVegS...5..279P. doi :10.2307/3236162. JSTOR  3236162. Archivado desde el original (PDF) el 5 de septiembre de 2012.
  43. ^ Prentice; IC; Harrison, SP; Leemans, R.; Monserud, RA; Solomon, AM (1992). "Artículo especial: Un modelo de bioma global basado en la fisiología y dominancia de las plantas, las propiedades del suelo y el clima" (PDF) . Journal of Biogeography . 19 (2): 117–134. Bibcode :1992JBiog..19..117P. doi :10.2307/2845499. JSTOR  2845499. Archivado (PDF) desde el original el 20 de diciembre de 2022 . Consultado el 11 de diciembre de 2022 .
  44. ^ Turnbaugh, Peter J.; Ley, Ruth E.; Hamady, Micah; Fraser-Liggett, Claire M.; Knight, Rob; Gordon, Jeffrey I. (2007). "El proyecto del microbioma humano". Nature . 449 (7164): 804–810. Bibcode :2007Natur.449..804T. doi :10.1038/nature06244. PMC 3709439 . PMID  17943116. 
  45. ^ DeLong, EF (2009). "El océano microbiano desde los genomas hasta los biomas" (PDF) . Nature . 459 (7244): 200–206. Bibcode :2009Natur.459..200D. doi :10.1038/nature08059. hdl : 1721.1/69838 . PMID  19444206. S2CID  205216984. Archivado desde el original (PDF) el 18 de julio de 2011 . Consultado el 14 de enero de 2010 .
  46. ^ Igamberdiev, Abir U.; Lea, PJ (2006). "Las plantas terrestres equilibran las concentraciones de O2 y CO2 en la atmósfera" (PDF) . Photosynthesis Research . 87 (2): 177–194. Bibcode :2006PhoRe..87..177I. doi :10.1007/s11120-005-8388-2. PMID  16432665. S2CID  10709679. Archivado desde el original (PDF) el 3 de marzo de 2016.
  47. ^ Lovelock, JE; Margulis, L. (1974). "Homeostasis atmosférica por y para la biosfera: la hipótesis gaia". Tellus A. 26 (1–2): 2–10. Bibcode : 1974 Dile...26....2L. doi : 10.3402/tellusa.v26i1-2.9731 . S2CID  129803613.
  48. ^ abc Lovelock, J. (2003). "La Tierra viviente". Nature . 426 (6968): 769–770. Código Bibliográfico :2003Natur.426..769L. doi :10.1038/426769a. PMID  14685210. S2CID  30308855.
  49. ^ Waples, RS; Gaggiotti, O. (2006). "¿Qué es una población? Una evaluación empírica de algunos métodos genéticos para identificar el número de acervos genéticos y su grado de conectividad". Molecular Ecology . 15 (6): 1419–1439. doi : 10.1111/j.1365-294X.2006.02890.x . PMID  16629801. S2CID  9715923. Archivado desde el original el 25 de octubre de 2019 . Consultado el 10 de agosto de 2019 .
  50. ^ abc Turchin, P. (2001). "¿Tiene la ecología de poblaciones leyes generales?". Oikos . 94 (1): 17–26. Bibcode :2001Oikos..94...17T. doi :10.1034/j.1600-0706.2001.11310.x. S2CID  27090414.
  51. ^ ab Vandermeer, JH; Goldberg, DE (2003). Ecología de poblaciones: primeros principios . Woodstock, Oxfordshire: Princeton University Press. ISBN 0-691-11440-4.
  52. ^ Berryman, AA (1992). "Los orígenes y la evolución de la teoría depredador-presa". Ecología . 73 (5): 1530–1535. Bibcode :1992Ecol...73.1530B. doi :10.2307/1940005. JSTOR  1940005. S2CID  84321947.
  53. ^ Anderson, DR; Burnham, KP; Thompson, WL (2000). "Prueba de hipótesis nulas: problemas, prevalencia y una alternativa" (PDF) . J. Wildl. Manage . 64 (4): 912–923. doi :10.2307/3803199. JSTOR  3803199. Archivado desde el original (PDF) el 2 de junio de 2013 . Consultado el 4 de agosto de 2012 .
  54. ^ Johnson, JB; Omland, KS (2004). "Selección de modelos en ecología y evolución" (PDF) . Tendencias en ecología y evolución . 19 (2): 101–108. CiteSeerX 10.1.1.401.777 . doi :10.1016/j.tree.2003.10.013. PMID  16701236. Archivado (PDF) desde el original el 14 de octubre de 2012. 
  55. ^ Levins, R. (1969). «Algunas consecuencias demográficas y genéticas de la heterogeneidad ambiental para el control biológico». Boletín de la Sociedad Entomológica de América . 15 (3): 237–240. doi :10.1093/besa/15.3.237. Archivado desde el original el 8 de abril de 2022. Consultado el 19 de noviembre de 2020 .
  56. ^ Levins, R. (1970). "Extinción". En Gerstenhaber, M. (ed.). Algunas cuestiones matemáticas en biología. American Mathematical Soc. págs. 77–107. ISBN 978-0-8218-1152-8Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  57. ^ Smith, MA; Green, DM (2005). "Dispersión y paradigma de metapoblación en ecología y conservación de anfibios: ¿Son todas las poblaciones de anfibios metapoblaciones?". Ecografía . 28 (1): 110–128. Bibcode :2005Ecogr..28..110A. doi : 10.1111/j.0906-7590.2005.04042.x .
  58. ^ Hanski, I. (1998). "Metapopulation dynamics" (PDF) . Nature . 396 (6706): 41–49. Bibcode :1998Natur.396...41H. doi :10.1038/23876. S2CID  4405264. Archivado desde el original (PDF) el 31 de diciembre de 2010.
  59. ^ Nebel, S. (2010). «Migración animal». Nature Education Knowledge . 10 (1): 29. Archivado desde el original el 16 de julio de 2011.
  60. ^ Clark, JS; Fastie, C.; Hurtt, G.; Jackson, ST; Johnson, C.; King, GA; Lewis, M.; Lynch, J.; Pacala, S.; et al. (1998). "La paradoja de Reid de la migración rápida de plantas" (PDF) . BioScience . 48 (1): 13–24. doi : 10.2307/1313224 . JSTOR  1313224. Archivado (PDF) desde el original el 6 de julio de 2011.
  61. ^ Dingle, H. (18 de enero de 1996). Migración: la biología de la vida en movimiento. Oxford University Press. pág. 480. ISBN 0-19-509723-8Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  62. ^ Hanski, I.; Gaggiotti, OE, eds. (2004). Ecología, genética y evolución de metapoblaciones. Burlington, MA: Elsevier Academic Press. ISBN 0-12-323448-4Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  63. ^ MacKenzie; DI (2006). Estimación y modelado de la ocupación: inferencia de patrones y dinámica de la presencia de especies. Londres: Elsevier Academic Press. p. 324. ISBN 978-0-12-088766-8Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  64. ^ Johnson, MT; Strinchcombe, JR (2007). "Una síntesis emergente entre la ecología de comunidades y la biología evolutiva". Tendencias en ecología y evolución . 22 (5): 250–257. Bibcode :2007TEcoE..22..250J. doi :10.1016/j.tree.2007.01.014. PMID  17296244.
  65. ^ ab Tansley, AG (1935). "El uso y abuso de conceptos y términos vegetales" (PDF) . Ecología . 16 (3): 284–307. Bibcode :1935Ecol...16..284T. doi :10.2307/1930070. JSTOR  1930070. Archivado desde el original (PDF) el 26 de julio de 2011.
  66. ^ Brinson, MM; Lugo, AE; Brown, S (1981). "Productividad primaria, descomposición y actividad del consumidor en humedales de agua dulce". Revista Anual de Ecología y Sistemática . 12 : 123–161. doi :10.1146/annurev.es.12.110181.001011.
  67. ^ Marsh, GP (1864). El hombre y la naturaleza: la geografía física modificada por la acción humana. Cambridge, MA: Belknap Press. pág. 560.
  68. ^ O'Neil, RV (2001). "¿Ha llegado el momento de enterrar el concepto de ecosistema? (¡Con todos los honores militares, por supuesto!)" (PDF) . Ecology . 82 (12): 3275–3284. doi :10.1890/0012-9658(2001)082[3275:IITTBT]2.0.CO;2. ISSN  0012-9658. Archivado desde el original (PDF) el 19 de mayo de 2011. Consultado el 20 de junio de 2011 .
  69. ^ Levin, SA (1998). "Los ecosistemas y la biosfera como sistemas adaptativos complejos". Ecosistemas . 1 (5): 431–436. Bibcode :1998Ecosy...1..431L. CiteSeerX 10.1.1.83.6318 . doi :10.1007/s100219900037. S2CID  29793247. 
  70. ^ Pimm, S. (2002). Redes alimentarias. University of Chicago Press. pág. 258. ISBN 978-0-226-66832-1Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  71. ^ ab Pimm, SL; Lawton, JH; Cohen, JE (1991). "Food web patterns and their implications" (PDF) . Nature . 350 (6320): 669–674. Bibcode :1991Natur.350..669P. doi :10.1038/350669a0. S2CID  4267587. Archivado desde el original (PDF) el 10 de junio de 2010.
  72. ^ Worm, B.; Duffy, JE (2003). "Biodiversidad, productividad y estabilidad en redes alimentarias reales". Tendencias en ecología y evolución . 18 (12): 628–632. Bibcode :2003TEcoE..18..628W. CiteSeerX 10.1.1.322.7255 . doi :10.1016/j.tree.2003.09.003. 
  73. ^ McCann, K. (2007). "Protección de la bioestructura". Nature . 446 (7131): 29. Bibcode :2007Natur.446...29M. doi : 10.1038/446029a . PMID  17330028. S2CID  4428058.
  74. ^ Wilbur, HW (1997). "Experimental ecological ecological environmental resources: complex systems in Temporary Ponds" (Ecología experimental de redes alimentarias: sistemas complejos en estanques temporales) (PDF) . Ecología . 78 (8): 2279–2302. doi :10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2. ISSN  0012-9658. Archivado desde el original (PDF) el 19 de mayo de 2011 . Consultado el 27 de noviembre de 2010 .
  75. ^ Emmerson, M.; Yearsley, JM (2004). "Interacciones débiles, omnivoría y propiedades emergentes de la red alimentaria" (PDF) . Philosophical Transactions of the Royal Society B. 271 ( 1537): 397–405. doi :10.1098/rspb.2003.2592. PMC 1691599. PMID 15101699.  Archivado (PDF) desde el original el 6 de junio de 2011. 
  76. ^ Krause, AE; Frank, KA; Mason, DM; Ulanowicz, RE; Taylor, WW (2003). "Compartimentos revelados en la estructura de la red alimentaria" (PDF) . Nature . 426 (6964): 282–285. Bibcode :2003Natur.426..282K. doi :10.1038/nature02115. hdl : 2027.42/62960 . PMID  14628050. S2CID  1752696. Archivado desde el original (PDF) el 13 de agosto de 2011 . Consultado el 4 de junio de 2011 .
  77. ^ Egerton, Frank N. (2007). "Comprensión de las cadenas alimentarias y las redes alimentarias, 1700-1970". Boletín de la Sociedad Ecológica de América . 88 : 50–69. doi :10.1890/0012-9623(2007)88[50:UFCAFW]2.0.CO;2. ISSN  0012-9623.
  78. ^ Shurin, JB; Gruner, DS; Hillebrand, H. (2006). "¿Todo mojado o seco? Diferencias reales entre las redes alimentarias acuáticas y terrestres". Actas de la Royal Society B. 273 ( 1582): 1–9. doi :10.1098/rspb.2005.3377. PMC 1560001. PMID  16519227 . 
  79. ^ Edwards, J.; Fraser, K. (1983). "Los mapas conceptuales como reflectores de la comprensión conceptual". Investigación en Educación en Ciencias . 13 (1): 19–26. Bibcode :1983RScEd..13...19E. doi :10.1007/BF02356689. S2CID  144922522.
  80. ^ Gaynor, Kaitlyn M. (26 de enero de 2024). "Un problema desmesurado impulsa una reacción ecológica en cadena". Science . 383 (6681): 370–371. Bibcode :2024Sci...383..370G. doi :10.1126/science.adn3484. ISSN  0036-8075.
  81. ^ Kamaru, Douglas N.; Palmer, Todd M.; Riginos, Corinna; Ford, Adam T.; Belnap, Jayne; Chira, Robert M.; Githaiga, John M.; Gituku, Benard C.; Hays, Brandon R.; Kavwele, Cyrus M.; Kibungei, Alfred K.; Lamb, Clayton T.; Maiyo, Nelly J.; Milligan, Patrick D.; Mutisya, Samuel (26 de enero de 2024). "La interrupción de un mutualismo entre hormigas y plantas da forma a las interacciones entre los leones y sus presas primarias". Ciencia . 383 (6681): 433–438. Bibcode :2024Sci...383..433K. doi :10.1126/science.adg1464. ISSN  0036-8075.
  82. ^ Hairston, NG Jr.; Hairston, NG Sr. (1993). "Relaciones causa-efecto en el flujo de energía, la estructura trófica y las interacciones interespecíficas" (PDF) . The American Naturalist . 142 (3): 379–411. doi :10.1086/285546. hdl : 1813/57238 . S2CID  55279332. Archivado desde el original (PDF) el 20 de julio de 2011.
  83. ^ Duffy, J. Emmett; Cardinale, Bradley J.; France, Kristin E.; McIntyre, Peter B.; Thébault, Elisa; Loreau, Michel (2007). "El papel funcional de la biodiversidad en los ecosistemas: incorporando la complejidad trófica". Ecology Letters . 10 (6): 522–538. Bibcode :2007EcolL..10..522D. doi : 10.1111/j.1461-0248.2007.01037.x . PMID  17498151. Archivado desde el original el 5 de marzo de 2020 . Consultado el 7 de diciembre de 2019 .
  84. ^ abc Elton, CS (1927). Ecología animal . Londres: Sidgwick y Jackson. ISBN 0-226-20639-4.
  85. ^ Davic, RD (2003). «Vinculación de especies clave y grupos funcionales: una nueva definición operativa del concepto de especie clave» (PDF) . Ecología de la conservación . 7 (1): r11. doi :10.5751/ES-00502-0701r11. hdl : 10535/2966 . Archivado (PDF) del original el 30 de julio de 2020. Consultado el 24 de septiembre de 2019 .
  86. ^ Oksanen, L. (1991). "Niveles tróficos y dinámica trófica: ¿está surgiendo un consenso?". Tendencias en ecología y evolución . 6 (2): 58–60. Bibcode :1991TEcoE...6...58O. doi :10.1016/0169-5347(91)90124-G. PMID  21232425.
  87. ^ Loehle, C.; Pechmann, Joseph HK (1988). "Evolución: el ingrediente que falta en la ecología de sistemas". The American Naturalist . 132 (9): 884–899. doi :10.1086/284895. JSTOR  2462267. S2CID  85120393.
  88. ^ Ulanowicz, RE; Kemp, W. Michael (1979). "Hacia agregaciones tróficas canónicas" (PDF) . The American Naturalist . 114 (6): 871–883. doi :10.1086/283534. hdl : 1834/19829 . JSTOR  2460557. S2CID  85371147. Archivado (PDF) del original el 1 de noviembre de 2018 . Consultado el 10 de agosto de 2019 .
  89. ^ Li, B. (2000). "¿Por qué el enfoque holístico se está volviendo tan importante en la ecología del paisaje?". Landscape and Urban Planning . 50 (1–3): 27–41. Bibcode :2000LUrbP..50...27L. doi :10.1016/S0169-2046(00)00078-5.
  90. ^ Polis, GA; Strong, DR (1996). "Complejidad de la red alimentaria y dinámica de comunidades" (PDF) . The American Naturalist . 147 (5): 813–846. doi :10.1086/285880. S2CID  85155900. Archivado desde el original (PDF) el 20 de julio de 2011.
  91. ^ Thompson, RM; Hemberg, M.; Starzomski, BM; Shurin, JB (2007). "Niveles tróficos y enredos tróficos: la prevalencia de la omnívora en las redes alimentarias reales" (PDF) . Ecology . 88 (3): 612–617. Bibcode :2007Ecol...88..612T. doi :10.1890/05-1454. PMID  17503589. Archivado desde el original (PDF) el 15 de agosto de 2011.
  92. ^ Fischer, J.; Lindenmayer, DB; Manning, AD (2006). "Biodiversidad, función ecosistémica y resiliencia: diez principios rectores para los paisajes de producción de productos básicos" (PDF) . Frontiers in Ecology and the Environment . 4 (2): 80–86. doi :10.1890/1540-9295(2006)004[0080:BEFART]2.0.CO;2. ISSN  1540-9295. Archivado desde el original (PDF) el 6 de julio de 2011 . Consultado el 2 de febrero de 2010 .
  93. ^ Libralato, S.; Christensen, V.; Pauly, D. (2006). "Un método para identificar especies clave en modelos de redes alimentarias" (PDF) . Ecological Modelling . 195 (3–4): 153–171. Bibcode :2006EcMod.195..153L. doi :10.1016/j.ecolmodel.2005.11.029. Archivado desde el original (PDF) el 19 de mayo de 2012.
  94. ^ Paine, RT (enero de 1969). "Una nota sobre la complejidad trófica y la estabilidad de la comunidad". The American Naturalist . 103 (929): 91–93. doi :10.1086/282586. ISSN  0003-0147. S2CID  83780992.
  95. ^ ab Mills, LS; Soule, ME; Doak, DF (1993). "El concepto de especie clave en ecología y conservación". BioScience . 43 (4): 219–224. doi :10.2307/1312122. JSTOR  1312122. S2CID  85204808.
  96. ^ Anderson, PK (1995). "Competencia, depredación y evolución y extinción de la vaca marina de Steller, Hydrodamalis gigas ". Marine Mammal Science . 11 (3): 391–394. Bibcode :1995MMamS..11..391A. doi :10.1111/j.1748-7692.1995.tb00294.x.
  97. ^ Polis, GA; Sears, Anna LW; Huxel, Gary R.; Strong, Donald R.; Maron, John (2000). "¿Cuándo una cascada trófica es una cascada trófica?" (PDF) . Tendencias en ecología y evolución . 15 (11): 473–475. Bibcode :2000TEcoE..15..473P. doi :10.1016/S0169-5347(00)01971-6. PMID  11050351. Archivado desde el original (PDF) el 7 de diciembre de 2010. Consultado el 28 de septiembre de 2009 .
  98. ^ Novikoff, AB (1945). "El concepto de niveles integradores y biología" (PDF) . Science . 101 (2618): 209–215. Bibcode :1945Sci...101..209N. doi :10.1126/science.101.2618.209. PMID  17814095. Archivado desde el original (PDF) el 15 de mayo de 2011.
  99. ^ Schneider, DD (2001). "El auge del concepto de escala en ecología" (PDF) . BioScience . 51 (7): 545–553. doi : 10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2 . ISSN  0006-3568. Archivado (PDF) desde el original el 3 de marzo de 2016.
  100. ^ Molnar, J.; Marvier, M.; Kareiva, P. (2004). "La suma es mayor que las partes". Biología de la conservación . 18 (6): 1670–1671. Bibcode :2004ConBi..18.1670M. doi :10.1111/j.1523-1739.2004.00l07.x. S2CID  40349801.
  101. ^ Loehle, C. (2004). "Desafíos de la complejidad ecológica". Complejidad ecológica . 1 (1): 3–6. Bibcode :2004EcoCm...1....3.. doi :10.1016/j.ecocom.2003.09.001.
  102. ^ ab Odum, EP (1977). "El surgimiento de la ecología como una nueva disciplina integradora". Science . 195 (4284): 1289–1293. Bibcode :1977Sci...195.1289O. doi :10.1126/science.195.4284.1289. PMID  17738398. S2CID  36862823.
  103. ^ Scheffer, M.; Carpenter, S.; Foley, JA; Walker, B.; Walker, B. (2001). «Cambios catastróficos en los ecosistemas» (PDF) . Nature . 413 (6856): 591–596. Bibcode :2001Natur.413..591S. doi :10.1038/35098000. PMID  11595939. S2CID  8001853. Archivado desde el original (PDF) el 20 de julio de 2011 . Consultado el 4 de junio de 2011 .
  104. ^ "Bienvenidos a ILTER". Investigación ecológica internacional a largo plazo. Archivado desde el original el 5 de marzo de 2010. Consultado el 16 de marzo de 2010 .
  105. ^ Silverton, Jonathan; Poulton, Paul; Johnston, Edward; Edwards, Grant; Heard, Matthew; Biss, Pamela M. (2006). "El experimento de la hierba del parque 1856-2006: su contribución a la ecología". Revista de ecología . 94 (4): 801–814. Código Bibliográfico :2006JEcol..94..801S. doi : 10.1111/j.1365-2745.2006.01145.x .
  106. ^ "Portada del estudio del ecosistema de Hubbard Brook". Archivado desde el original el 24 de marzo de 2010. Consultado el 16 de marzo de 2010 .
  107. ^ abcd Liu, J.; Dietz, Thomas; Carpenter, Stephen R.; Folke, Carl; Alberti, Marina; Redman, Charles L.; Schneider, Stephen H.; Ostrom, Elinor; Pell, Alice N.; et al. (2009). "Sistemas humanos y naturales acoplados" (PDF) . Ambio: A Journal of the Human Environment . 36 (8): 639–649. doi :10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2. ISSN  0044-7447. PMID  18240679. S2CID  18167083. Archivado desde el original (PDF) el 9 de agosto de 2011.
  108. ^ Mikkelson, GM (2010). "Relaciones entre la parte y el todo y la unidad de la ecología" (PDF) . En Skipper, RA; Allen, C.; Ankeny, R.; Craver, CF; Darden, L.; Richardson, RC (eds.). Philosophy Across the Life Sciences (Filosofía en las ciencias de la vida ) . Cambridge, MA: MIT Press. Archivado (PDF) desde el original el 11 de septiembre de 2010.
  109. ^ ab Wilson, DS (1988). "Holismo y reduccionismo en ecología evolutiva". Oikos . 53 (2): 269–273. Bibcode :1988Oikos..53..269W. doi :10.2307/3566073. JSTOR  3566073.
  110. ^ Miles, DB; Dunham, AE (1993). "Perspectivas históricas en ecología y biología evolutiva: el uso de análisis comparativos filogenéticos". Revista Anual de Ecología y Sistemática . 24 : 587–619. doi :10.1146/annurev.es.24.110193.003103.
  111. ^ Craze, P., ed. (2 de agosto de 2012). «Tendencias en ecología y evolución». Cell Press, Elsevier, Inc. Archivado desde el original el 24 de julio de 2009. Consultado el 9 de diciembre de 2009 .
  112. ^ abcdefghi Allee, WC; Park, O.; Emerson, AE; Park, T.; Schmidt, KP (1949). Principios de ecología animal. WB Sunders, Co. pág. 837. ISBN 0-7216-1120-6.
  113. ^ abcde Rickleffs, Robert E. (1996). La economía de la naturaleza . University of Chicago Press. pág. 678. ISBN 0-7167-3847-3.
  114. ^ Yoshida, T (2003). "La rápida evolución impulsa la dinámica ecológica en un sistema depredador-presa". Nature . 424 (6946). Nature Publishing Group: 303–306. Bibcode :2003Natur.424..303Y. doi :10.1038/nature01767. PMID  12867979. S2CID  4425455.
  115. ^ Stuart-Fox, D.; Moussalli, A. (2008). "La selección para la señalización social impulsa la evolución del cambio de color del camaleón". PLOS Biology . 6 (1): e25. doi : 10.1371/journal.pbio.0060025 . PMC 2214820 . PMID  18232740. 
  116. ^ Karban, R. (2008). "Comportamiento y comunicación de las plantas". Ecology Letters . 11 (7): 727–739. Bibcode :2008EcolL..11..727K. doi : 10.1111/j.1461-0248.2008.01183.x . PMID  18400016.
  117. ^ Tinbergen, N. (1963). "Sobre fines y métodos de la etología" (PDF) . Zeitschrift für Tierpsychologie . 20 (4): 410–433. doi :10.1111/j.1439-0310.1963.tb01161.x. Archivado (PDF) desde el original el 9 de junio de 2011.
  118. ^ Hamner, WM (1985). «La importancia de la etología para las investigaciones del zooplancton marino». Boletín de Ciencias Marinas . 37 (2): 414–424. Archivado desde el original el 7 de junio de 2011.
  119. ^ ab Strassmann, JE; Zhu, Y.; Queller, DC (2000). "Altruismo y engaño social en la ameba social Dictyostelium discoideum ". Nature . 408 (6815): 965–967. Bibcode :2000Natur.408..965S. doi :10.1038/35050087. PMID  11140681. S2CID  4307980.
  120. ^ Sakurai, K. (1985). "Un gorgojo attélabido ( Euops splendida ) cultiva hongos". Revista de Etología . 3 (2): 151–156. doi :10.1007/BF02350306. S2CID  30261494.
  121. ^ Anderson, JD (1961). "El comportamiento de cortejo de Ambystoma macrodactylum croceum ". Copeia . 1961 (2): 132–139. doi :10.2307/1439987. JSTOR  1439987.
  122. ^ "Ecología del comportamiento". Sociedad Internacional de Ecología del Comportamiento. Archivado desde el original el 10 de abril de 2011. Consultado el 15 de abril de 2011 .
  123. ^ Gould, Stephen J.; Vrba, Elizabeth S. (1982). "Exaptación: un término que falta en la ciencia de la forma". Paleobiología . 8 (1): 4–15. Bibcode :1982Pbio....8....4G. doi :10.1017/S0094837300004310. S2CID  86436132.
  124. ^ abcd Wilson, Edward O. (2000). Sociobiología: la nueva síntesis (edición del 25.º aniversario). Presidente y miembros del Harvard College. ISBN 978-0-674-00089-6Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  125. ^ Eastwood, R. (2004). "Sustitución sucesiva de especies de hormigas cuidadoras en agregaciones de cochinillas (Hemiptera: Margarodidae y Eriococcidae) en eucaliptos en el sudeste de Queensland" (PDF) . Revista australiana de entomología . 43 : 1–4. doi :10.1111/j.1440-6055.2003.00371.x. Archivado desde el original (PDF) el 17 de septiembre de 2011.
  126. ^ Ives, AR; Cardinale, BJ; Snyder, WE (2004). "Una síntesis de subdisciplinas: interacciones depredador-presa, y biodiversidad y funcionamiento de los ecosistemas". Ecology Letters . 8 (1): 102–116. doi : 10.1111/j.1461-0248.2004.00698.x .
  127. ^ Krebs, JR; Davies, NB (1993). Introducción a la ecología del comportamiento. Wiley-Blackwell. pág. 432. ISBN 978-0-632-03546-5Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  128. ^ Webb, JK; Pike, DA; Shine, R. (2010). "Reconocimiento olfativo de depredadores por lagartijas nocturnas: la seguridad supera los beneficios térmicos". Ecología del comportamiento . 21 (1): 72–77. doi : 10.1093/beheco/arp152 . S2CID  52043639.
  129. ^ Cooper, WE; Frederick, WG (2010). "Letalidad de los depredadores, comportamiento óptimo de escape y autotomía". Ecología del comportamiento . 21 (1): 91–96. doi : 10.1093/beheco/arp151 .
  130. ^ Kodric-Brown, A.; Brown, JH (1984). "La verdad en la publicidad: los tipos de rasgos favorecidos por la selección sexual" (PDF) . The American Naturalist . 124 (3): 309–323. doi :10.1086/284275. S2CID  28245687. Archivado desde el original (PDF) el 29 de junio de 2011.
  131. ^ ab Adrian G Palacios, Francisco Bozinovic ; Bozinovic (2003). "Un enfoque "enactivo" de la biología integrativa y comparativa: reflexiones sobre la mesa". Biology Research . 36 (1): 95–99. doi : 10.4067/S0716-97602003000100008 . PMID  12795209.
  132. ^ Reuven Dukas (1998). "§1.3 ¿Por qué estudiar ecología cognitiva?". En Reuven Dukas (ed.). Ecología cognitiva: la ecología evolutiva del procesamiento de la información y la toma de decisiones . University of Chicago Press. pág. 4. ISBN 978-0-226-16932-3Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  133. ^ Reuven Dukas; John M. Ratcliffe (2009). "Introducción". En Reuven Dukas; John M. Ratcliffe (eds.). Ecología cognitiva II . University of Chicago Press. pp. 1 y siguientes . ISBN 978-0-226-16937-8. Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 . La ecología cognitiva se centra en la ecología y la evolución de la "cognición", definida como los procesos neuronales relacionados con la adquisición, retención y uso de la información... deberíamos basarnos en el conocimiento ecológico y evolutivo para estudiar la cognición.
  134. ^ Francisco J Varela; Evan Thompson; Eleanor Rosch (1993). La mente encarnada: ciencia cognitiva y experiencia humana. Prensa del MIT. pag. 174.ISBN 978-0-262-26123-4Archivado desde el original el 1 de agosto de 2020 . Consultado el 27 de junio de 2015 .
  135. ^ Sherman, PW; Lacey, EA; Reeve, HK; Keller, L. (1995). "El continuo de la eusocialidad" (PDF) . Ecología del comportamiento . 6 (1): 102–108. doi : 10.1093/beheco/6.1.102 . PMID  21237927. Archivado desde el original (PDF) el 19 de julio de 2011.
  136. ^ Wilson, DS; Wilson, EO (2007). "Replanteando la base teórica de la sociobiología". The Quarterly Review of Biology . 82 (4): 327–348. doi :10.1086/522809. PMID  18217526. S2CID  37774648.
  137. ^ Page, RDM (1991). "Relojes, clados y coespeciación: Comparación de las tasas de evolución y el momento de los eventos de coespeciación en los ensambles huésped-parásito". Zoología sistemática . 40 (2): 188–198. doi :10.2307/2992256. JSTOR  2992256.
  138. ^ Herre, EA; Knowlton, N.; Mueller, UG; Rehner, SA (1999). "La evolución de los mutualismos: explorando los caminos entre el conflicto y la cooperación" (PDF) . Tendencias en ecología y evolución . 14 (2): 49–53. doi :10.1016/S0169-5347(98)01529-8. PMID  10234251. Archivado desde el original (PDF) el 20 de septiembre de 2009.
  139. ^ Gilbert, FS (1990). Ciclos de vida de los insectos: genética, evolución y coordinación. Nueva York: Springer-Verlag. p. 258. ISBN. 0-387-19550-5Archivado desde el original el 1 de agosto de 2020 . Consultado el 6 de enero de 2020 .
  140. ^ Kiers, ET; van der Heijden, MGA (2006). "Estabilidad mutualista en la simbiosis micorrízica arbuscular: exploración de hipótesis de cooperación evolutiva" (PDF) . Ecología . 87 (7): 1627–1636. doi :10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2. ISSN  0012-9658. PMID  16922314. Archivado desde el original (PDF) el 16 de octubre de 2009 . Consultado el 31 de diciembre de 2009 .
  141. ^ Cepa, BR (1985). "Controles fisiológicos y ecológicos del secuestro de carbono en ecosistemas terrestres". Biogeoquímica . 1 (3): 219–232. Bibcode :1985Biogc...1..219S. doi :10.1007/BF02187200. S2CID  98479424.
  142. ^ Bronstein, JL (2018). "La explotación de mutualismos". Ecology Letters . 4 (3): 277–287. doi : 10.1046/j.1461-0248.2001.00218.x .
  143. ^ Irwin, Rebecca E.; Bronstein, Judith L.; Manson, Jessamyn S.; Richardson, Leif (2010). "Robo de néctar: ​​perspectivas ecológicas y evolutivas". Revista anual de ecología, evolución y sistemática . 41 (2): 271–292. doi :10.1146/annurev.ecolsys.110308.120330.
  144. ^ Boucher, DH; James, S.; Keeler, KH (1982). "La ecología del mutualismo". Revista Anual de Ecología y Sistemática . 13 : 315–347. doi :10.1146/annurev.es.13.110182.001531. S2CID  33027458.
  145. ^ King, KC; Delph, LF; Jokela, J.; Lively, CM (2009). "El mosaico geográfico del sexo y la Reina Roja". Current Biology . 19 (17): 1438–1441. Bibcode :2009CBio...19.1438K. doi : 10.1016/j.cub.2009.06.062 . PMID  19631541. S2CID  12027050.
  146. ^ ab Parenti, LR; Ebach, MC (2009). Biogeografía comparada: descubrimiento y clasificación de patrones biogeográficos de una Tierra dinámica. Londres: University of California Press. ISBN 978-0-520-25945-4Archivado desde el original el 11 de septiembre de 2015 . Consultado el 27 de junio de 2015 .
  147. ^ "Journal of Biogeography – Overview". Wiley. doi :10.1111/(ISSN)1365-2699. Archivado desde el original el 9 de febrero de 2013. Consultado el 16 de marzo de 2018 .
  148. ^ ab MacArthur, R.; Wilson, EO (1967). La teoría de la biogeografía insular . Princeton, NJ: Princeton University Press.
  149. ^ ab Wiens, JJ; Donoghue, MJ (2004). "Biogeografía histórica, ecología y riqueza de especies" (PDF) . Tendencias en ecología y evolución . 19 (12): 639–644. doi :10.1016/j.tree.2004.09.011. PMID  16701326. Archivado (PDF) desde el original el 1 de junio de 2010.
  150. ^ Morrone, JJ; Crisci, JV (1995). "Biogeografía histórica: Introducción a los métodos". Revista Anual de Ecología y Sistemática . 26 : 373–401. doi :10.1146/annurev.es.26.110195.002105. S2CID  55258511.
  151. ^ Svenning, Jens-Christian; Condi, R. (2008). "Biodiversidad en un mundo más cálido". Science . 322 (5899): 206–207. doi :10.1126/science.1164542. PMID  18845738. S2CID  27131917.
  152. ^ Landhäusser, Simon M.; Deshaies, D.; Lieffers, VJ (2009). "La perturbación facilita la rápida expansión del rango de distribución del álamo temblón hacia elevaciones más altas de las Montañas Rocosas en un clima más cálido". Journal of Biogeography . 37 (1): 68–76. doi :10.1111/j.1365-2699.2009.02182.x. S2CID  82859453.
  153. ^ Reznick, D.; Bryant, MJ; Bashey, F. (2002). "r- and K-selection revisited: The role of population regulation in life-history evolution" (PDF) . Ecología . 83 (6): 1509–1520. doi :10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2. ISSN  0012-9658. Archivado desde el original (PDF) el 30 de diciembre de 2010 . Consultado el 27 de enero de 2010 .
  154. ^ Pianka, ER (1972). "¿Selección r y K o selección b y d?". The American Naturalist . 106 (951): 581–588. doi :10.1086/282798. S2CID  83947445.
  155. ^ Rieseberg, L. (ed.). "Ecología molecular". Ecología molecular . Wiley. doi :10.1111/(ISSN)1365-294X.
  156. ^ ab Avise, J. (1994). Marcadores moleculares, historia natural y evolución. Kluwer Academic Publishers. ISBN 0-412-03771-8Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  157. ^ O'Brian, E.; Dawson, R. (2007). "Beneficios genéticos dependientes del contexto de la elección de pareja extrapareja en un paseriforme socialmente monógamo" (PDF) . Ecología y sociobiología del comportamiento . 61 (5): 775–782. doi :10.1007/s00265-006-0308-8. S2CID  2040456. Archivado (PDF) desde el original el 18 de julio de 2011.
  158. ^ Avise, J. (2000). Filogeografía: historia y formación de las especies. Presidente y miembros del Harvard College. ISBN 0-674-66638-0Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  159. ^ Rachel Carson (1962). «"Primavera silenciosa" (fragmento)». Houghton Mifflin. Archivado desde el original el 14 de octubre de 2012. Consultado el 4 de octubre de 2012 .
  160. ^ ab Young, GL (1974). "La ecología humana como concepto interdisciplinario: una investigación crítica". Advances in Ecological Research Volumen 8. Vol. 8. págs. 1–105. doi :10.1016/S0065-2504(08)60277-9. ISBN 978-0-12-013908-8.
  161. ^ Gross, M. (2004). "Geografía humana y sociología ecológica: el desarrollo de la ecología humana, 1890 a 1930 – y más allá". Historia de las Ciencias Sociales . 28 (4): 575–605. doi :10.1017/S0145553200012852. S2CID  233365777.
  162. ^ "Evaluación de los ecosistemas del milenio – Informe de síntesis". Naciones Unidas. 2005. Archivado desde el original el 4 de febrero de 2010. Consultado el 4 de febrero de 2010 .
  163. ^ de Groot, RS; Wilson, MA; Boumans, RMJ (2002). "Una tipología para la clasificación, descripción y valoración de las funciones, bienes y servicios de los ecosistemas" (PDF) . Ecological Economics . 41 (3): 393–408. Bibcode :2002EcoEc..41..393D. doi :10.1016/S0921-8009(02)00089-7. Archivado (PDF) desde el original el 9 de junio de 2011.
  164. ^ Aguirre, AA (2009). "Biodiversidad y salud humana". EcoHealth . 6 : 153–156. doi :10.1007/s10393-009-0242-0. S2CID  27553272.
  165. ^ ab Grumbine, RE (1994). "¿Qué es la gestión de ecosistemas?" (PDF) . Biología de la conservación . 8 (1): 27–38. Bibcode :1994ConBi...8...27G. doi :10.1046/j.1523-1739.1994.08010027.x. Archivado desde el original (PDF) el 2 de mayo de 2013.
  166. ^ Wilson, EO (1992). La diversidad de la vida . Harvard University Press. pág. 440. ISBN 978-0-674-05817-0.
  167. ^ "Ordenanza de humedales de Boston". Ciudad de Boston . 17 de julio de 2016. Archivado desde el original el 5 de diciembre de 2022. Consultado el 5 de diciembre de 2022 .
  168. ^ Slocombe, DS (1993). "Implementación de la gestión basada en ecosistemas". BioScience . 43 (9): 612–622. doi :10.2307/1312148. JSTOR  1312148.
  169. ^ Hobss, RJ; Harris, JA (2001). "Ecología de la restauración: Reparación de los ecosistemas de la Tierra en el nuevo milenio" (PDF) . Ecología de la restauración . 9 (2): 239–246. Bibcode :2001ResEc...9..239H. doi :10.1046/j.1526-100x.2001.009002239.x. S2CID  908668. Archivado (PDF) desde el original el 12 de mayo de 2013.
  170. ^ Mason, HL; Langenheim, JH (1957). "Análisis del lenguaje y el concepto de "entorno"". Ecología . 38 (2): 325–340. Código Bibliográfico :1957Ecol...38..325M. doi :10.2307/1931693. JSTOR  1931693.
  171. ^ Kleese, DA (2001). "Naturaleza y naturaleza en psicología". Revista de psicología teórica y filosófica . 21 : 61–79. doi :10.1037/h0091199.
  172. ^ Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biología: explorar la vida. Boston, Massachusetts: Pearson Prentice Hall. ISBN 0-13-250882-6Archivado desde el original el 2 de noviembre de 2014.
  173. ^ abcde Kormondy, EE (1995). Conceptos de ecología (4.ª ed.). Benjamin Cummings. ISBN 0-13-478116-3.
  174. ^ ab Hughes, AR "Perturbación y diversidad: un problema ecológico del tipo "la gallina y el huevo". Nature Education Knowledge . 1 (8): 26. Archivado desde el original el 5 de diciembre de 2010.
  175. ^ Levin, SA (1992). "El problema de los patrones y la escala en ecología: el premio Robert H. MacArthur". Ecología . 73 (6): 1943–1967. doi : 10.2307/1941447 . JSTOR  1941447.
  176. ^ ab Holling, CS (1973). «Resiliencia y estabilidad de los sistemas ecológicos» (PDF) . Annual Review of Ecology and Systematics . 4 (1): 1–23. doi :10.1146/annurev.es.04.110173.000245. JSTOR  2096802. S2CID  53309505. Archivado (PDF) desde el original el 17 de marzo de 2020. Consultado el 10 de agosto de 2019 .
  177. ^ ab Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, CS (2004). "Cambios de régimen, resiliencia y biodiversidad en la gestión de ecosistemas" (PDF) . Revisión anual de ecología y sistemática . 35 : 557–581. CiteSeerX 10.1.1.489.8717 . doi :10.1146/annurev.ecolsys.35.021103.105711. JSTOR  2096802. Archivado desde el original (PDF) el 18 de octubre de 2012. 
  178. ^ Roth, Lachan; Eviatar, Gal; Schmidt, Lisa-Maria; Bonomo, Mai; Feldstein-Farkash, Tamar; Schubert, Patrick; Ziegler, Maren; Al-Sawalmih, Ali; Abdallah, Ibrahim Souleiman; Quod, Jean-Pascal; Bronstein, Omri (mayo de 2024). "Mortalidad masiva de erizos de mar diadematoides en el mar Rojo y el océano Índico occidental". Current Biology . 34 (12): 2693–2701.e4. doi :10.1016/j.cub.2024.04.057.
  179. ^ Zimmer, Katarina (30 de mayo de 2024). "Las especies invasoras están transformando los Everglades". Revista Knowable . doi : 10.1146/knowable-053024-2 .
  180. ^ Morgan Ernest, SK; Enquist, Brian J.; Brown, James H.; Charnov, Eric L.; Gillooly, James F.; Savage, Van M.; White, Ethan P.; Smith, Felisa A.; Hadly, Elizabeth A.; Haskell, John P.; Lyons, S. Kathleen; Maurer, Brian A.; Niklas, Karl J.; Tiffney, Bruce (2003). "Efectos termodinámicos y metabólicos en el escalamiento de la producción y el uso de energía por parte de la población" (PDF) . Ecology Letters . 6 (11): 990–995. Bibcode :2003EcolL...6..990E. doi :10.1046/j.1461-0248.2003.00526.x. Archivado desde el original (PDF) el 8 de junio de 2011 . Recuperado el 6 de septiembre de 2009 .
  181. ^ Allègre, Claude J.; Manhès, Gerard; Göpel, Christa (1995). "La edad de la Tierra". Geochimica et Cosmochimica Acta . 59 (8): 1455-1456. Código Bib : 1995GeCoA..59.1445A. doi :10.1016/0016-7037(95)00054-4.
  182. ^ Wills, C.; Bada, J. (2001). La chispa de la vida: Darwin y la sopa primigenia . Cambridge, MA: Perseus Publishing. ISBN 978-0-7382-0493-2.
  183. ^ ab Goldblatt, Colin; Lenton, Timothy M.; Watson, Andrew J. (2006). "Bistabilidad del oxígeno atmosférico y la Gran Oxidación" (PDF) . Nature . 443 (7112): 683–686. Bibcode :2006Natur.443..683G. doi :10.1038/nature05169. PMID  17036001. S2CID  4425486. Archivado desde el original (PDF) el 20 de agosto de 2011.
  184. ^ Catling, DC; Claire, MW (2005). "Cómo la atmósfera de la Tierra evolucionó hasta un estado óxico: un informe de situación" (PDF) . Earth and Planetary Science Letters . 237 (1–2): 1–20. Bibcode :2005E&PSL.237....1C. doi :10.1016/j.epsl.2005.06.013. Archivado desde el original (PDF) el 10 de octubre de 2008 . Consultado el 6 de septiembre de 2009 .
  185. ^ abcd Cronk, JK; Fennessy, MS (2001). Plantas de humedales: biología y ecología. Washington, DC: Lewis Publishers. ISBN 1-56670-372-7Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  186. ^ Evans, DH; Piermarini, PM; Potts, WTW (1999). "Transporte iónico en el epitelio branquial de los peces" (PDF) . Journal of Experimental Zoology . 283 (7): 641–652. Bibcode :1999JEZ...283..641E. doi :10.1002/(SICI)1097-010X(19990601)283:7<641::AID-JEZ3>3.0.CO;2-W. Archivado desde el original (PDF) el 26 de junio de 2010 . Consultado el 9 de diciembre de 2009 .
  187. ^ Swenson, NG; Enquist, BJ (2008). "La relación entre la gravedad específica de la madera del tallo y de las ramas y la capacidad de cada medida para predecir el área foliar". American Journal of Botany . 95 (4): 516–519. doi :10.3732/ajb.95.4.516. PMID  21632377. S2CID  429191.
  188. ^ Gartner, Gabriel EA; Hicks, James W.; Manzani, Paulo R.; et al. (2010). "Filogenia, ecología y posición del corazón en serpientes" (PDF) . Zoología fisiológica y bioquímica . 83 (1): 43–54. doi :10.1086/648509. hdl : 11449/21150 . PMID  19968564. S2CID  16332609. Archivado desde el original (PDF) el 16 de julio de 2011.
  189. ^ Neri Salvadori; Pasquale Commendatore; Massimo Tamberi (14 de mayo de 2014). Geografía, cambio estructural y desarrollo económico: teoría y datos empíricos . Edward Elgar Publishing.
  190. ^ Jacobsen, D. (2008). "La baja presión de oxígeno como factor impulsor de la disminución altitudinal de la riqueza taxonómica de los macroinvertebrados fluviales". Oecologia . 154 (4): 795–807. Bibcode :2008Oecol.154..795J. doi :10.1007/s00442-007-0877-x. PMID  17960424. S2CID  484645.
  191. ^ Wheeler, TD; Stroock, AD (2008). "La transpiración de agua a presiones negativas en un árbol sintético". Nature . 455 (7210): 208–212. Bibcode :2008Natur.455..208W. doi :10.1038/nature07226. PMID  18784721. S2CID  4404849.
  192. ^ Pockman, WT; Sperry, JS; O'Leary, JW (1995). "Presión negativa de agua sostenida y significativa en el xilema". Nature . 378 (6558): 715–716. Bibcode :1995Natur.378..715P. doi :10.1038/378715a0. S2CID  31357329.
  193. ^ Zimmermann, U.; Schneider, H.; Wegner, L. H.; Wagner, M.; Szimtenings, A.; Haase, F.; Bentrup, F. W. (2002). "¿Cuáles son las fuerzas impulsoras de la elevación del agua en el conducto del xilema?". Physiologia Plantarum . 114 (3): 327–335. doi :10.1034/j.1399-3054.2002.1140301.x. PMID  12060254.
  194. ^ Kastak, D.; Schusterman, RJ (1998). "Audición anfibia de baja frecuencia en pinnípedos: métodos, mediciones, ruido y ecología". Revista de la Sociedad Acústica de América . 103 (4): 2216–2228. Bibcode :1998ASAJ..103.2216K. doi :10.1121/1.421367. PMID  9566340. S2CID  19008897.
  195. ^ Nishiguchi, Y.; Ito, I.; Okada, M. (2010). "Estructura y función de la lactato deshidrogenasa de mixinos". Marine Drugs . 8 (3): 594–607. doi : 10.3390/md8030594 . PMC 2857353 . PMID  20411117. 
  196. ^ Friedman, J.; Harder, LD (2004). "Arquitectura de la inflorescencia y polinización eólica en seis especies de gramíneas" (PDF) . Ecología funcional . 18 (6): 851–860. Código bibliográfico :2004FuEco..18..851F. doi :10.1111/j.0269-8463.2004.00921.x. S2CID  20160390. Archivado desde el original (PDF) el 6 de julio de 2011.
  197. ^ Harder, LD; Johnson, SD (2009). "Las hermosas invenciones de Darwin: evidencia evolutiva y funcional de la adaptación floral". New Phytologist . 183 (3): 530–545. doi : 10.1111/j.1469-8137.2009.02914.x . PMID  19552694.
  198. ^ Shimeta, J.; Jumars, PA; Lessard, EJ (1995). "Influencias de la turbulencia en la alimentación por suspensión de los protozoos planctónicos; experimentos en campos de cizallamiento laminar". Limnología y Oceanografía . 40 (5): 845–859. Bibcode :1995LimOc..40..845S. doi : 10.4319/lo.1995.40.5.0845 .
  199. ^ Etemad-Shahidi, A.; Imberger, J. (2001). "Anatomía de la turbulencia en lagos estratificados térmicamente". Limnología y Oceanografía . 46 (5): 1158–1170. Bibcode :2001LimOc..46.1158E. doi : 10.4319/lo.2001.46.5.1158 .
  200. ^ Wolf, BO; Walsberg, GE (2006). "Efectos térmicos de la radiación y el viento en un ave pequeña e implicaciones para la selección de micrositios". Ecología . 77 (7): 2228–2236. doi :10.2307/2265716. JSTOR  2265716.
  201. ^ Daubenmire, R. (1975). "Geografía florística de las plantas del este de Washington y el norte de Idaho". Journal of Biogeography . 2 (1): 1–18. Bibcode :1975JBiog...2....1D. doi :10.2307/3038197. JSTOR  3038197.
  202. ^ Steele, CA; Carstens, BC; Storfer, A.; Sullivan, J. (2005). "Prueba de hipótesis sobre el momento de la especiación en Dicamptodon copei y Dicamptodon aterrimus (Caudata: Dicamptodontidae)" (PDF) . Filogenética molecular y evolución . 36 (1): 90–100. Bibcode :2005MolPE..36...90S. doi :10.1016/j.ympev.2004.12.001. PMID  15904859. Archivado desde el original (PDF) el 14 de agosto de 2010.
  203. ^ Lenton, TM; Watson, A. (2000). "Redfield revisitado. 2. Qué regula el contenido de oxígeno de la atmósfera". Ciclos biogeoquímicos globales . 14 (1): 249–268. Bibcode :2000GBioC..14..249L. doi : 10.1029/1999GB900076 .
  204. ^ Lobert, JM; Warnatz, J. (1993). "Emisiones del proceso de combustión en la vegetación" (PDF) . En Crutzen, PJ; Goldammer, JG (eds.). El fuego en el medio ambiente: la importancia ecológica, atmosférica y climática de los incendios de vegetación . Wiley. ISBN 978-0-471-93604-6. Archivado desde el original (PDF) el 6 de enero de 2009 . Consultado el 11 de diciembre de 2009 .
  205. ^ Garren, KH (1943). "Efectos del fuego en la vegetación del sureste de los Estados Unidos". Botanical Review . 9 (9): 617–654. Código Bibliográfico :1943BotRv...9..617G. doi :10.1007/BF02872506. S2CID  31619796.
  206. ^ Cooper, CF (1960). "Cambios en la vegetación, la estructura y el crecimiento de los bosques de pinos del suroeste desde la colonización blanca". Monografías ecológicas . 30 (2): 130–164. Bibcode :1960EcoM...30..129C. doi :10.2307/1948549. JSTOR  1948549.
  207. ^ Cooper, CF (1961). "La ecología del fuego". Scientific American . 204 (4): 150–160. Código Bibliográfico :1961SciAm.204d.150C. doi :10.1038/scientificamerican0461-150.
  208. ^ van Wagtendonk, Jan W. (2007). "Historia y evolución del uso de los incendios forestales". Ecología del fuego . 3 (2): 3–17. Bibcode :2007FiEco...3b...3V. doi : 10.4996/fireecology.0302003 . S2CID  85841606.
  209. ^ Boerner, REJ (1982). "Ciclado de nutrientes y fuego en ecosistemas templados". BioScience . 32 (3): 187–192. doi :10.2307/1308941. JSTOR  1308941.
  210. ^ Goubitz, S.; Werger, MJA; Ne'eman, G. (2009). "Respuesta de la germinación a factores relacionados con el fuego de semillas de conos serotinosos y no serotinosos". Plant Ecology . 169 (2): 195–204. doi :10.1023/A:1026036332277. S2CID  32500454.
  211. ^ Ne'eman, G.; Goubitz, S.; Nathan, R. (2004). "Características reproductivas de Pinus halepensis a la luz del fuego: una revisión crítica". Ecología vegetal . 171 (1/2): 69–79. Bibcode :2004PlEco.171...69N. doi :10.1023/B:VEGE.0000029380.04821.99. S2CID  24962708.
  212. ^ Flematti, Gavin R.; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Trengove, RD (2004). "Un compuesto del humo que promueve la germinación de las semillas". Science . 305 (5686): 977. doi : 10.1126/science.1099944 . PMID  15247439. S2CID  42979006.
  213. ^ Coleman, DC; Corssley, DA; Hendrix, PF (2004). Fundamentos de la ecología del suelo (2.ª ed.). Academic Press. ISBN 0-12-179726-0Archivado desde el original el 18 de marzo de 2015 . Consultado el 27 de junio de 2015 .
  214. ^ ab Wilkinson, MT; Richards, PJ; Humphreys, GS (2009). "Abriendo camino: implicaciones pedológicas, geológicas y ecológicas de la bioturbación del suelo" (PDF) . Earth-Science Reviews . 97 (1–4): 257–272. Bibcode :2009ESRv...97..257W. doi :10.1016/j.earscirev.2009.09.005. Archivado desde el original el 13 de abril de 2020 . Consultado el 3 de agosto de 2012 .
  215. ^ Phillips, JD (2009). "Suelos como fenotipos compuestos extendidos". Geoderma . 149 (1–2): 143–151. Código Bibliográfico :2009Geode.149..143P. doi :10.1016/j.geoderma.2008.11.028.
  216. ^ Reinhardt, L.; Jerolmack, D.; Cardinale, BJ; Vanacker, V.; Wright, J. (2010). «Dynamic interactions of life and its landscape: Feedbacks at the interface of geomorphology and ecological» (PDF) . Earth Surface Processes and Landforms . 35 (1): 78–101. Bibcode :2010ESPL...35...78R. doi :10.1002/esp.1912. S2CID  14924423. Archivado desde el original (PDF) el 17 de marzo de 2015 . Consultado el 2 de enero de 2015 .
  217. ^ Davic, RD; Welsh, HH (2004). "Sobre el papel ecológico de las salamandras" (PDF) . Revista anual de ecología y sistemática . 35 : 405–434. doi :10.1146/annurev.ecolsys.35.112202.130116. Archivado (PDF) desde el original el 24 de agosto de 2009.
  218. ^ Hasiotis, ST (2003). "Icnofósiles complejos de organismos solitarios y sociales del suelo: comprensión de su evolución y funciones en los paleoecosistemas terrestres". Paleogeografía, Paleoclimatología, Paleoecología . 192 (2): 259–320. Bibcode :2003PPP...192..259H. doi :10.1016/S0031-0182(02)00689-2.
  219. ^ Falkowski, PG; Fenchel, T.; Delong, EF (2008). "Los motores microbianos que impulsan los ciclos biogeoquímicos de la Tierra" (PDF) . Science . 320 (5879): 1034–1039. Bibcode :2008Sci...320.1034F. doi :10.1126/science.1153213. PMID  18497287. S2CID  2844984. Archivado desde el original (PDF) el 13 de abril de 2020 . Consultado el 24 de octubre de 2017 .
  220. ^ Grace, J. (2004). "Entender y gestionar el ciclo global del carbono". Journal of Ecology . 92 (2): 189–202. Bibcode :2004JEcol..92..189G. doi : 10.1111/j.0022-0477.2004.00874.x .
  221. ^ Pearson, PN; Palmer, MR (2000). «Concentraciones atmosféricas de dióxido de carbono durante los últimos 60 millones de años» (PDF) . Nature . 406 (6797): 695–699. Bibcode :2000Natur.406..695P. doi :10.1038/35021000. PMID  10963587. S2CID  205008176. Archivado desde el original (PDF) el 21 de agosto de 2011.
  222. ^ Pagani, M.; Zachos, JC; Freeman, KH; Tipple, B.; Bohaty, S. (2005). "Marcada disminución de las concentraciones atmosféricas de dióxido de carbono durante el Paleógeno". Science . 309 (5734): 600–603. Bibcode :2005Sci...309..600P. doi : 10.1126/science.1110063 . PMID  15961630. S2CID  20277445.
  223. ^ Zhuan, Q.; Melillo, JM; McGuire, AD; Kicklighter, DW; Prinn, RG; Steudler, PA; Felzer, BS; Hu, S. (2007). "Emisión neta de CH4 y CO2 en Alaska: implicaciones para el presupuesto de gases de efecto invernadero de la región" (PDF) . Aplicaciones ecológicas . 17 (1): 203–212. doi :10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2. hdl : 1912/4714 . ISSN  1051-0761. PMID  17479846. Archivado desde el original (PDF) el 30 de junio de 2007.
  224. ^ Cox, Peter M.; Betts, Richard A.; Jones, Chris D.; Spall, Steven A.; Totterdell, Ian J. (2000). "Aceleración del calentamiento global debido a las retroalimentaciones del ciclo del carbono en un modelo climático acoplado" (PDF) . Nature . 408 (6809): 184–187. Bibcode :2000Natur.408..184C. doi :10.1038/35041539. PMID  11089968. S2CID  2689847. Archivado desde el original (PDF) el 17 de septiembre de 2012.
  225. ^ Erwin, DH (2009). "El clima como motor del cambio evolutivo". Current Biology . 19 (14): R575–R583. Bibcode :2009CBio...19.R575E. doi : 10.1016/j.cub.2009.05.047 . PMID  19640496. S2CID  6913670.
  226. ^ Bamber, J. (2012). "Glaciares en retroceso bajo escrutinio" (PDF) . Nature . 482 (7386): 482–483. Bibcode :2012Natur.482..482B. doi :10.1038/nature10948. PMID  22318516. S2CID  7311971 . Consultado el 12 de junio de 2017 .
  227. ^ Heimann, Martin; Reichstein, Markus (2008). "Dinámica del carbono en los ecosistemas terrestres y retroalimentación climática" (PDF) . Nature . 451 (7176): 289–292. Bibcode :2008Natur.451..289H. doi : 10.1038/nature06591 . PMID  18202646. S2CID  243073. Archivado (PDF) desde el original el 8 de junio de 2011.
  228. ^ Davidson, Eric A.; Janssens, Ivan A. (2006). "Sensibilidad a la temperatura de la descomposición del carbono del suelo y retroalimentación al cambio climático". Nature . 440 (7081): 165–173. Bibcode :2006Natur.440..165D. doi : 10.1038/nature04514 . PMID  16525463.
  229. ^ abc Stauffer, RC (1957). "Haeckel, Darwin y la ecología". Revista trimestral de biología . 32 (2): 138–144. doi :10.1086/401754. S2CID  84079279.
  230. ^ ab Egerton, FN (2001). "Una historia de las ciencias ecológicas: orígenes griegos tempranos" (PDF) . Boletín de la Sociedad Ecológica de América . 82 (1): 93–97. Archivado desde el original (PDF) el 17 de agosto de 2012. Consultado el 29 de septiembre de 2010 .
  231. ^ ab Benson, Keith R. (2000). "El surgimiento de la ecología a partir de la historia natural". Endeavour . 24 (2): 59–62. doi :10.1016/S0160-9327(99)01260-0. PMID  10969480.
  232. ^ Sober, E. (1980). "Evolución, pensamiento poblacional y esencialismo". Filosofía de la ciencia . 47 (3): 350–383. doi :10.1086/288942. JSTOR  186950. S2CID  170129617.
  233. ^ Hughes, JD (1985). "Teofrasto como ecologista". Environmental Review . 9 (4): 296–306. doi :10.2307/3984460. JSTOR  3984460. S2CID  155638387.
  234. ^ Hughes, JD (1975). "Ecología en la antigua Grecia". Investigación . 18 (2): 115–125. doi :10.1080/00201747508601756.
  235. ^ Forbes, S. (1887). "El lago como un microcosmos" (PDF) . Boletín de la Asociación Científica . Peoria, IL: 77–87. Archivado desde el original (PDF) el 27 de septiembre de 2011. Consultado el 22 de diciembre de 2009 .
  236. ^ ab Kingsland, S. (2004). "Transmitiendo el desafío intelectual de la ecología: una perspectiva histórica" ​​(PDF) . Frontiers in Ecology and the Environment . 2 (7): 367–374. doi :10.1890/1540-9295(2004)002[0367:CTICOE]2.0.CO;2. ISSN  1540-9295. Archivado desde el original (PDF) el 10 de agosto de 2011.
  237. ^ Rosenzweig, ML (2003). "Ecología de la reconciliación y el futuro de la diversidad de especies". Oryx . 37 (2): 194–205. doi : 10.1017/s0030605303000371 . S2CID  37891678.
  238. ^ Hawkins, BA (2001). "El patrón más antiguo de la ecología". Endeavor . 25 (3): 133–134. doi :10.1016/S0160-9327(00)01369-7. PMID  11725309.
  239. ^ abcdef McIntosh, RP (1985). Antecedentes de la ecología: concepto y teoría . Cambridge University Press. pág. 400. ISBN 0-521-27087-1.
  240. Haeckel, Ernst (1866). Generelle Morphologie der Organismen [ La morfología general de los organismos ] (en alemán). Vol. 2. Berlín (Alemania): Georg Reimer. p. 286. Archivado desde el original el 18 de junio de 2019. Consultado el 27 de febrero de 2019 .De la pág. 286: "Unter Oecologie verstehen wir die gesammte Wissenschaft von den Beziehungen des Organismus zur umgebenden Aussenwelt, wohin wir im weiteren Sinne alle "Existenz-Bedingungen" rechnen können". (Por "ecología" entendemos la ciencia integral de las relaciones del organismo con el entorno que lo rodea, donde podemos incluir, en el sentido más amplio, todas las "condiciones de existencia".)
  241. ^ Friederichs, K. (1958). "Una definición de ecología y algunas reflexiones sobre conceptos básicos". Ecología . 39 (1): 154–159. Bibcode :1958Ecol...39..154F. doi :10.2307/1929981. JSTOR  1929981.
  242. ^ Hinchman, LP; Hinchman, SK (2007). "Lo que le debemos a los románticos". Valores ambientales . 16 (3): 333–354. doi :10.3197/096327107X228382. S2CID  143709995.
  243. ^ Goodland, RJ (1975). "El origen tropical de la ecología: el jubileo de Eugen Warming". Oikos . 26 (2): 240–245. Código bibliográfico : 1975Oikos..26..240G. doi :10.2307/3543715. JSTOR  3543715.
  244. ^ ab Egerton, FN (2007). "Una historia de las ciencias ecológicas, parte 23: Linneo y la economía de la naturaleza". Boletín de la Sociedad Ecológica de América . 88 (1): 72–88. doi : 10.1890/0012-9623(2007)88[72:AHOTES]2.0.CO;2 . ISSN  0012-9623.
  245. ^ ab Kormandy, EJ; Wooster, Donald (1978). "Revisión: Ecología/economía de la naturaleza: ¿sinónimos?". Ecología . 59 (6): 1292–1294. doi :10.2307/1938247. JSTOR  1938247.
  246. ^ ab Hector, A.; Hooper, R. (2002). "Darwin y el primer experimento ecológico". Science . 295 (5555): 639–640. doi :10.1126/science.1064815. PMID  11809960. S2CID  82975886.
  247. ^ Sinclair, G. (1826). "Sobre el cultivo de una colección de gramíneas en terrenos de recreo o jardines de flores, y sobre la utilidad de estudiar las gramíneas". London Gardener's Magazine . Vol. 1. New-Street-Square: A. & R. Spottiswoode. pág. 115. Archivado desde el original el 7 de abril de 2022. Consultado el 19 de noviembre de 2020 .
  248. ^ May, R. (1999). "Preguntas sin respuesta en ecología". Philosophical Transactions of the Royal Society B. 354 ( 1392): 1951–1959. doi :10.1098/rstb.1999.0534. PMC 1692702. PMID  10670015 . 
  249. ^ Darwin, Charles (1859). El origen de las especies. Londres: John Murray. pág. 1. ISBN 0-8014-1319-2Archivado desde el original el 13 de julio de 2007.
  250. ^ Meysman, FJR; Middelburg, Jack J.; Heip, CHR (2006). "Bioturbación: una nueva mirada a la última idea de Darwin". Tendencias en ecología y evolución . 21 (22): 688–695. Bibcode :2006TEcoE..21..688M. doi :10.1016/j.tree.2006.08.002. PMID  16901581.
  251. ^ Acot, P. (1997). "La cuna lamarckiana de la ecología científica". Acta Biotheoretica . 45 (3–4): 185–193. doi :10.1023/A:1000631103244. S2CID  83288244.
  252. ^ ab Hunt, Caroline Louisa (1912). La vida de Ellen H. Richards. Boston: Whitcomb & Barrows.
  253. ^ Jones, Madison (8 de agosto de 2021). "Una contrahistoria de las ecologías retóricas". Rhetoric Society Quarterly . 51 (4): 336–352. doi :10.1080/02773945.2021.1947517. ISSN  0277-3945. S2CID  238358762.
  254. ^ Clements, FE (1905). Métodos de investigación en ecología. Lincoln, Nebraska: University Pub. Comp. ISBN 0-405-10381-6Archivado desde el original el 1 de agosto de 2020 . Consultado el 6 de enero de 2020 .
  255. ^ Simberloff, D. (1980). "Una sucesión de paradigmas en ecología: del esencialismo al materialismo y al probalismo". Síntesis . 43 : 3–39. doi :10.1007/BF00413854. S2CID  46962930.
  256. ^ Gleason, HA (1926). "El concepto individualista de la asociación de plantas" (PDF) . Boletín del Club Botánico Torrey . 53 (1): 7–26. doi :10.2307/2479933. JSTOR  2479933. Archivado desde el original (PDF) el 22 de julio de 2011.
  257. ^ Foster, JB; Clark, B. (2008). "La sociología de la ecología: organicismo ecológico versus ecología de ecosistemas en la construcción social de la ciencia ecológica, 1926-1935" (PDF) . Organización y medio ambiente . 21 (3): 311–352. doi :10.1177/1086026608321632. S2CID  145482219. Archivado desde el original (PDF) el 9 de mayo de 2013.
  258. ^ Allee, WC (1932). Vida animal y crecimiento social . Baltimore: The Williams & Wilkins Company and Associates.
  259. ^ Cook, RE (1977). "Raymond Lindeman y el concepto trófico-dinámico en ecología" (PDF) . Science . 198 (4312): 22–26. Bibcode :1977Sci...198...22C. doi :10.1126/science.198.4312.22. PMID  17741875. S2CID  30340899. Archivado (PDF) desde el original el 5 de octubre de 2012.
  260. ^ Odum, EP (1968). "Flujo de energía en los ecosistemas: una revisión histórica". Zoólogo estadounidense . 8 (1): 11–18. doi : 10.1093/icb/8.1.11 . JSTOR  3881528.
  261. ^ ab Ghilarov, AM (1995). "El concepto de biosfera de Vernadsky: una perspectiva histórica". The Quarterly Review of Biology . 70 (2): 193–203. doi :10.1086/418982. JSTOR  3036242. S2CID  85258634.
  262. ^ Itô, Y. (1991). "Desarrollo de la ecología en Japón, con especial referencia al papel de Kinji Imanishi". Revista de investigación ecológica . 6 (2): 139–155. Bibcode :1991EcoR....6..139I. doi :10.1007/BF02347158. S2CID  45293729.
  263. ^ Carson, R. (2002). Primavera silenciosa . Houghton Mifflin Company. pág. 348. ISBN 0-618-24906-0.
  264. ^ abc Palamar, CR (2008). «La justicia de la restauración ecológica: historia ambiental, salud, ecología y justicia en los Estados Unidos» (PDF) . Human Ecology Review . 15 (1): 82–94. Archivado desde el original (PDF) el 26 de julio de 2011. Consultado el 8 de agosto de 2012 .
  265. ^ Krebs, JR; Wilson, JD; Bradbury, RB; Siriwardena, GM (1999). "La segunda primavera silenciosa" (PDF) . Nature . 400 (6745): 611–612. Bibcode :1999Natur.400..611K. doi :10.1038/23127. S2CID  9929695. Archivado desde el original (PDF) el 31 de marzo de 2013.

Enlaces externos