stringtranslate.com

Synovial joint

A synovial joint, also known as diarthrosis, join bones or cartilage with a fibrous joint capsule that is continuous with the periosteum of the joined bones, constitutes the outer boundary of a synovial cavity, and surrounds the bones' articulating surfaces. This joint unites long bones and permits free bone movement and greater mobility.[1] The synovial cavity/joint is filled with synovial fluid. The joint capsule is made up of an outer layer of fibrous membrane, which keeps the bones together structurally, and an inner layer, the synovial membrane, which seals in the synovial fluid.

They are the most common and most movable type of joint in the body of a mammal. As with most other joints, synovial joints achieve movement at the point of contact of the articulating bones.

Structure

Synovial joints contain the following structures:

Many, but not all, synovial joints also contain additional structures:[2]

The bone surrounding the joint on the proximal side is sometimes called the plafond (French word for ceiling), especially in the talocrural joint. Damage to this structure is referred to as a Gosselin fracture.

Blood supply

The blood supply of a synovial joint is derived from the arteries sharing in the anastomosis around the joint.

Types

There are seven types of synovial joints.[4] Some are relatively immobile, therefore more stable. Others have multiple degrees of freedom, but at the expense of greater risk of injury.[4] In ascending order of mobility, they are:

Multiaxial joints

A multiaxial joint, such as the hip joint, allows for three types of movement: anterior-posterior, medial-lateral, and rotational.

A multiaxial joint (polyaxial joint or triaxial joint) is a synovial joint that allows for several directions of movement.[9] In the human body, the shoulder and hip joints are multiaxial joints.[10] They allow the upper or lower limb to move in an anterior-posterior direction and a medial-lateral direction. In addition, the limb can also be rotated around its long axis. This third movement results in rotation of the limb so that its anterior surface is moved either toward or away from the midline of the body.[11]

Function

The movements possible with synovial joints are:

Clinical significance

The joint space equals the distance between the involved bones of the joint. A joint space narrowing is a sign of either (or both) osteoarthritis and inflammatory degeneration.[12] The normal joint space is at least 2 mm in the hip (at the superior acetabulum),[13] at least 3 mm in the knee,[14] and 4–5 mm in the shoulder joint.[15] For the temporomandibular joint, a joint space of between 1.5 and 4 mm is regarded as normal.[16] Joint space narrowing is therefore a component of several radiographic classifications of osteoarthritis.

In rheumatoid arthritis, the clinical manifestations are primarily synovial inflammation and joint damage. The fibroblast-like synoviocytes, highly specialized mesenchymal cells found in the synovial membrane, have an active and prominent role in the pathogenic processes in the rheumatic joints.[17] Therapies that target these cells are emerging as promising therapeutic tools, raising hope for future applications in rheumatoid arthritis.[17]

References

  1. ^ The Musculoskeletal System. In: Dutton M. eds. Dutton's Orthopaedic Examination, Evaluation, and Intervention, 5e. McGraw-Hill; Accessed January 25, 2021. https://accessphysiotherapy-mhmedical-com.libaccess.lib.mcmaster.ca/content.aspx?bookid=2707&sectionid=224662311
  2. ^ a b c Drake, Richard L.; Vogl, Wayne; Mitchell, Adam W. M.; Gray, Henry (2015). "Skeletal system". Gray's Anatomy for Students (3rd ed.). p. 20. ISBN 978-0-7020-5131-9. OCLC 881508489.
  3. ^ Tortora & Derrickson () Principles of Anatomy & Physiology (12th ed.). Wiley & Sons
  4. ^ a b Umich (2010). "Introduction to Joints". Learning Modules - Medical Gross Anatomy. University of Michigan Medical School. Archived from the original on 2011-11-22.
  5. ^ Rogers, Kara (2010) Bone and Muscle: Structure, Force, and Motion p.157
  6. ^ Sharkey, John (2008) The Concise Book of Neuromuscular Therapy p.33
  7. ^ Moini (2011) Introduction to Pathology for the Physical Therapist Assistant pp.231-2
  8. ^ Bruce Abernethy (2005) The Biophysical Foundations Of Human Movement pp.23, 331
  9. ^ Miles, Linda. "LibGuides: BIO 140 - Human Biology I - Textbook: Chapter 41 - Classification of Joints". guides.hostos.cuny.edu. Hostos Community College Library. Retrieved 21 May 2023.
  10. ^ Lawry, George V. (1 January 2006). "Chapter 1 - Anatomy of Joints, General Considerations, and Principles of Joint Examination". Musculoskeletal Examination and Joint Injection Techniques. Mosby. pp. 1–6. Retrieved 21 May 2023.
  11. ^ Betts, J. Gordon (2013). "9.1 Classification of joints". Anatomy & physiology. Houston, Texas: OpenStax. ISBN 978-1-947172-04-3. Retrieved 14 May 2023.
  12. ^ Jacobson, Jon A.; Girish, Gandikota; Jiang, Yebin; Sabb, Brian J. (2008). "Radiographic Evaluation of Arthritis: Degenerative Joint Disease and Variations". Radiology. 248 (3): 737–747. doi:10.1148/radiol.2483062112. ISSN 0033-8419. PMID 18710973.
  13. ^ Lequesne, M (2004). "The normal hip joint space: variations in width, shape, and architecture on 223 pelvic radiographs". Annals of the Rheumatic Diseases. 63 (9): 1145–1151. doi:10.1136/ard.2003.018424. ISSN 0003-4967. PMC 1755132. PMID 15308525.
  14. ^ Roland W. Moskowitz (2007). Osteoarthritis: Diagnosis and Medical/surgical Management, LWW Doody's all reviewed collection. Lippincott Williams & Wilkins. p. 6. ISBN 9780781767071.
  15. ^ "Glenohumeral joint space". radref.org., in turn citing: Petersson, Claes J.; Redlund-Johnell, Inga (2009). "Joint Space in Normal Gleno-Humeral Radiographs". Acta Orthopaedica Scandinavica. 54 (2): 274–276. doi:10.3109/17453678308996569. ISSN 0001-6470. PMID 6846006.
  16. ^ Massilla Mani, F.; Sivasubramanian, S. Satha (2016). "A study of temporomandibular joint osteoarthritis using computed tomographic imaging". Biomedical Journal. 39 (3): 201–206. doi:10.1016/j.bj.2016.06.003. ISSN 2319-4170. PMC 6138784. PMID 27621122.
  17. ^ a b Nygaard, Gyrid; Firestein, Gary S. (2020). "Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes". Nature Reviews Rheumatology. 16 (6): 316–333. doi:10.1038/s41584-020-0413-5. PMC 7987137. PMID 32393826.

Sources

 This article incorporates text from a free content work. Licensed under CC BY 4.0. Text taken from Anatomy and Physiology​, J. Gordon Betts et al, Openstax.