stringtranslate.com

Densidad de portadores de carga

La densidad de portadores de carga , también conocida como concentración de portadores , denota el número de portadores de carga por volumen . En unidades del SI , se mide en m −3 . Como ocurre con cualquier densidad , en principio puede depender de la posición. Sin embargo, normalmente la concentración de portadores se da como un único número y representa la densidad de portadores media sobre todo el material.

Las densidades de portadores de carga involucran ecuaciones relacionadas con la conductividad eléctrica , fenómenos relacionados como la conductividad térmica y enlaces químicos como el enlace covalente .

Cálculo

La densidad de portadores se obtiene generalmente teóricamente integrando la densidad de estados en el rango de energía de los portadores de carga en el material (por ejemplo, integrando sobre la banda de conducción para electrones, integrando sobre la banda de valencia para huecos).

Si se conoce el número total de portadores de carga, la densidad de portadores se puede encontrar simplemente dividiendo por el volumen. Para mostrar esto matemáticamente, la densidad de portadores de carga es una densidad de partículas , por lo que al integrarla sobre un volumen se obtiene el número de portadores de carga en ese volumen, donde es la densidad de portadores de carga dependiente de la posición.

Si la densidad no depende de la posición y en cambio es igual a una constante, esta ecuación se simplifica a

Semiconductores

La densidad de portadores es importante para los semiconductores , donde es una cantidad importante para el proceso de dopaje químico . Usando la teoría de bandas , la densidad electrónica, es el número de electrones por unidad de volumen en la banda de conducción. Para los huecos, es el número de huecos por unidad de volumen en la banda de valencia. Para calcular este número para los electrones, comenzamos con la idea de que la densidad total de electrones de la banda de conducción, , es simplemente sumar la densidad de electrones de conducción a través de las diferentes energías en la banda, desde la parte inferior de la banda hasta la parte superior de la banda .

Debido a que los electrones son fermiones , la densidad de electrones de conducción en cualquier energía particular es el producto de la densidad de estados , o cuántos estados conductores son posibles, con la distribución de Fermi-Dirac , que nos dice la porción de esos estados que realmente tendrán electrones en ellos.

Para simplificar el cálculo, en lugar de tratar los electrones como fermiones, según la distribución de Fermi-Dirac, los tratamos como un gas clásico que no interactúa, que viene dado por la distribución de Maxwell-Boltzmann . Esta aproximación tiene efectos insignificantes cuando la magnitud es , lo que es cierto para semiconductores cerca de la temperatura ambiente. Esta aproximación no es válida a temperaturas muy bajas o con una banda prohibida extremadamente pequeña.

La densidad tridimensional de estados es:

Después de combinarlas y simplificarlas, estas expresiones conducen a:

Aquí está la masa efectiva de los electrones en ese semiconductor en particular, y la cantidad es la diferencia de energía entre la banda de conducción y el nivel de Fermi , que es la mitad de la brecha de banda :

Se puede derivar una expresión similar para los huecos. La concentración de portadores se puede calcular tratando los electrones que se mueven de un lado a otro a través de la banda prohibida como el equilibrio de una reacción reversible de la química, lo que conduce a una ley de acción de masas electrónica . La ley de acción de masas define una cantidad llamada concentración intrínseca de portadores, que para los materiales no dopados:

La siguiente tabla enumera algunos valores de la concentración de portadores intrínsecos para semiconductores intrínsecos , en orden creciente de brecha de banda.

Estas concentraciones de portadores cambiarán si estos materiales están dopados. Por ejemplo, dopar silicio puro con una pequeña cantidad de fósforo aumentará la densidad de portadores de electrones, n . Entonces, como n > p , el silicio dopado será un semiconductor extrínseco de tipo n . Dopar silicio puro con una pequeña cantidad de boro aumentará la densidad de portadores de huecos, por lo que p > n , y será un semiconductor extrínseco de tipo p .

Rieles

La densidad de portadores también es aplicable a los metales , donde se puede estimar a partir del modelo simple de Drude . En este caso, la densidad de portadores (en este contexto, también llamada densidad de electrones libres) se puede estimar mediante: [5]

Donde es la constante de Avogadro , Z es el número de electrones de valencia , es la densidad del material y es la masa atómica . Dado que los metales pueden mostrar múltiples números de oxidación , la definición exacta de cuántos "electrones de valencia" debe tener un elemento en forma elemental es algo arbitraria, pero la siguiente tabla enumera las densidades de electrones libres dadas en Ashcroft y Mermin , que se calcularon utilizando la fórmula anterior basada en suposiciones razonables sobre la valencia, y con densidades de masa, calculadas a partir de datos de cristalografía experimental . [5]

Los valores de n entre metales inferidos, por ejemplo, mediante el efecto Hall, suelen ser del mismo orden de magnitud, pero este modelo simple no puede predecir la densidad de portadores con mucha precisión.

Medición

La densidad de portadores de carga se puede determinar en muchos casos utilizando el efecto Hall , [6] cuyo voltaje depende inversamente de la densidad de portadores.

Referencias

  1. ^ O. Madelung, U. Rössler, M. Schulz (2002). "Germanio (Ge), concentración intrínseca de portadores". Elementos del grupo IV, compuestos IV-IV y III-V. Parte b – Propiedades electrónicas, de transporte, ópticas y otras . Landolt-Börnstein – Materia condensada del grupo III. págs. 1–3. doi :10.1007/10832182_503. ISBN 978-3-540-42876-3.{{cite book}}: CS1 maint: varios nombres: lista de autores ( enlace )
  2. ^ Pietro P. Altermatt, Andreas Schenk, Frank Geelhaar, Gernot Heiser (2003). "Reevaluación de la densidad de portadores intrínsecos en silicio cristalino en vista del estrechamiento de la brecha de banda". Journal of Applied Physics . 93 (3): 1598. Bibcode :2003JAP....93.1598A. doi :10.1063/1.1529297.{{cite journal}}: CS1 maint: varios nombres: lista de autores ( enlace )
  3. ^ Rössler, U. (2002). "Arsenuro de galio (GaAs), concentración intrínseca de portadores, conductividad eléctrica y térmica". Elementos del grupo IV, compuestos IV-IV y III-V. Parte b – Propiedades electrónicas, de transporte, ópticas y otras . Landolt-Börnstein – Materia condensada del grupo III. págs. 1–8. doi :10.1007/10832182_196. ISBN 978-3-540-42876-3.
  4. ^ abcde Gachovska, Tanya K.; Hudgins, Jerry L. (2018). "Dispositivos semiconductores de potencia de SiC y GaN". Manual de electrónica de potencia . Elsevier. pág. 98. doi :10.1016/b978-0-12-811407-0.00005-2. ISBN . 9780128114070.
  5. ^ ab Ashcroft, Mermin. Física del estado sólido . págs. 4–5.
  6. ^ Edwin Hall (1879). "Sobre una nueva acción del imán sobre corrientes eléctricas". American Journal of Mathematics . 2 (3): 287–92. doi :10.2307/2369245. JSTOR  2369245. S2CID  107500183. Archivado desde el original el 27 de julio de 2011.