stringtranslate.com

neutrino acelerador

Un neutrino acelerador es un neutrino o antineutrino generado por humanos obtenido utilizando aceleradores de partículas , en los que un haz de protones se acelera y choca con un objetivo fijo, produciendo mesones (principalmente piones ) que luego se desintegran en neutrinos . Dependiendo de la energía de los protones acelerados y de si los mesones se desintegran en vuelo o en reposo es posible generar neutrinos de diferente sabor , energía y distribución angular. Los neutrinos aceleradores se utilizan para estudiar las interacciones y oscilaciones de los neutrinos aprovechando la alta intensidad de los haces de neutrinos, así como la posibilidad de controlar y comprender su tipo y propiedades cinemáticas en mucha mayor medida que los neutrinos de otras fuentes .

Producción de haces de neutrinos muónicos

El proceso de producción del haz de neutrinos muónicos o antineutrinos muónicos consta de los siguientes pasos: [1] [2]


π+

µ+
+
v
µ
,   
π

µ
+
v
µ

Generalmente se pretende que sea un haz puro que contenga un solo tipo de neutrino:
v
µ
o
v
µ
. Por lo tanto, la longitud del túnel de desintegración se optimiza para maximizar el número de desintegraciones de piones y simultáneamente minimizar el número de desintegraciones de muones , [4] en las que se producen tipos indeseables de neutrinos:


µ+

mi+
+
v
µ
+
v
mi
,   
µ

mi
+
v
µ
+
v
mi

En la mayoría de las desintegraciones de kaones [5] se produce el tipo apropiado de neutrinos (neutrinos muónicos para kaones positivos y antineutrinos muónicos para kaones negativos):


k+

µ+
+
v
µ
,   
k

µ
+
v
µ
, (63,56% de las desintegraciones),

k+

µ+
+
v
µ
+
π0
,   
k

µ
+
v
µ
+
π0
, (3,35% de las desintegraciones),

sin embargo, la desintegración en (anti)neutrinos electrónicos también es una fracción significativa:


k+

mi+
+
v
mi
+
π0
,   
k

mi
+
v
mi
+
π0
, (5,07% de las desintegraciones).

Propiedades cinemáticas del haz de neutrinos.

Los neutrinos no tienen carga eléctrica , por lo que no pueden enfocarse ni acelerarse mediante campos eléctricos y magnéticos y, por lo tanto, no es posible crear un haz de neutrinos monoenergético paralelo, como se hace con los haces de partículas cargadas en los aceleradores. Hasta cierto punto, es posible controlar la dirección y la energía de los neutrinos seleccionando adecuadamente la energía del haz de protones primario y enfocando los piones y kaones secundarios, porque los neutrinos toman parte de su energía cinética y se mueven en una dirección cercana a la del progenitor. partículas.

Haz fuera del eje

Un método que permite reducir aún más la distribución de energía de los neutrinos producidos es el uso del llamado haz fuera del eje. [6] El haz de neutrinos del acelerador es un haz ancho que no tiene límites claros, porque los neutrinos que contiene no se mueven en paralelo, sino que tienen una determinada distribución angular. Sin embargo, cuanto más lejos del eje (centro) del haz, menor es el número de neutrinos, pero también cambia la distribución de la energía. El espectro energético se vuelve más estrecho y su máximo se desplaza hacia energías más bajas. El ángulo fuera del eje y, por tanto, el espectro de energía de los neutrinos, se pueden optimizar para maximizar la probabilidad de oscilación de los neutrinos o para seleccionar el rango de energía en el que domina el tipo deseado de interacción de neutrinos.

El primer experimento en el que se utilizó el haz de neutrinos fuera del eje fue el experimento T2K [7]

Haces de neutrinos monitoreados y etiquetados

Se puede lograr un alto nivel de control de los neutrinos en la fuente monitoreando la producción de leptones cargados ( positrones , muones ) en el túnel de desintegración del haz de neutrinos. Las instalaciones que emplean este método se denominan haces de neutrinos monitorizados. Si la tasa de leptones es suficientemente pequeña, los detectores de partículas modernos pueden marcar el tiempo del leptón cargado producido en el túnel de desintegración y asociar este leptón al neutrino observado en el detector de neutrinos. Esta idea, que data de los años 60, [8] se desarrolló en el marco del concepto de haz de neutrinos etiquetados, pero aún no se ha demostrado. Los haces de neutrinos monitoreados producen neutrinos en un rango de energía estrecho y, por lo tanto, pueden emplear la técnica fuera del eje para predecir la energía del neutrino midiendo el vértice de interacción, es decir, la distancia de la interacción del neutrino desde el eje nominal del haz. En 2021, la colaboración ENUBET demostró una resolución energética en el rango del 10-20% . [9]

Haces de neutrinos en experimentos de física

A continuación se muestra la lista de haces de (anti)neutrinos de muones utilizados en experimentos de física pasados ​​​​o actuales:

Notas

  1. ^ Colaboración T2K (2011). "El experimento T2K". Núcleo. Instrumento. Métodos A. 659 (1): 106-135. arXiv : 1106.1238 . Código bibliográfico : 2011NIMPA.659..106A. doi :10.1016/j.nima.2011.06.067. S2CID  55962579.{{cite journal}}: Mantenimiento CS1: nombres numéricos: lista de autores ( enlace )
  2. ^ KOPP, S (febrero de 2007). "Haces de neutrinos del acelerador". Informes de Física . 439 (3): 101-159. arXiv : física/0609129 . Código Bib : 2007PhR...439..101K. doi :10.1016/j.physrep.2006.11.004. S2CID  13894304.
  3. ^ M. Tanabashi; et al. ( Grupo de datos de partículas ). "Revisión de 2019 de Física de partículas: mesones" (PDF) . Física. Rdo . D98 : 1. doi : 10.1103/PhysRevD.98.030001 . (2018) y actualización de 2019
  4. ^ M. Tanabashi; et al. ( Grupo de datos de partículas ). "Revisión de 2019 de Física de partículas: leptones" (PDF) . Física. Rdo . D98 : 2. doi : 10.1103/PhysRevD.98.030001 . (2018) y actualización de 2019
  5. ^ M. Tanabashi; et al. ( Grupo de datos de partículas ). "Revisión de 2019 de Física de partículas: mesones" (PDF) . Física. Rdo . D98 : 24. doi : 10.1103/PhysRevD.98.030001 . (2018) y actualización de 2019
  6. ^ Kirk T McDonald (2001). "Un haz de neutrinos fuera del eje". arXiv : hep-ex/0111033 . Código Bib : 2001hep.ex...11033M. {{cite journal}}: Citar diario requiere |journal=( ayuda )
  7. ^ ab Colaboración T2K (2013). "Predicción del flujo de neutrinos T2K". Física. Rdo . D87 (1): 012001. arXiv : 1211.0469 . Código bibliográfico : 2013PhRvD..87a2001A. doi : 10.1103/PhysRevD.87.012001. S2CID  55114627.{{cite journal}}: Mantenimiento CS1: nombres numéricos: lista de autores ( enlace )
  8. ^ Hand, LN (31 de octubre de 1970). "Un estudio de interacciones de neutrinos de 40 a 90 GeV utilizando un haz de neutrinos etiquetado". Universidad de Cornell, Ithaca, Nueva York OSTI  4117486 . Consultado el 28 de noviembre de 2021 . {{cite journal}}: Citar diario requiere |journal=( ayuda )
  9. ^ Longhin, A.; Terranova, F. (15 de marzo de 2022). "Haces NeUtrino mejorados de kaon Tagging (ENUBET)". arXiv : 2203.08319 [hep-ex].
  10. ^ Giacomelli, G (1 de junio de 2008). "El haz de neutrinos del CNGS". Revista de Física: Serie de conferencias . 116 (1): 012004. arXiv : física/0703247 . Código Bib : 2008JPhCS.116a2004G. doi :10.1088/1742-6596/116/1/012004. S2CID  2624092.

Otras lecturas

enlaces externos