stringtranslate.com

Controversias sobre los alimentos modificados genéticamente

Las controversias sobre los alimentos modificados genéticamente son disputas sobre el uso de alimentos y otros bienes derivados de cultivos modificados genéticamente en lugar de cultivos convencionales , y otros usos de la ingeniería genética en la producción de alimentos. Las disputas involucran a consumidores , agricultores , empresas de biotecnología , reguladores gubernamentales, organizaciones no gubernamentales y científicos. Las áreas clave de controversia relacionadas con los alimentos modificados genéticamente (alimentos GM o alimentos GMO) son si dichos alimentos deben etiquetarse, el papel de los reguladores gubernamentales, la objetividad de la investigación y publicación científica, el efecto de los cultivos modificados genéticamente en la salud y el medio ambiente, el efecto en la resistencia a los pesticidas , el impacto de dichos cultivos para los agricultores y el papel de los cultivos en la alimentación de la población mundial. Además, los productos derivados de organismos GMO juegan un papel en la producción de combustibles de etanol y productos farmacéuticos.

Las preocupaciones específicas incluyen la mezcla de productos genéticamente modificados y no genéticamente modificados en el suministro de alimentos, [1] los efectos de los OGM en el medio ambiente, [2] [3] el rigor del proceso regulatorio, [4] [5] y la consolidación del control del suministro de alimentos en las empresas que fabrican y venden OGM. [2] Grupos de defensa como el Centro para la Seguridad Alimentaria , la Asociación de Consumidores Orgánicos , la Unión de Científicos Preocupados y Greenpeace dicen que los riesgos no se han identificado ni gestionado adecuadamente, y han cuestionado la objetividad de las autoridades reguladoras.

La evaluación de la seguridad de los productos alimenticios genéticamente modificados por parte de los organismos reguladores comienza con una evaluación de si el alimento es sustancialmente equivalente a sus contrapartes no genéticamente modificadas que ya se consideran aptas para el consumo humano. [6] [7] [8] [9] No se han documentado informes de efectos nocivos en la población humana a causa de alimentos genéticamente modificados. [10] [11] [12]

Existe un consenso científico [13] [14] [15] [16] de que los alimentos actualmente disponibles derivados de cultivos transgénicos no plantean un riesgo mayor para la salud humana que los alimentos convencionales, [17] [18] [19] [20] [21] pero que cada alimento transgénico debe probarse caso por caso antes de su introducción. [22] [23] [24] No obstante, los miembros del público tienen muchas menos probabilidades que los científicos de percibir los alimentos transgénicos como seguros. [25] [26] [27] [28] El estatus legal y regulatorio de los alimentos transgénicos varía según el país, ya que algunas naciones los prohíben o restringen y otras los permiten con grados de regulación muy diferentes. [29] [30] [31] [32]

Percepción pública

Las preocupaciones de los consumidores sobre la calidad de los alimentos se hicieron prominentes mucho antes de la llegada de los alimentos transgénicos en la década de 1990. La novela de Upton Sinclair La jungla condujo a la Ley de Alimentos y Medicamentos Puros de 1906 , la primera legislación importante de los EE. UU. sobre el tema. [33] Esto inició una preocupación duradera sobre la pureza y luego la "naturalidad" de los alimentos que evolucionó desde un enfoque único en el saneamiento para incluir otros sobre ingredientes agregados como conservantes , sabores y edulcorantes , residuos como pesticidas, el auge de los alimentos orgánicos como categoría y, finalmente, las preocupaciones sobre los alimentos transgénicos. Algunos consumidores, incluidos muchos en los EE. UU., comenzaron a ver los alimentos transgénicos como "antinaturales", con varias asociaciones negativas y temores (un efecto de halo inverso ). [34]

Las percepciones específicas incluyen una visión de la ingeniería genética como una intromisión en los procesos biológicos que evolucionaron naturalmente, y otra de que la ciencia tiene limitaciones en su comprensión de las ramificaciones negativas potenciales. [35] Una percepción opuesta es que la ingeniería genética es en sí misma una evolución de la crianza selectiva tradicional , y que el peso de la evidencia actual sugiere que los alimentos GM actuales son idénticos a los alimentos convencionales en valor nutricional y efectos sobre la salud. [36] [37]

Las encuestas indican una preocupación generalizada entre los consumidores de que comer alimentos modificados genéticamente es perjudicial, [38] [39] [40] de que la biotecnología es riesgosa, de que se necesita más información y de que los consumidores necesitan controlar si toman tales riesgos. [41] [41] [42] Una sensación difusa de que el cambio social y tecnológico se está acelerando, y de que las personas no pueden afectar este contexto de cambio, se enfoca cuando tales cambios afectan a los alimentos. [41] Entre los líderes que impulsan la percepción pública de los daños de dichos alimentos en los medios se incluyen Jeffrey M. Smith , Dr. Oz , Oprah y Bill Maher ; [39] [43] entre las organizaciones se incluyen Organic Consumers Association, [44] Greenpeace (especialmente con respecto al arroz dorado ) [45] y Union of Concerned Scientists. [40] [46] [47] [48] [49]

En Estados Unidos, el apoyo, la oposición o el escepticismo sobre los alimentos transgénicos no está dividido por líneas partidistas tradicionales (liberales/conservadores), pero los adultos jóvenes tienen más probabilidades de tener opiniones negativas sobre los alimentos genéticamente modificados que los adultos mayores. [50]

Los grupos religiosos han expresado su preocupación por si los alimentos modificados genéticamente seguirán siendo kosher o halal . En 2001, ningún alimento de ese tipo había sido designado como inaceptable por los rabinos ortodoxos o los líderes musulmanes. [51]

El escritor gastronómico Michael Pollan no se opone al consumo de alimentos modificados genéticamente, pero apoya el etiquetado obligatorio de los alimentos modificados genéticamente y ha criticado la agricultura intensiva que permiten ciertos cultivos modificados genéticamente, como el maíz y la soja tolerantes al glifosato ("Roundup-ready"). [52] También ha expresado su preocupación por las empresas de biotecnología que poseen la propiedad intelectual de los alimentos de los que depende la gente, y por los efectos de la creciente corporativización de la agricultura a gran escala. [53] Para abordar estos problemas, Pollan ha planteado la idea de los alimentos modificados genéticamente de código abierto . Desde entonces, la idea ha sido adoptada en diversos grados por empresas como Syngenta , [54] y está siendo promovida por organizaciones como la New America Foundation . [55] Algunas organizaciones, como la BioBricks Foundation, ya han elaborado licencias de código abierto que podrían resultar útiles en este esfuerzo. [56]

Reseñas y encuestas

En un artículo de EMBO Reports publicado en 2003 se informaba de que el proyecto Percepciones públicas de las biotecnologías agrícolas en Europa (PABE) [57] había descubierto que el público no aceptaba ni rechazaba los OGM, sino que tenía "preguntas clave" sobre ellos: "¿Por qué necesitamos OGM? ¿Quién se beneficia de su uso? ¿Quién decidió que debían desarrollarse y cómo? ¿Por qué no nos informaron mejor sobre su uso en nuestros alimentos antes de que llegaran al mercado? ¿Por qué no se nos da una opción efectiva sobre si comprar o no estos productos? ¿Se han evaluado seriamente las posibles consecuencias irreversibles y a largo plazo, y quién las ha evaluado? ¿Tienen las autoridades reguladoras poderes suficientes para regular eficazmente a las grandes empresas? ¿Quién desea desarrollar estos productos? ¿Pueden aplicarse eficazmente los controles impuestos por las autoridades reguladoras? ¿Quién será responsable en casos de daños imprevistos?" [26] El PABE también descubrió que el conocimiento científico del público no controla la opinión pública, ya que los hechos científicos no responden a estas preguntas. [26] PABE también encontró que el público no exige un “riesgo cero” en los debates sobre alimentos transgénicos y es “perfectamente consciente de que sus vidas están llenas de riesgos que deben equilibrarse entre sí y con los beneficios potenciales. En lugar de un riesgo cero, lo que exigían era una evaluación más realista de los riesgos por parte de las autoridades reguladoras y los productores de OGM”. [26]

En 2006, la Pew Initiative on Food and Biotechnology hizo pública una revisión de los resultados de una encuesta realizada en Estados Unidos entre 2001 y 2006. [58] La revisión mostró que el conocimiento de los estadounidenses sobre los alimentos y animales transgénicos fue bajo durante todo el período. Las protestas durante este período contra el tomate transgénico Flavr Savr de Calgene lo describieron erróneamente como si contuviera genes de pescado, confundiéndolo con el organismo transgénico experimental de tomate de pescado de DNA Plant Technology , que nunca se comercializó. [59] [60]

Una encuesta realizada en 2007 por Food Standards Australia New Zealand encontró que en Australia, donde el etiquetado es obligatorio, [61] el 27% de los australianos revisaban las etiquetas de los productos para ver si contenían ingredientes transgénicos cuando compraban inicialmente un alimento. [62]

Un artículo de revisión sobre las encuestas de consumidores europeos a partir de 2009 concluyó que la oposición a los OGM en Europa ha ido disminuyendo gradualmente, [63] y que alrededor del 80% de los encuestados no "evitan activamente los productos transgénicos cuando compran". La encuesta " Eurobarómetro " de 2010, [64] que evalúa las actitudes públicas sobre la biotecnología y las ciencias de la vida, encontró que la cisgenicidad , cultivos transgénicos hechos de plantas que se pueden cruzar mediante la cría convencional , evoca una reacción menor que los métodos transgénicos, que utilizan genes de especies que son taxonómicamente muy diferentes. [65] La encuesta del Eurobarómetro en 2019 informó que la mayoría de los europeos no se preocupan por los OGM cuando el tema no se presenta explícitamente, y cuando se presenta solo el 27% lo elige como una preocupación. En solo nueve años desde la encuesta idéntica en 2010, el nivel de preocupación se ha reducido a la mitad en 28 Estados miembros de la UE. La preocupación por temas específicos disminuyó aún más, por ejemplo, la edición del genoma por sí sola solo preocupa al 4%. [66]

Una encuesta de Deloitte en 2010 encontró que el 34% de los consumidores estadounidenses estaban muy o extremadamente preocupados por los alimentos transgénicos, una reducción del 3% respecto de 2008. [67] La ​​misma encuesta encontró diferencias de género: el 10% de los hombres estaban extremadamente preocupados, en comparación con el 16% de las mujeres, y el 16% de las mujeres no estaban preocupadas, en comparación con el 27% de los hombres.

Una encuesta realizada por The New York Times en 2013 mostró que el 93% de los estadounidenses querían el etiquetado de los alimentos transgénicos. [68]

La votación de 2013, rechazando el referéndum I-522 sobre el etiquetado de alimentos modificados genéticamente del estado de Washington , se produjo poco después de que [69] se otorgara el Premio Mundial de la Alimentación de 2013 a los empleados de Monsanto y Syngenta . [70] El premio ha suscitado críticas de los opositores a los cultivos modificados genéticamente. [71] [72] [73] [74]

Con respecto a la pregunta de "si los alimentos transgénicos eran seguros para comer", la brecha entre la opinión del público y la de los científicos de la Asociación Estadounidense para el Avance de la Ciencia es muy amplia: el 88% de los científicos de la AAAS dice que sí, en contraste con el 37% del público en general. [75]

Campañas de relaciones públicas y protestas

Protestas contra los OGM y Monsanto en Washington, DC
Marcha contra Monsanto en Estocolmo, Suecia, mayo de 2013

En mayo de 2012, un grupo llamado "Take the Flour Back" (Recuperemos la harina) dirigido por Gerald Miles protestó contra los planes de un grupo de la Estación Experimental Rothamsted , con sede en Harpenden, Hertfordshire, Inglaterra, de llevar a cabo un ensayo experimental con trigo modificado genéticamente para repeler pulgones . [76] Los investigadores, dirigidos por John Pickett, escribieron una carta al grupo a principios de mayo de 2012, pidiéndoles que cancelaran su protesta, prevista para el 27 de mayo de 2012. [77] La ​​miembro del grupo Lucy Harrap dijo que el grupo estaba preocupado por la propagación de los cultivos en la naturaleza, y citó ejemplos de resultados en los Estados Unidos y Canadá . [78] Rothamsted Research y Sense about Science organizaron sesiones de preguntas y respuestas sobre tal potencial. [79]

La Marcha contra Monsanto es un movimiento de base internacional y una protesta contra la corporación Monsanto , productora de organismos genéticamente modificados (OGM) y Roundup , un herbicida a base de glifosato . [80] El movimiento fue fundado por Tami Canal en respuesta al fracaso de la Proposición 37 de California , una iniciativa de votación que habría requerido el etiquetado de los productos alimenticios elaborados a partir de OGM. Los defensores apoyan leyes de etiquetado obligatorio para los alimentos elaborados a partir de OGM. [81]

La marcha inicial tuvo lugar el 25 de mayo de 2013. El número de manifestantes que participaron es incierto; se citaron cifras de "cientos de miles" y la estimación de los organizadores de "dos millones" [82] . Los eventos tuvieron lugar entre 330 [81] y 436 [82] ciudades de todo el mundo, principalmente en los Estados Unidos. [81] [83] Muchas protestas tuvieron lugar en el sur de California, y algunos participantes llevaban carteles que expresaban su apoyo al etiquetado obligatorio de los OGM que decían "Etiquetar los OGM, es nuestro derecho a saber" y "Alimentos reales para personas reales". [83] Canal dijo que el movimiento continuaría con su "causa anti-OGM" más allá del evento inicial. [82] Se produjeron más marchas en octubre de 2013 y en mayo de 2014 y 2015. Las protestas fueron reportadas por medios de comunicación como ABC News , [84] Associated Press , [82] The Washington Post , [85] Los Angeles Times , [83] USA Today , [82] y CNN (en los Estados Unidos), y The Guardian [80] (fuera de los Estados Unidos).

Monsanto dijo que respetaba el derecho de las personas a expresar su opinión sobre el tema, pero sostuvo que sus semillas mejoraban la agricultura al ayudar a los agricultores a producir más de sus tierras mientras conservaban recursos, como el agua y la energía. [82] La empresa reiteró que los alimentos genéticamente modificados eran seguros y mejoraban el rendimiento de los cultivos. [86] Sentimientos similares fueron expresados ​​por la Asociación de Mejoramiento de Cultivos de Hawái, de la que Monsanto es miembro. [87] [88]

En julio de 2013, la industria de la biotecnología agrícola lanzó una iniciativa de transparencia sobre los OGM llamada GMO Answers para abordar las preguntas de los consumidores sobre los alimentos transgénicos en el suministro de alimentos de los EE. UU. [89] Los recursos de GMO Answers incluyeron agricultores convencionales y orgánicos , expertos en agronegocios , científicos, académicos, médicos y nutricionistas, y "expertos de la empresa" de los miembros fundadores del Consejo para la Información Biotecnológica, que financia la iniciativa. [90] Los miembros fundadores incluyen a BASF , Bayer CropScience , Dow AgroSciences , DuPont , Monsanto Company y Syngenta. [91]

En octubre de 2013, un grupo llamado Red Europea de Científicos para la Responsabilidad Social y Ambiental (ENSSER, por sus siglas en inglés) publicó una declaración en la que afirmaba que no existe un consenso científico sobre la seguridad de los OGM, [92] que fue firmada por unos 200 científicos de diversos campos en su primera semana. [70] El 25 de enero de 2015, su declaración fue publicada formalmente como un libro blanco por Environmental Sciences Europe: [93]

Acción directa

El Frente de Liberación de la Tierra , Greenpeace y otros han interrumpido la investigación sobre OGM en todo el mundo. [94] [95] [96] [97] [98] En el Reino Unido y otros países europeos, hasta 2014, los manifestantes habían destruido 80 ensayos de cultivos realizados por institutos de investigación académicos o gubernamentales. [99] En algunos casos, se llevaron a cabo amenazas y violencia contra personas o propiedades. [99] En 1999, los activistas quemaron el laboratorio de biotecnología de la Universidad Estatal de Michigan , destruyendo los resultados de años de trabajo y propiedades por un valor de $ 400.000. [100]

En 1987, la cepa Ice-minus de P. syringae se convirtió en el primer organismo genéticamente modificado (OGM) que se liberó al medio ambiente [101] cuando se roció con la bacteria un campo de fresas en California. A esto le siguió la fumigación de un cultivo de plántulas de papa. [102] Las plantas en ambos campos de prueba fueron arrancadas por grupos activistas, pero fueron replantadas al día siguiente. [101]

En 2011, Greenpeace pagó indemnizaciones cuando sus miembros irrumpieron en las instalaciones de una organización de investigación científica australiana, CSIRO , y destruyeron una parcela de trigo genéticamente modificado. El juez que dictó la sentencia acusó a Greenpeace de utilizar cínicamente a miembros jóvenes para evitar arriesgar su propia libertad. Los infractores recibieron sentencias suspendidas de nueve meses. [94] [103] [104]

El 8 de agosto de 2013, los manifestantes arrancaron una parcela experimental de arroz dorado en Filipinas. [105] [106] El autor, periodista y activista medioambiental británico Mark Lynas informó en Slate que el vandalismo fue llevado a cabo por un grupo liderado por el izquierdista Kilusang Magbubukid ng Pilipinas o Movimiento Campesino de Filipinas (KMP), para consternación de otros manifestantes. [107] El arroz dorado está diseñado para prevenir la deficiencia de vitamina A que, según Helen Keller International , ciega o mata a cientos de miles de niños anualmente en los países en desarrollo. [108]

Respuesta al sentimiento anti-OGM

En 2017, se estrenaron dos documentales que contrarrestaban el creciente sentimiento anti-OGM entre el público. Entre ellos se encontraban Food Evolution [109] [110] y Science Moms . Según el director de Science Moms , la película "se centra en ofrecer una contranarrativa basada en la ciencia y la evidencia a la narrativa de crianza basada en la pseudociencia que ha surgido en los últimos años". [111] [112]

158 premios Nobel de ciencia firmaron una carta abierta en 2016 en apoyo de la agricultura genéticamente modificada y pidieron a Greenpeace que cese su campaña anticientífica, especialmente contra el arroz dorado . [113]

Teorías de conspiración

Existen varias teorías conspirativas relacionadas con la producción y venta de cultivos y alimentos genéticamente modificados que han sido identificadas por algunos comentaristas como Michael Shermer . [114] Generalmente, estas teorías conspirativas postulan que los OGM están siendo introducidos consciente y maliciosamente en el suministro de alimentos, ya sea como un medio para enriquecer indebidamente a las agroindustrias o como un medio para envenenar o pacificar a la población.

Un trabajo que buscaba explorar la percepción de riesgo sobre los OGM en Turquía identificó una creencia entre las figuras políticas y religiosas conservadoras que se oponían a los OGM de que estos eran "una conspiración de las empresas multinacionales judías e Israel para dominar el mundo". [115] Además, un estudio letón mostró que un segmento de la población creía que los OGM eran parte de una teoría de conspiración mayor para envenenar a la población del país. [116]

Demandas judiciales

Fundación sobre tendencias económicas contra Heckler

En 1983, grupos ambientalistas y manifestantes retrasaron las pruebas de campo de la cepa genéticamente modificada de P. syringae ice-minus con impugnaciones legales. [117] [118]

Alianza para la Biointegridad contra Shalala

En este caso, el demandante abogó por el etiquetado obligatorio sobre la base de la demanda de los consumidores y por que los alimentos transgénicos deberían someterse a los mismos requisitos de prueba que los aditivos alimentarios porque están "materialmente modificados" y tienen riesgos para la salud potencialmente no identificados. El demandante también alegó que la FDA no siguió la Ley de Procedimientos Administrativos al formular y difundir su política sobre los OGM. El tribunal federal de distrito rechazó todos esos argumentos y determinó que la determinación de la FDA de que los OGM son generalmente reconocidos como seguros no era ni arbitraria ni caprichosa. El tribunal dio deferencia al proceso de la FDA en todas las cuestiones, dejando a los futuros demandantes pocos recursos legales para impugnar la política de la FDA sobre los OGM. [49] [119] [120]

Diamante contra Chakrabarty

El caso Diamond v. Chakrabarty trataba sobre la cuestión de si los OGM pueden patentarse.

El 16 de junio de 1980, la Corte Suprema, en una decisión dividida por 5 votos contra 4, sostuvo que "Un microorganismo vivo creado por el hombre es materia patentable " [121] según el significado de la ley de patentes de los EE. UU . [122].

Publicaciones científicas

Las publicaciones científicas sobre la seguridad y los efectos de los alimentos transgénicos son controvertidas.

Maíz Bt

Uno de los primeros incidentes ocurrió en 1999, cuando la revista Nature publicó un artículo sobre los posibles efectos tóxicos del maíz Bt en las mariposas. El artículo provocó un escándalo público y manifestaciones, pero en 2001 varios estudios de seguimiento habían concluido que "los tipos más comunes de polen de maíz Bt no son tóxicos para las larvas de la monarca en concentraciones que los insectos encontrarían en los campos" y que habían "dado por concluida esa cuestión en particular". [123]

Los científicos preocupados comenzaron a patrullar la literatura científica y reaccionaron enérgicamente, tanto pública como privadamente, para desacreditar las conclusiones que consideraban erróneas con el fin de evitar una protesta pública injustificada y la acción regulatoria. [123] Un artículo de Scientific American de 2013 señaló que una "pequeña minoría" de biólogos han publicado preocupaciones sobre los alimentos transgénicos y dijo que los científicos que apoyan el uso de OGM en la producción de alimentos a menudo los desestiman excesivamente. [124]

Acuerdos restrictivos con el usuario final

Antes de 2010, los científicos que deseaban realizar investigaciones sobre plantas o semillas transgénicas comerciales no podían hacerlo debido a los acuerdos restrictivos con los usuarios finales . Elson Shields, de la Universidad de Cornell, fue el portavoz de un grupo de científicos que se oponía a esas restricciones. El grupo presentó una declaración a la Agencia de Protección Ambiental de los Estados Unidos (EPA) en 2009 en la que protestaba porque "como resultado del acceso restrictivo, no se puede realizar legalmente ninguna investigación verdaderamente independiente sobre muchas cuestiones críticas relacionadas con la tecnología". [125]

En un editorial de Scientific American de 2009 se citaba a un científico que decía que se había bloqueado la publicación de varios estudios que habían sido aprobados inicialmente por empresas de semillas cuando arrojaron resultados "poco halagüeños". Si bien los editores estaban a favor de la protección de los derechos de propiedad intelectual , exigían que se levantaran las restricciones y que la EPA exigiera, como condición para la aprobación, que los investigadores independientes tuvieran acceso sin trabas a los productos modificados genéticamente para la investigación. [126]

En diciembre de 2009, la Asociación Estadounidense de Comercio de Semillas acordó "permitir a los investigadores públicos una mayor libertad para estudiar los efectos de los cultivos alimentarios transgénicos". Las empresas firmaron acuerdos generales que permitían esa investigación. Este acuerdo dejó a muchos científicos optimistas sobre el futuro; [127] otros científicos todavía expresan su preocupación por si este acuerdo tiene la capacidad de "alterar lo que ha sido un entorno de investigación plagado de obstrucciones y sospechas". [125] Monsanto tenía anteriormente acuerdos de investigación (es decir, Licencias de Investigación Académica) con aproximadamente 100 universidades que permitían a los científicos universitarios realizar investigaciones sobre sus productos transgénicos sin supervisión. [128]

Reseñas

Un análisis de 2011 realizado por Diels et al. revisó 94 estudios revisados ​​por pares relacionados con la seguridad de los OGM para evaluar si los conflictos de intereses se correlacionaban con los resultados que presentaban a los OGM bajo una luz favorable. Encontraron que el conflicto de intereses financiero no estaba asociado con el resultado del estudio (p = 0,631) mientras que la afiliación del autor a la industria (es decir, un conflicto de intereses profesional) estaba fuertemente asociada con el resultado del estudio (p < 0,001). [129] De los 94 estudios que se analizaron, el 52% no declaró financiación. El 10% de los estudios se categorizaron como "indeterminados" con respecto al conflicto de intereses profesional. De los 43 estudios con conflictos de intereses financieros o profesionales, 28 estudios fueron estudios de composición. Según Marc Brazeau, una asociación entre el conflicto de intereses profesional y los resultados positivos del estudio puede estar sesgada porque las empresas normalmente contratan a investigadores independientes para realizar estudios de seguimiento solo después de que la investigación interna descubra resultados favorables. Por lo general, las investigaciones internas que descubren resultados negativos o desfavorables para un nuevo OGM no se llevan a cabo. [130]

Una revisión de 2013 de 1.783 artículos sobre cultivos y alimentos genéticamente modificados publicados entre 2002 y 2012 no encontró evidencia plausible de peligros derivados del uso de cultivos transgénicos comercializados en ese momento. [13]

En una revisión de 2014, Zdziarski et al. examinaron 21 estudios publicados sobre la histopatología de los tractos gastrointestinales de ratas alimentadas con dietas derivadas de cultivos transgénicos e identificaron algunas fallas sistémicas en esta área de la literatura científica. La mayoría de los estudios se realizaron años después de la aprobación del cultivo para el consumo humano. Los artículos a menudo eran imprecisos en sus descripciones de los resultados histológicos y la selección de los puntos finales del estudio, y carecían de los detalles necesarios sobre los métodos y los resultados. Los autores pidieron el desarrollo de mejores pautas de estudio para determinar la seguridad a largo plazo del consumo de alimentos transgénicos. [131]

Un estudio de 2016 de las Academias Nacionales de Ciencias, Ingeniería y Medicina de Estados Unidos concluyó que los alimentos transgénicos son seguros para el consumo humano y no pudieron encontrar evidencia concluyente de que dañen el medio ambiente ni la vida silvestre. [132] Analizaron más de 1.000 estudios realizados durante los 30 años anteriores en que los cultivos transgénicos han estado disponibles, revisaron 700 presentaciones escritas presentadas por organismos interesados ​​y escucharon a 80 testigos. Llegaron a la conclusión de que los cultivos transgénicos habían brindado ventajas económicas a los agricultores, pero no encontraron evidencia de que los cultivos transgénicos hubieran aumentado los rendimientos. También señalaron que la resistencia de las malezas a los cultivos transgénicos podría causar importantes problemas agrícolas, pero esto podría abordarse mediante mejores procedimientos agrícolas. [133]

Presunta manipulación de datos

Una investigación de la Universidad de Nápoles sugirió que las imágenes en ocho artículos sobre animales fueron alteradas intencionalmente y/o mal utilizadas. El líder del grupo de investigación, Federico Infascelli, rechazó la afirmación. La investigación concluyó que las cabras madres alimentadas con harina de soja transgénica secretaban fragmentos del gen extraño en su leche. En diciembre de 2015, uno de los artículos fue retirado por "autoplagio", aunque la revista señaló que los resultados seguían siendo válidos. [134] Un segundo artículo fue retirado en marzo de 2016 después de que la Universidad de Nápoles concluyera que "múltiples heterogeneidades eran probablemente atribuibles a la manipulación digital, lo que planteaba serias dudas sobre la fiabilidad de los hallazgos". [135]

Salud

Existe un consenso científico [13] [14] [15] [16] de que los alimentos actualmente disponibles derivados de cultivos transgénicos no plantean un riesgo mayor para la salud humana que los alimentos convencionales, [17] [18] [19] [20] [21] pero que cada alimento transgénico debe probarse caso por caso antes de su introducción. [22] [23] [24] No obstante, los miembros del público tienen muchas menos probabilidades que los científicos de percibir los alimentos transgénicos como seguros. [25] [26] [27] [28] El estatus legal y regulatorio de los alimentos transgénicos varía según el país, ya que algunas naciones los prohíben o restringen, y otras los permiten con grados de regulación muy diferentes. [29] [30] [31] [32]

El proyecto ENTRANSFOOD fue un grupo de científicos financiado por la Comisión Europea encargado de establecer un programa de investigación para abordar las preocupaciones públicas sobre la seguridad y el valor de la biotecnología agrícola. [136] Concluyó que "la combinación de los métodos de prueba existentes proporciona un régimen de prueba sólido para evaluar la seguridad de los cultivos transgénicos". [137] En 2010, la Dirección General de Investigación e Innovación de la Comisión Europea informó que "la principal conclusión que se puede extraer de los esfuerzos de más de 130 proyectos de investigación, que abarcan un período de más de 25 años y en los que han participado más de 500 grupos de investigación independientes, es que la biotecnología, y en particular los OGM, no son per se más riesgosos que, por ejemplo, las tecnologías convencionales de cultivo de plantas". [138] : 16 

Comparación del mejoramiento vegetal convencional con la modificación genética transgénica y cisgénica.

El consenso entre científicos y reguladores señaló la necesidad de mejorar las tecnologías y los protocolos de prueba. [11] [139] Los organismos transgénicos y cisgénicos reciben un trato similar cuando se evalúan. Sin embargo, en 2012, el Panel de OGM de la Autoridad Europea de Seguridad Alimentaria (AESA) dijo que podrían estar asociados "nuevos peligros" con cepas transgénicas. [140] En una revisión de 2016, Domingo concluyó que los estudios realizados en los últimos años habían establecido que la soja, el arroz, el maíz y el trigo transgénicos no difieren de los cultivos convencionales correspondientes en términos de efectos a corto plazo en la salud humana, pero recomendó que se realizaran más estudios de los efectos a largo plazo. [141]

Equivalencia sustancial

La mayoría de los productos agrícolas convencionales son el resultado de la manipulación genética mediante cruzamiento e hibridación tradicionales. [142] [137] [143]

Los gobiernos gestionan la comercialización y la liberación de alimentos transgénicos caso por caso. Los países difieren en sus evaluaciones de riesgos y regulaciones. Existen marcadas diferencias que distinguen a los EE. UU. de Europa. Los cultivos que no están destinados a ser alimentos generalmente no son examinados en cuanto a su seguridad alimentaria. [144] Los alimentos transgénicos no se prueban en humanos antes de su comercialización porque no son una sola sustancia química, ni están destinados a ser ingeridos utilizando dosis e intervalos específicos, lo que complica el diseño de estudios clínicos . [8] Los reguladores examinan la modificación genética, los productos proteínicos relacionados y cualquier cambio que esas proteínas produzcan en el alimento. [145]

Los reguladores comprueban que los alimentos transgénicos sean " sustancialmente equivalentes " a sus contrapartes convencionales, para detectar cualquier consecuencia negativa no deseada. [6] [7] [8] Las nuevas proteínas que difieren de las proteínas de los alimentos convencionales o las anomalías que surgen en la comparación de equivalencia sustancial requieren un análisis toxicológico adicional . [8]

"La Organización Mundial de la Salud, la Asociación Médica Estadounidense, la Academia Nacional de Ciencias de los Estados Unidos, la Royal Society británica y todas las demás organizaciones respetables que han examinado la evidencia han llegado a la misma conclusión: consumir alimentos que contienen ingredientes derivados de cultivos transgénicos no es más riesgoso que consumir los mismos alimentos que contienen ingredientes de plantas de cultivo modificadas mediante técnicas convencionales de mejoramiento vegetal".

Asociación Estadounidense para el Avance de la Ciencia [146]

En 1999, Andrew Chesson, del Instituto de Investigación Rowett, advirtió que las pruebas de equivalencia sustancial "podrían tener fallas en algunos casos" y que las pruebas de seguridad actuales podrían permitir que sustancias dañinas ingresen al suministro de alimentos humanos. [147] El mismo año, Millstone, Brunner y Mayer argumentaron que la norma era un producto pseudocientífico de la política y el cabildeo que se creó para tranquilizar a los consumidores y ayudar a las empresas de biotecnología a reducir el tiempo y el costo de las pruebas de seguridad. Sugirieron que los alimentos GM tienen extensas pruebas biológicas, toxicológicas e inmunológicas y que la equivalencia sustancial debería abandonarse. [148] Este comentario fue criticado por tergiversar la historia, [149] por distorsionar los datos existentes y por una lógica deficiente. [150] Kuiper afirmó que simplificaba demasiado las evaluaciones de seguridad y que las pruebas de equivalencia involucran más que pruebas químicas, posiblemente incluyendo pruebas de toxicidad. [9] [151] Keler y Lappe apoyaron la legislación del Congreso para reemplazar la norma de equivalencia sustancial con estudios de seguridad. [152] En una revisión de 2016, Domingo criticó el uso del concepto de "equivalencia sustancial" como medida de la seguridad de los cultivos transgénicos. [153]

Kuiper examinó este proceso más a fondo en 2002 y descubrió que la equivalencia sustancial no mide los riesgos absolutos, sino que identifica las diferencias entre los productos nuevos y los existentes. Afirmó que caracterizar las diferencias es un punto de partida adecuado para una evaluación de seguridad [9] y que "el concepto de equivalencia sustancial es una herramienta adecuada para identificar problemas de seguridad relacionados con productos modificados genéticamente que tienen una contraparte tradicional". Kuiper señaló dificultades prácticas para aplicar esta norma, incluido el hecho de que los alimentos tradicionales contienen muchos productos químicos tóxicos o cancerígenos y que nunca se demostró que las dietas existentes fueran seguras. Esta falta de conocimiento sobre los alimentos convencionales significa que los alimentos modificados pueden diferir en antinutrientes y toxinas naturales que nunca se han identificado en la planta original, lo que posiblemente permita pasar por alto cambios dañinos. [9] A su vez, también pueden pasarse por alto modificaciones positivas. Por ejemplo, el maíz dañado por insectos a menudo contiene altos niveles de fumonisinas , toxinas cancerígenas producidas por hongos que viajan en las espaldas de los insectos y que crecen en las heridas del maíz dañado. Los estudios muestran que la mayoría del maíz Bt tiene niveles más bajos de fumonisinas que el maíz convencional dañado por insectos. [154] [155] Los talleres y consultas organizados por la OCDE, la OMS y la FAO han trabajado para adquirir datos y desarrollar una mejor comprensión de los alimentos convencionales, para su uso en la evaluación de los alimentos GM. [139] [156]

Un estudio de publicaciones que comparaban las cualidades intrínsecas de líneas de cultivos modificadas y convencionales (examinando genomas , proteomas y metabolomas ) concluyó que los cultivos GM tenían menos impacto en la expresión genética o en los niveles de proteínas y metabolitos que la variabilidad generada por el mejoramiento convencional. [157]

En una revisión de 2013, Herman ( Dow AgroSciences ) y Price (FDA, retirado) argumentaron que la transgénesis es menos disruptiva que las técnicas de mejoramiento tradicionales porque estas últimas implican rutinariamente más cambios (mutaciones, deleciones, inserciones y reordenamientos) que los cambios relativamente limitados (a menudo de un solo gen) en la ingeniería genética. La FDA encontró que todos los 148 eventos transgénicos que evaluaron eran sustancialmente equivalentes a sus contrapartes convencionales, al igual que los reguladores japoneses para 189 presentaciones que incluían productos de rasgos combinados. Esta equivalencia fue confirmada por más de 80 publicaciones revisadas por pares. Por lo tanto, argumentan los autores, los estudios de equivalencia de composición requeridos exclusivamente para los cultivos alimentarios GM pueden ya no estar justificados sobre la base de la incertidumbre científica. [158]

Alergenicidad

Un riesgo bien conocido de la modificación genética es la introducción de un alérgeno . Las pruebas de alérgenos son rutinarias para los productos destinados a la alimentación, y pasar esas pruebas es parte de los requisitos regulatorios. Organizaciones como el Partido Verde Europeo y Greenpeace enfatizan este riesgo. [159] Una revisión de 2005 de los resultados de las pruebas de alérgenos afirmó que "no se ha documentado que las proteínas biotecnológicas en los alimentos causen reacciones alérgicas". [160] Las autoridades regulatorias requieren que los nuevos alimentos modificados sean analizados para determinar su alergenicidad antes de comercializarlos. [161]

Los defensores de los OGM señalan que, debido a los requisitos de pruebas de seguridad, el riesgo de introducir una variedad de planta con un nuevo alérgeno o toxina es mucho menor que el de los procesos de cultivo tradicionales, que no requieren tales pruebas. La ingeniería genética puede tener menos impacto en la expresión de los genomas o en los niveles de proteínas y metabolitos que el cultivo convencional o la mutagénesis vegetal (no dirigida). [157] Los toxicólogos señalan que "los alimentos convencionales no están exentos de riesgos; las alergias ocurren con muchos alimentos convencionales conocidos e incluso nuevos. Por ejemplo, el kiwi se introdujo en los mercados de Estados Unidos y Europa en la década de 1960 sin alergias humanas conocidas; sin embargo, hoy en día hay personas alérgicas a esta fruta". [6]

La modificación genética también se puede utilizar para eliminar alérgenos de los alimentos, reduciendo potencialmente el riesgo de alergias alimentarias. [162] En 2003 se probó una cepa hipoalergénica de soja y se demostró que carecía del alérgeno principal que se encuentra en los frijoles. [163] Se ha probado un enfoque similar en el raigrás , que produce polen que es una de las principales causas de la fiebre del heno : aquí se produjo una hierba GM fértil que carecía del alérgeno principal del polen, lo que demuestra que la hierba hipoalergénica también es posible. [164]

El desarrollo de productos modificados genéticamente que provocan reacciones alérgicas ha sido detenido por las empresas que los desarrollaron antes de que salieran al mercado. A principios de los años 1990, Pioneer Hi-Bred intentó mejorar el contenido nutricional de la soja destinada a la alimentación animal añadiendo un gen de la nuez de Brasil . Como sabían que las personas tienen alergias a los frutos secos, Pioneer realizó pruebas de alergia in vitro y por punción cutánea. Las pruebas demostraron que la soja transgénica era alergénica. [165] Por lo tanto, Pioneer Hi-Bred interrumpió el desarrollo. [166] [167] En 2005, se demostró que un guisante de campo resistente a las plagas desarrollado por la Organización de Investigación Científica e Industrial de la Mancomunidad de Australia para su uso como cultivo de pasto causaba una reacción alérgica en ratones. [168] El trabajo sobre esta variedad se detuvo de inmediato. Estos casos se han utilizado como prueba de que la modificación genética puede producir cambios inesperados y peligrosos en los alimentos, y como prueba de que las pruebas de seguridad protegen eficazmente el suministro de alimentos. [12]

Durante los retiros de maíz Starlink en 2000, se encontró una variedad de maíz GM que contenía la proteína Cry9C de Bacillus thuringiensis (Bt), contaminando productos de maíz en supermercados y restaurantes de EE. UU. También se encontró en Japón y Corea del Sur. [169] : 20–21  El maíz Starlink solo había sido aprobado para alimento animal ya que la proteína Cry9C dura más tiempo en el sistema digestivo que otras proteínas Bt, lo que genera preocupaciones sobre su posible alergenicidad. [170] : 3  En 2000, se descubrió que las tortillas para tacos de la marca Taco Bell vendidas en supermercados contenían Starlink, lo que resultó en un retiro de esos productos y, finalmente, condujo al retiro de más de 300 productos. [171] [172] [173] Las ventas de semillas StarLink se interrumpieron y el registro de las variedades Starlink fue retirado voluntariamente por Aventis en octubre de 2000. [174] También se encontró que la ayuda enviada por las Naciones Unidas y los Estados Unidos a las naciones de África Central estaba contaminada con maíz StarLink y la ayuda fue rechazada. El suministro de maíz estadounidense ha sido monitoreado para las proteínas Bt de Starlink desde 2001 y no se han encontrado muestras positivas desde 2004. [175] En respuesta, GeneWatch UK y Greenpeace establecieron el Registro de Contaminación OGM en 2005. [176] Durante la retirada, los Centros para el Control de Enfermedades de los Estados Unidos evaluaron los informes de reacciones alérgicas al maíz StarLink y determinaron que no se habían producido reacciones alérgicas al maíz. [177] [178]

Transferencia horizontal de genes

La transferencia horizontal de genes es el movimiento de genes de un organismo a otro de una manera distinta a la reproducción.

El riesgo de transferencia horizontal de genes entre plantas y animales transgénicos es muy bajo y en la mayoría de los casos se espera que sea menor que las tasas de fondo. [179] Dos estudios sobre los posibles efectos de alimentar a los animales con alimentos genéticamente modificados no encontraron residuos de ADN recombinante o proteínas nuevas en ninguna muestra de órganos o tejidos. [180] [181] Los estudios encontraron ADN del virus M13 , proteína fluorescente verde y genes RuBisCO en la sangre y el tejido de animales, [182] [183] ​​y en 2012, un artículo sugirió que un microARN específico del arroz podría encontrarse en cantidades muy bajas en suero humano y animal . [184] Sin embargo, otros estudios [185] [186] no encontraron o encontraron una transferencia insignificante de microARN de plantas a la sangre de humanos o de cualquiera de los tres organismos modelo.

Otra preocupación es que el gen de resistencia a los antibióticos que se usa comúnmente como marcador genético en los cultivos transgénicos podría transferirse a bacterias dañinas, creando superbacterias resistentes . [187] [188] Un estudio de 2004 que involucró a voluntarios humanos examinó si el transgén de la soja modificada se transferiría a las bacterias que viven en el intestino humano . Hasta 2012, fue el único estudio de alimentación humana que se llevó a cabo con alimentos transgénicos. El transgén se detectó en tres voluntarios de un grupo de siete a los que previamente se les había extirpado el intestino grueso por razones médicas. Como esta transferencia genética no aumentó después del consumo de la soja modificada, los investigadores concluyeron que la transferencia genética no ocurrió. En los voluntarios con tractos digestivos intactos, el transgén no sobrevivió. [189] Los genes de resistencia a los antibióticos utilizados en la ingeniería genética se encuentran naturalmente en muchos patógenos [190] y los antibióticos a los que estos genes confieren resistencia no se prescriben ampliamente. [191]

Estudios de alimentación animal

Las revisiones de estudios sobre alimentación animal en su mayoría no encontraron efectos. Una revisión de 2014 encontró que el rendimiento de los animales alimentados con alimentos modificados genéticamente era similar al de los animales alimentados con "líneas de cultivos isogénicos no modificados genéticamente". [192] Una revisión de 2012 de 12 estudios a largo plazo y 12 estudios multigeneracionales realizados por laboratorios de investigación públicos concluyó que ninguno había descubierto ningún problema de seguridad vinculado al consumo de alimentos modificados genéticamente. [193] Una revisión de 2009 realizada por Magaña-Gómez encontró que, aunque la mayoría de los estudios concluyeron que los alimentos modificados no difieren en nutrición ni causan efectos tóxicos en los animales, algunos informaron cambios adversos a nivel celular causados ​​por alimentos modificados específicos. La revisión concluyó que "se necesita más esfuerzo científico e investigación para asegurar que el consumo de alimentos modificados genéticamente no provoque ningún tipo de problema de salud". [194] La revisión de 2009 de Dona y Arvanitoyannis concluyó que "los resultados de la mayoría de los estudios con alimentos GM indican que pueden causar algunos efectos tóxicos comunes como efectos hepáticos, pancreáticos, renales o reproductivos y pueden alterar los parámetros hematológicos, bioquímicos e inmunológicos". [195] Las reacciones a esta revisión en 2009 y 2010 señalaron que Dona y Arvanitoyannis se habían concentrado en artículos con un sesgo anti-modificación que fueron refutados en artículos revisados ​​por pares en otros lugares. [196] [197] [198] Flachowsky concluyó en una revisión de 2005 que los alimentos con una modificación de un gen eran similares en nutrición y seguridad a los alimentos no modificados, pero señaló que los alimentos con múltiples modificaciones genéticas serían más difíciles de probar y requerirían más estudios en animales. [180] Una revisión de 2004 de los ensayos de alimentación animal por Aumaitre y otros no encontró diferencias entre los animales que comían plantas genéticamente modificadas. [199]

En 2007, la búsqueda de Domingo en la base de datos PubMed utilizando 12 términos de búsqueda indicó que el "número de referencias" sobre la seguridad de los cultivos transgénicos o GM era "sorprendentemente limitado", y cuestionó si se había demostrado la seguridad de los alimentos GM. La revisión también afirmó que sus conclusiones estaban de acuerdo con tres revisiones anteriores. [200] Sin embargo, Vain encontró 692 estudios de investigación en 2007 que se centraban en la seguridad de los cultivos y alimentos GM y encontró tasas crecientes de publicación de dichos artículos en los últimos años. [201] [202] Vain comentó que la naturaleza multidisciplinaria de la investigación GM complicaba la recuperación de estudios basados ​​​​en ella y requería muchos términos de búsqueda (utilizó más de 300) y múltiples bases de datos. Domingo y Bordonaba revisaron la literatura nuevamente en 2011 y dijeron que, aunque había habido un aumento sustancial en el número de estudios desde 2006, la mayoría fueron realizados por empresas de biotecnología "responsables de comercializar estas plantas GM". [203] En 2016, Domingo publicó un análisis actualizado y concluyó que en ese momento había suficientes estudios independientes para establecer que los cultivos transgénicos no eran más peligrosos en términos agudos que los alimentos convencionales, aunque seguía siendo necesario realizar más estudios a largo plazo. [204]

Estudios humanos

Aunque algunos grupos e individuos han pedido que se realicen más pruebas en humanos de los alimentos transgénicos, [205] múltiples obstáculos complican dichos estudios. La Oficina General de Contabilidad (en una revisión de los procedimientos de la FDA solicitada por el Congreso) y un grupo de trabajo de las organizaciones de Alimentación y Agricultura y de Salud Mundial dijeron que no son factibles los estudios en humanos a largo plazo sobre el efecto de los alimentos transgénicos. Las razones incluían la falta de una hipótesis plausible para probar, la falta de conocimiento sobre los posibles efectos a largo plazo de los alimentos convencionales, la variabilidad en las formas en que los humanos reaccionan a los alimentos y que era poco probable que los estudios epidemiológicos diferenciaran los alimentos modificados de los convencionales, que vienen con su propio conjunto de características no saludables. [206] [207]

Además, las investigaciones con sujetos humanos se rigen por consideraciones éticas. Éstas exigen que cada intervención que se pruebe tenga un beneficio potencial para los sujetos humanos, como el tratamiento de una enfermedad o un beneficio nutricional (descartando, por ejemplo, las pruebas de toxicidad humana). [208] Kimber afirmó que las "limitaciones éticas y técnicas de la realización de ensayos humanos, y la necesidad de hacerlo, es un tema que requiere una atención considerable". [209] Los alimentos con beneficios nutricionales pueden escapar a esta objeción. Por ejemplo, se ha probado el arroz transgénico para determinar sus beneficios nutricionales, a saber, mayores niveles de vitamina A. [ 210] [211]

Estudios controvertidos

El caso Pusztai

Árpád Pusztai publicó el primer artículo revisado por pares que encontró efectos negativos del consumo de alimentos transgénicos en 1999. Pusztai alimentó a ratas con patatas transformadas con el gen de la aglutinina Galanthus nivalis (GNA) de la planta Galanthus (campanilla de invierno), lo que permitió que el tubérculo sintetizara la proteína lectina GNA . [212] Si bien algunas empresas estaban considerando cultivar cultivos transgénicos que expresaran lectina, GNA era un candidato poco probable. [213] La lectina es tóxica, especialmente para los epitelios intestinales . [214] Pusztai informó diferencias significativas en el grosor del epitelio intestinal, pero ninguna diferencia en el crecimiento o la función del sistema inmunológico. [212] [215]

El 22 de junio de 1998, en una entrevista en el programa de actualidad World in Action de Granada Television , Pusztai dijo que las ratas alimentadas con patatas tenían un crecimiento atrofiado y un sistema inmunológico reprimido. [216] Se produjo un frenesí mediático . Pusztai fue suspendido del Instituto Rowett . Se utilizaron procedimientos de mala conducta para confiscar sus datos y prohibirle hablar en público. [217] El Instituto Rowett y la Royal Society revisaron su trabajo y concluyeron que los datos no respaldaban sus conclusiones. [218] [219] [12] El trabajo fue criticado con el argumento de que las patatas no modificadas no eran una dieta de control justa y que cualquier rata alimentada solo con patatas sufriría deficiencia de proteínas. [220] Pusztai respondió afirmando que todas las dietas tenían el mismo contenido de proteínas y energía y que la ingesta de alimentos de todas las ratas era la misma.

Maíz Bt

Un estudio de 2011 fue el primero en evaluar la correlación entre la exposición materna y fetal a la toxina Bt producida en el maíz transgénico y en determinar los niveles de exposición a los pesticidas y sus metabolitos . Informó de la presencia de pesticidas asociados a los alimentos modificados en mujeres y en los fetos de mujeres embarazadas. [221] El artículo y los informes de los medios relacionados fueron criticados por exagerar los resultados. [222] [223] Food Standards Australia New Zealand (FSANZ) publicó una respuesta directa, diciendo que la idoneidad del método ELISA para detectar la proteína Cry1Ab no estaba validada y que no había pruebas que demostraran que los alimentos transgénicos fueran la fuente de la proteína. La organización también sugirió que incluso si se hubiera detectado la proteína, su fuente era más probablemente un alimento convencional u orgánico. [224]

El caso Séralini

En 2007, 2009 y 2011, Gilles-Éric Séralini publicó estudios de reanálisis que utilizaban datos de experimentos de alimentación de ratas de Monsanto para tres variedades de maíz modificado ( MON 863 y MON 810 resistentes a insectos y NK603 resistente al glifosato ). Concluyó que los datos mostraban daños en el hígado, los riñones y el corazón. [225] [226] [227] La ​​Autoridad Europea de Seguridad Alimentaria (AESA) concluyó entonces que las diferencias estaban todas dentro del rango normal. [228] La AESA también afirmó que las estadísticas de Séralini eran erróneas. [229] [230] [231] Las conclusiones de la AESA fueron apoyadas por FSANZ, [232] [233] [234] un panel de toxicólogos expertos, [235] y el Comité Científico del Consejo Superior de Biotecnologías de Francia (HCB). [236]

En 2012, el laboratorio de Séralini publicó un artículo [237] [238] que consideró los efectos a largo plazo de alimentar ratas con varios niveles de maíz transgénico resistente al glifosato, maíz convencional tratado con glifosato y una mezcla de las dos cepas. [239] El artículo concluyó que las ratas alimentadas con el maíz modificado tenían graves problemas de salud, incluidos daños en el hígado y los riñones y tumores de gran tamaño. [239] El estudio provocó críticas generalizadas. Séralini celebró una conferencia de prensa justo antes de que se publicara el artículo en la que anunció el lanzamiento de un libro y una película. [240] Permitió a los periodistas tener acceso al artículo antes de su conferencia de prensa solo si firmaban un acuerdo de confidencialidad bajo el cual no podían informar sobre las respuestas de otros científicos al artículo. [241] La conferencia de prensa resultó en una cobertura mediática que enfatizaba una conexión entre los OGM, el glifosato y el cáncer. [242] El truco publicitario de Séralini generó críticas de otros científicos por prohibir los comentarios críticos. [242] [243] [244] Las críticas incluyeron un poder estadístico insuficiente [245] y que las ratas Sprague-Dawley de Séralini eran inadecuadas para un estudio de por vida (en oposición a un estudio de toxicidad más corto) debido a su tendencia a desarrollar cáncer (un estudio encontró que más del 80% normalmente desarrollaba cáncer). [246] [247] [248] [249] Las directrices de la Organización para la Cooperación y el Desarrollo Económicos recomendaron usar 65 ratas por experimento en lugar de las 10 de Séralini. [248] [249] [250] Otras críticas incluyeron la falta de datos sobre las cantidades de alimento y las tasas de crecimiento de los especímenes, [251] [252] la falta de una relación dosis-respuesta (las hembras alimentadas tres veces la dosis estándar mostraron una disminución en el número de tumores) [253] y ningún mecanismo identificado para el aumento de tumores. [254] Seis academias nacionales de ciencias francesas emitieron una declaración conjunta sin precedentes condenando el estudio y la revista que lo publicó. [255] Food and Chemical Toxicology publicó muchas cartas críticas, y solo unas pocas expresaron su apoyo. [256] Las agencias nacionales de seguridad alimentaria y regulación también revisaron el artículo y lo desestimaron. [257] [258] [259] [ 260] [261] [262] [263] [264] En marzo de 2013, Séralini respondió a estas críticas en la misma revista que publicó originalmente su estudio, [265]y algunos científicos apoyaron su trabajo. [124] : 5  En noviembre de 2013, los editores de Food and Chemical Toxicology se retractaron del artículo. [237] [238] La retractación fue recibida con protestas de Séralini y sus partidarios. [266] [267] En 2014, el estudio fue republicado por una revista diferente, Environmental Sciences Europe , en una forma ampliada, incluyendo los datos sin procesar que Séralini originalmente se había negado a revelar. [268]

Calidad nutricional

Algunas plantas están modificadas genéticamente para ser más sanas que los cultivos convencionales. El arroz dorado fue creado para combatir la deficiencia de vitamina A sintetizando betacaroteno (algo que el arroz convencional no hace). [269]

Desintoxicación

Se ha modificado genéticamente una variedad de semilla de algodón para eliminar la toxina gosipol , de modo que sea segura para el consumo humano. [270]

Ambiente

Los cultivos modificados genéticamente se plantan en los campos de forma muy similar a los cultivos normales. Allí interactúan directamente con los organismos que se alimentan de los cultivos e indirectamente con otros organismos de la cadena alimentaria . El polen de las plantas se distribuye en el medio ambiente como el de cualquier otro cultivo. Esta distribución ha suscitado preocupación por los efectos de los cultivos modificados genéticamente en el medio ambiente. Los posibles efectos incluyen el flujo de genes / contaminación genética , la resistencia a los pesticidas y las emisiones de gases de efecto invernadero .

Organismos no objetivo

Un uso importante de los cultivos GM es el control de insectos a través de la expresión de los genes cry (delta -endotoxinas cristalinas ) y Vip (proteínas insecticidas vegetativas) de Bacillus thuringiensis (Bt). Estas toxinas podrían afectar a otros insectos además de las plagas objetivo como el barrenador europeo del maíz . Las proteínas Bt se han utilizado como aerosoles orgánicos para el control de insectos en Francia desde 1938 y en los EE. UU. desde 1958, sin efectos nocivos reportados. [271] Las proteínas cry se dirigen selectivamente a los lepidópteros (polillas y mariposas). Como mecanismo tóxico, las proteínas cry se unen a receptores específicos en las membranas de las células del intestino medio ( epiteliales ), lo que resulta en su ruptura. Cualquier organismo que carezca de los receptores apropiados en su intestino no se ve afectado por la proteína cry y, por lo tanto, no se ve afectado por Bt. [272] [273] Las agencias reguladoras evalúan el potencial de las plantas transgénicas para afectar a organismos no objetivo antes de aprobar su liberación comercial. [274] [275]

En 1999, un artículo afirmó que, en un entorno de laboratorio, el polen de maíz Bt espolvoreado sobre algodoncillo podría dañar a la mariposa monarca . [276] Un ejercicio de investigación colaborativa durante los dos años siguientes por varios grupos de científicos en los EE. UU. y Canadá estudió los efectos del polen Bt tanto en el campo como en el laboratorio. El estudio resultó en una evaluación de riesgos que concluyó que cualquier riesgo planteado a las poblaciones de mariposas era insignificante. [277] Una revisión de 2002 de la literatura científica concluyó que "el cultivo comercial a gran escala de los híbridos actuales de maíz Bt no planteaba un riesgo significativo para la población de monarca" y señaló que a pesar de la plantación a gran escala de cultivos modificados genéticamente, la población de la mariposa estaba aumentando. [278] Sin embargo, el herbicida glifosato utilizado para cultivar OGM mata el algodoncillo, la única fuente de alimento de las mariposas monarca, y para 2015 aproximadamente el 90% de la población de EE. UU. había disminuido. [279] [280]

Lövei et al. analizaron los entornos de laboratorio y descubrieron que las toxinas Bt podrían afectar a organismos no objetivo, generalmente estrechamente relacionados con los objetivos previstos. [281] Por lo general, la exposición se produce a través del consumo de partes de plantas, como polen o restos vegetales, o mediante la ingestión de Bt por parte de depredadores. Un grupo de científicos académicos criticó el análisis y escribió: "Estamos profundamente preocupados por los métodos inapropiados utilizados en su artículo, la falta de contexto ecológico y la defensa de los autores de cómo deben realizarse e interpretarse los estudios de laboratorio sobre artrópodos no objetivo". [282]

Biodiversidad

La diversidad genética de los cultivos podría disminuir debido al desarrollo de cepas genéticamente modificadas superiores que expulsen a otras del mercado. Los efectos indirectos podrían afectar a otros organismos. En la medida en que los agroquímicos afecten a la biodiversidad , las modificaciones que aumenten su uso, ya sea porque las cepas exitosas los requieran o porque el desarrollo concomitante de resistencia requerirá mayores cantidades de químicos para compensar el aumento de la resistencia en los organismos objetivo.

Estudios que comparan la diversidad genética del algodón han demostrado que en Estados Unidos la diversidad ha aumentado o se ha mantenido igual, mientras que en la India ha disminuido. Esta diferencia se atribuyó a la mayor cantidad de variedades modificadas en Estados Unidos en comparación con la India. [283] Una revisión de los efectos de los cultivos Bt en los ecosistemas del suelo concluyó que, en general, "no parecen tener efectos consistentes, significativos y a largo plazo en la microbiota y sus actividades en el suelo". [284]

En ensayos a escala de granjas en el Reino Unido y Dinamarca se ha demostrado que la diversidad y el número de poblaciones de malezas disminuyen al comparar cultivos resistentes a herbicidas con sus contrapartes convencionales. [285] [286] El ensayo del Reino Unido sugirió que la diversidad de aves podría verse afectada negativamente por la disminución de las semillas de malezas disponibles para alimentarse. [287] Los datos agrícolas publicados involucrados en los ensayos mostraron que las aves que se alimentan de semillas eran más abundantes en el maíz convencional después de la aplicación del herbicida, pero que no hubo diferencias significativas en ningún otro cultivo o antes del tratamiento con herbicida. [288] Un estudio de 2012 encontró una correlación entre la reducción de algodoncillo en granjas que cultivaban cultivos resistentes al glifosato y la disminución de las poblaciones de mariposas monarca adultas en México. [289] El New York Times informó que el estudio "plantea la noción algo radical de que tal vez las malezas en las granjas deberían protegerse. [290]

Un estudio de 2005, diseñado para "simular el impacto de una pulverización directa sobre un humedal" con cuatro agroquímicos diferentes ( carbaril (Sevin), malatión , ácido 2,4-diclorofenoxiacético y glifosato en una formulación Roundup) mediante la creación de ecosistemas artificiales en tanques y luego la aplicación de "cada producto químico en las tasas de aplicación máximas recomendadas por el fabricante" encontró que "la riqueza de especies se redujo en un 15% con Sevin, un 30% con malatión y un 22% con Roundup, mientras que el 2,4-D no tuvo ningún efecto". [291] El estudio ha sido utilizado por grupos ambientalistas para argumentar que el uso de agroquímicos causa daños no deseados al medio ambiente y a la biodiversidad. [292]

Plagas secundarias

Varios estudios documentaron aumentos repentinos de plagas secundarias en unos pocos años de adopción del algodón Bt . En China, el problema principal ha sido con los míridos , [293] [294] que en algunos casos han "erosionado completamente todos los beneficios del cultivo de algodón Bt". [295] Un estudio de 2009 en China concluyó que el aumento de plagas secundarias dependía de las condiciones locales de temperatura y lluvia y ocurrió en la mitad de las aldeas estudiadas. El aumento en el uso de insecticidas para el control de estos insectos secundarios fue mucho menor que la reducción en el uso total de insecticidas debido a la adopción del algodón Bt. [296] Un estudio de 2011 basado en una encuesta de 1.000 hogares agrícolas seleccionados al azar en cinco provincias de China encontró que la reducción en el uso de pesticidas en cultivares de algodón Bt fue significativamente menor que la informada en investigaciones en otros lugares: el hallazgo fue consistente con una hipótesis de que se necesitan más pulverizaciones de pesticidas con el tiempo para controlar las plagas secundarias emergentes, como pulgones , ácaros y chinches lygus . [297] Se han reportado problemas similares en la India, con cochinillas [298] [299] y pulgones. [300]

Flujo genético

Los genes de un OGM pueden pasar a otro organismo al igual que un gen endógeno . El proceso se conoce como cruzamiento cruzado y puede ocurrir en cualquier nueva variedad de cultivo de polinización abierta. Hasta la década de 1990 se pensaba que esto era improbable y raro, y si ocurriera, fácilmente erradicable. Se pensaba que esto no agregaría costos o riesgos ambientales adicionales: no se esperaban efectos distintos a los ya causados ​​por las aplicaciones de pesticidas. Los rasgos introducidos potencialmente pueden cruzarse a plantas vecinas de la misma especie o de especies estrechamente relacionadas a través de tres tipos diferentes de flujo genético: de cultivo a cultivo, de cultivo a maleza y de cultivo a silvestre. [301] En el cultivo a cultivo, la información genética de un cultivo modificado genéticamente se transfiere a un cultivo no modificado genéticamente. La transferencia de cultivo a maleza se refiere a la transferencia de material modificado genéticamente a una maleza, y de cultivo a silvestre indica la transferencia de un cultivo modificado genéticamente a una planta y/o cultivo silvestre, no domesticado. [302] Existen preocupaciones de que la propagación de genes de organismos modificados a parientes no modificados podría producir especies de malezas resistentes a herbicidas [303] que podrían contaminar cultivos no modificados genéticamente cercanos, o podrían alterar el ecosistema, [304] [305] Esto es principalmente una preocupación si el organismo transgénico tiene una capacidad de supervivencia significativa y puede aumentar en frecuencia y persistir en poblaciones naturales. [306] Este proceso, por el cual los genes se transfieren de los OGM a parientes silvestres, es diferente del desarrollo de las llamadas "supermalezas" o "superbacterias" que desarrollan resistencia a los pesticidas bajo selección natural.

En la mayoría de los países se requieren estudios ambientales antes de aprobar un OGM para fines comerciales, y se debe presentar un plan de monitoreo para identificar efectos imprevistos en el flujo genético.

En 2004, Chilcutt y Tabashnik encontraron proteína Bt en granos de un cultivo de refugio (un cultivo convencional plantado para albergar plagas que de otro modo podrían volverse resistentes a un pesticida asociado con el OGM), lo que implica que se había producido un flujo genético. [307]

En 2005, los científicos del Centro de Ecología e Hidrología del Reino Unido informaron sobre la primera evidencia de transferencia horizontal de genes de resistencia a los pesticidas a las malezas, en unas pocas plantas de una sola temporada; no encontraron evidencia de que alguno de los híbridos hubiera sobrevivido en temporadas posteriores. [308]

En 2007, el Departamento de Agricultura de los EE. UU. multó a Scotts Miracle-Gro con 500.000 dólares cuando se encontró ADN modificado de agrostis transgénico en parientes del mismo género ( Agrostis ) [309] así como en pastos nativos hasta 21 km (13 mi) de los sitios de prueba, liberados cuando el pasto recién cortado fue arrastrado por el viento. [310]

En 2009, México creó una vía regulatoria para el maíz GM, [311] pero debido a que México es el centro de diversidad del maíz , surgieron preocupaciones sobre los efectos del maíz GM en las cepas locales. [312] [313] Un informe de 2001 encontró cruces de maíz Bt con maíz convencional en México. [314] Los datos de este artículo fueron descritos posteriormente como originados de un artefacto y la revista editorial Nature afirmó que "la evidencia disponible no es suficiente para justificar la publicación del artículo original", aunque no se retractó del artículo. [315] Un estudio posterior a gran escala, en 2005, no encontró evidencia de flujo genético en Oaxaca. [316] Sin embargo, otros autores afirmaron haber encontrado evidencia de dicho flujo genético. [317]

Un estudio de 2010 mostró que aproximadamente el 83 por ciento de la canola silvestre o maleza analizada contenía genes de resistencia a herbicidas modificados genéticamente . [318] [319] [320] Según los investigadores, la falta de informes en los Estados Unidos sugería que la supervisión y el monitoreo eran inadecuados. [321] Un informe de 2010 afirmó que la aparición de malezas resistentes al glifosato podría hacer que los cultivos transgénicos perdieran su eficacia a menos que los agricultores combinaran el glifosato con otras estrategias de manejo de malezas. [322] [323]

Una forma de evitar la contaminación ambiental es la tecnología de restricción de uso genético (GURT), también llamada "Terminator". [324] Esta tecnología no comercializada permitiría la producción de cultivos con semillas estériles, lo que impediría el escape de rasgos modificados genéticamente. Los grupos preocupados por el suministro de alimentos habían expresado su preocupación de que la tecnología se utilizaría para limitar el acceso a semillas fértiles. [325] [326] Otra tecnología hipotética conocida como "Traitor" o "T-GURT", no esterilizaría las semillas, sino que requeriría la aplicación de una sustancia química a los cultivos modificados genéticamente para activar los rasgos modificados genéticamente. [324] [327] Grupos como Rural Advancement Foundation International expresaron su preocupación por la necesidad de realizar más pruebas ambientales y de seguridad alimentaria antes de comercializar la T-GURT. [327]

Escape de cultivos modificados

El escape de semillas genéticamente modificadas a campos vecinos y la mezcla de productos cosechados es motivo de preocupación para los agricultores que venden a países que no permiten las importaciones de OGM. [328] : 275  [329]

En 1999, científicos tailandeses afirmaron haber descubierto trigo transgénico resistente al glifosato no aprobado en un cargamento de cereales , a pesar de que sólo se había cultivado en parcelas de prueba. No se identificó ningún mecanismo de escape. [330]

En 2000, se encontró maíz modificado genéticamente StarLink de Aventis en mercados y restaurantes de Estados Unidos. Se convirtió en objeto de un retiro del mercado que comenzó cuando se descubrió que las tortillas para tacos de la marca Taco Bell vendidas en supermercados contenían maíz modificado genéticamente. StarLink se suspendió entonces. [171] [172] Aventis retiró voluntariamente el registro de las variedades Starlink en octubre de 2000. [174]

Las exportaciones de arroz estadounidense a Europa se interrumpieron en 2006 cuando se encontró la modificación LibertyLink en cultivos de arroz comerciales, aunque no había sido aprobada para su liberación. [331] Una investigación del Servicio de Inspección de Sanidad Animal y Vegetal (APHIS) del USDA no logró determinar la causa de la contaminación. [332]

En mayo de 2013, se descubrió trigo transgénico resistente al glifosato no aprobado (pero que había sido aprobado para el consumo humano) [333] en una granja en Oregon en un campo que había sido plantado con trigo de invierno . La cepa fue desarrollada por Monsanto y había sido probada en el campo desde 1998 hasta 2005. El descubrimiento amenazó las exportaciones de trigo de los EE. UU. que totalizaron $ 8.1 mil millones en 2012. [334] Japón, Corea del Sur y Taiwán suspendieron temporalmente las compras de trigo de invierno como resultado del descubrimiento. [335] [336] [337] Al 30 de agosto de 2013, aunque la fuente del trigo modificado seguía siendo desconocida, Japón, Corea del Sur y Taiwán habían reanudado la realización de pedidos. [338] [339]

Coexistencia con cultivos convencionales

Estados Unidos no tiene una legislación que regule la relación entre las mezclas de granjas que cultivan cultivos orgánicos, convencionales y transgénicos. El país depende de una combinación "compleja pero relajada" de tres agencias federales (FDA, EPA y USDA/APHIS) y los sistemas de responsabilidad civil de los estados para gestionar la coexistencia. [340] : 44  El Secretario de Agricultura convocó un Comité Asesor sobre Biotecnología y Agricultura del Siglo XXI (AC21) para estudiar la coexistencia y hacer recomendaciones sobre el tema. Los miembros del AC21 incluyeron representantes de la industria de la biotecnología, la industria de alimentos orgánicos, las comunidades agrícolas, la industria de las semillas, los fabricantes de alimentos, los gobiernos estatales, los grupos de desarrollo comunitario y de consumidores, la profesión médica e investigadores académicos. El AC21 recomendó que un estudio evaluara el potencial de pérdidas económicas para los agricultores orgánicos estadounidenses; que cualquier pérdida grave condujera a un programa de seguro de cosechas , un programa de educación para asegurar que los agricultores orgánicos pongan en marcha los contratos adecuados y que los agricultores de OGM vecinos tomen las medidas de contención adecuadas. En general, el informe apoyaba un sistema agrícola diverso que apoyara sistemas agrícolas diversos. [341] [342]

La UE ha implementado regulaciones que regulan específicamente la coexistencia y la trazabilidad . La trazabilidad se ha vuelto algo común en las cadenas de suministro de alimentos y piensos de la mayoría de los países, pero la trazabilidad de los OGM es más difícil debido a los estrictos umbrales legales para la mezcla no deseada. Desde 2001, los alimentos y piensos convencionales y orgánicos pueden contener hasta un 0,9% de material modificado autorizado sin llevar una etiqueta de OGM. [343] (cualquier rastro de modificación no autorizada es motivo de rechazo de un envío). [343] [344] Las autoridades exigen la capacidad de rastrear, detectar e identificar los OGM , y varios países y partes interesadas crearon una organización no gubernamental , Co-Extra , para desarrollar dichos métodos. [345] [346]

Uso de productos químicos

Pesticidas

Los pesticidas destruyen, repelen o mitigan las plagas (un organismo que ataca o compite con un cultivo). [347] Un metaanálisis de 2014 que abarca 147 estudios originales de encuestas agrícolas y ensayos de campo, y 15 estudios de los investigadores que llevaron a cabo el estudio, concluyó que la adopción de tecnología GM había reducido el uso de pesticidas químicos en un 37%, con un efecto mayor para los cultivos tolerantes a los insectos que para los cultivos tolerantes a los herbicidas. [348] Todavía quedan algunas dudas sobre si las cantidades reducidas de pesticidas utilizados realmente invocan un efecto ambiental negativo menor, ya que también hay un cambio en los tipos de pesticidas utilizados, y diferentes pesticidas tienen diferentes efectos ambientales. [349] [350] En agosto de 2015, se produjeron protestas en Hawái sobre la posibilidad de que los defectos de nacimiento estuvieran siendo causados ​​por el uso intensivo de pesticidas en nuevas cepas de cultivos GM que se estaban desarrollando allí. Hawái utiliza 17 veces la cantidad de pesticidas por acre en comparación con el resto de los EE. UU. [351]

Herbicidas

El desarrollo de plantas tolerantes al glifosato ( Roundup Ready ) cambió el perfil de uso de herbicidas , alejándose de los herbicidas más persistentes y de mayor toxicidad, como la atrazina , la metribuzina y el alaclor , y redujo el volumen y el daño de la escorrentía de herbicidas . [352] Un estudio de Chuck Benbrook concluyó que la propagación de malezas resistentes al glifosato había aumentado el uso de herbicidas en Estados Unidos. [353] [354] Ese estudio citó un aumento del 23% (0,3 kilogramos / hectárea ) para la soja de 1996 a 2006, un aumento del 43% (0,9 kg/ha) para el algodón de 1996 a 2010 y una disminución del 16% (0,5 kg/ha) para el maíz de 1996 a 2010. [353] Sin embargo, este estudio fue objeto de escrutinio porque Benbrook no consideró el hecho de que el glifosato es menos tóxico que otros herbicidas, por lo que la toxicidad neta puede disminuir incluso a medida que aumenta el uso. [355] [356] Graham Brookes acusó a Benbrook de estimaciones subjetivas de herbicidas porque sus datos, proporcionados por el Servicio Nacional de Estadísticas Agrícolas , no distinguen entre cultivos genéticamente modificados y no genéticamente modificados. Brookes había publicado anteriormente un estudio que encontró que el uso de cultivos biotecnológicos había reducido el volumen y el impacto ambiental de los herbicidas y otros pesticidas, lo que contradecía a Benbrook. [357] Brookes afirmó que Benbrook había hecho suposiciones "sesgadas e inexactas". [358]

Insecticidas

Un supuesto beneficio ambiental del algodón y maíz Bt es la reducción del uso de insecticidas. [359] [360] Un estudio de PG Economics concluyó que el uso global de pesticidas se redujo en 286.000 toneladas en 2006, disminuyendo el impacto ambiental de los pesticidas en un 15%. [361] Una encuesta de pequeñas granjas indias entre 2002 y 2008 concluyó que la adopción del algodón Bt había conducido a mayores rendimientos y menor uso de pesticidas. [362] Otro estudio concluyó que el uso de insecticidas en algodón y maíz durante los años 1996 a 2005 disminuyó en 35.600.000 kilogramos (78.500.000 lb) de ingrediente activo, aproximadamente igual a la cantidad anual aplicada en la Unión Europea. [363] Un estudio sobre el algodón Bt en seis provincias del norte de China entre 1990 y 2010 concluyó que redujo a la mitad el uso de pesticidas y duplicó el nivel de mariquitas , crisopas y arañas y extendió los beneficios ambientales a los cultivos vecinos de maíz, maní y soja. [364] [365]

Plagas de insectos resistentes

La resistencia evoluciona de manera natural después de que una población ha sido sometida a presión de selección mediante el uso repetido de un único pesticida. [366] En noviembre de 2009, los científicos de Monsanto descubrieron que el gusano rosado se había vuelto resistente a la primera generación de algodón Bt en partes de Gujarat , India (esa generación expresa un gen Bt, Cry1Ac ). Este fue el primer caso de resistencia Bt confirmado por Monsanto. [367] [368] Posteriormente se identificó una resistencia similar en Australia, China, España y los EE. UU. [369]

Una estrategia para retrasar la resistencia a Bt es plantar refugios para plagas utilizando cultivos convencionales, diluyendo así cualquier gen resistente. Otra es desarrollar cultivos con múltiples genes Bt que se dirijan a diferentes receptores dentro del insecto. [370] En 2012, un ensayo de campo en Florida demostró que los gusanos soldados eran resistentes al maíz transgénico de Dupont-Dow. Esta resistencia se descubrió en Puerto Rico en 2006, lo que llevó a Dow y DuPont a dejar de vender el producto allí. [371] El barrenador europeo del maíz , uno de los principales objetivos de Bt, también es capaz de desarrollar resistencia. [372]

Economía

El valor económico de los alimentos transgénicos para los agricultores es uno de sus principales beneficios, incluso en los países en desarrollo. [373] [374] [375] Un estudio de 2010 concluyó que el maíz Bt proporcionó beneficios económicos de 6.900 millones de dólares durante los 14 años anteriores en cinco estados del Medio Oeste. La mayoría (4.300 millones de dólares) correspondió a agricultores que producían maíz no Bt. Esto se atribuyó a que las poblaciones de barrenadores del maíz europeo se redujeron por la exposición al maíz Bt, lo que dejó menos para atacar al maíz convencional cercano. [376] [377] Los economistas agrícolas calcularon que "el excedente mundial [aumentó en] 240,3 millones de dólares en 1996. De este total, la mayor parte (59%) fue para los agricultores estadounidenses. La empresa de semillas Monsanto recibió la siguiente parte más grande (21%), seguida por los consumidores estadounidenses (9%), el resto del mundo (6%) y el proveedor de germoplasma, Delta and Pine Land Company (5%)". [378] Un estudio exhaustivo de 2012 de PG Economics concluyó que los cultivos transgénicos aumentaron los ingresos agrícolas en todo el mundo en 14 mil millones de dólares en 2010, y que más de la mitad de ese total se destinó a agricultores de países en desarrollo. [379]

El principal cultivo Bt que cultivan los pequeños agricultores en los países en desarrollo es el algodón. Un estudio de 2006 sobre los resultados del algodón Bt realizado por economistas agrícolas concluyó que "el balance general, aunque prometedor, es mixto. Los rendimientos económicos son muy variables a lo largo de los años, el tipo de explotación y la ubicación geográfica". [380] Sin embargo, el activista medioambiental Mark Lynas dijo que el rechazo total de la ingeniería genética es "ilógico y potencialmente perjudicial para los intereses de los pueblos más pobres y el medio ambiente". [381]

En 2013, el Consejo Asesor Científico de las Academias Europeas (EASAC) pidió a la UE que permitiera el desarrollo de tecnologías de modificación genética agrícola para hacer posible una agricultura más sostenible, empleando menos recursos de tierra, agua y nutrientes. El EASAC también criticó el "marco regulatorio costoso y que requiere mucho tiempo" de la UE y dijo que la UE se había quedado atrás en la adopción de tecnologías de modificación genética. [382]

Naciones en desarrollo

Los desacuerdos sobre las naciones en desarrollo incluyen la supuesta necesidad de aumentar los suministros de alimentos , [383] [384] [385] y cómo lograr tal aumento. Algunos científicos sugieren que se necesita una segunda Revolución Verde que incluya el uso de cultivos modificados para proporcionar alimentos suficientes. [386] [387] : 12  El potencial de los alimentos modificados genéticamente para ayudar a las naciones en desarrollo fue reconocido por la Evaluación Internacional de la Ciencia y la Tecnología Agrícolas para el Desarrollo , pero hasta 2008 no habían encontrado evidencia concluyente de una solución. [388] [389]

Escépticos como John Avise afirman que la aparente escasez se debe a problemas en la distribución y la política de alimentos, más que en la producción. [390] [391] [392] : 73  Otros críticos dicen que el mundo tiene tanta gente porque la segunda revolución verde adoptó prácticas agrícolas insostenibles que dejaron al mundo con más bocas que alimentar de las que el planeta puede sostener. [393] Pfeiffer afirmó que incluso si la agricultura tecnológica pudiera alimentar a la población actual, su dependencia de los combustibles fósiles, que en 2006 predijo incorrectamente que alcanzaría su pico de producción en 2010, conduciría a un aumento catastrófico de los precios de la energía y los alimentos. [394] : 1–2 

Entre las limitaciones que se alegan para la implementación de los proyectos en los países en desarrollo se encuentran la falta de un acceso fácil, los costos de los equipos y los derechos de propiedad intelectual que perjudican a los países en desarrollo. El Grupo Consultivo para la Investigación Agrícola Internacional (CGIAR), una organización de ayuda e investigación, fue elogiado por el Banco Mundial por sus esfuerzos, pero el banco recomendó que se centraran en la investigación genética y la mejora de la productividad. Entre los obstáculos se incluyen el acceso a patentes, licencias comerciales y la dificultad que tienen los países en desarrollo para acceder a los recursos genéticos y a otra propiedad intelectual. El Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura intentó remediar este problema, pero los resultados han sido inconsistentes. Como resultado, los "cultivos huérfanos", como el teff , el mijo , las arvejas y las plantas autóctonas, que son importantes en estos países, reciben poca inversión. [395]

Al escribir sobre la publicación de Norman Borlaug de 2000 Ending world hungry: the promise of biotechnology and the threat of antiscience zealotry , [396] los autores argumentaron que las advertencias de Borlaug seguían siendo válidas en 2010:

Los cultivos transgénicos son tan naturales y seguros como el trigo panificable actual, opinó el Dr. Borlaug, quien también recordó a los científicos agrícolas su obligación moral de enfrentarse a la multitud anticientífica y advertir a los responsables políticos que la inseguridad alimentaria mundial no desaparecerá sin esta nueva tecnología y que ignorar esta realidad haría que las soluciones futuras fueran aún más difíciles de lograr. [397]

Producir

Los rendimientos del maíz en Estados Unidos se mantuvieron estables hasta la década de 1930, cuando la adopción de semillas híbridas convencionales hizo que aumentaran en aproximadamente 0,8 bushels/acre (1937-1955). A partir de entonces, una combinación de genética mejorada, disponibilidad de fertilizantes y pesticidas y mecanización aumentó la tasa de aumento a 1,9 bushels por acre por año. En los años posteriores a la llegada del maíz transgénico, la tasa aumentó ligeramente a 2,0. [398] Los rendimientos promedio del maíz en Estados Unidos fueron de 174,2 bushels por acre en 2014. [399]

Los cultivos transgénicos comerciales tienen características que reducen la pérdida de rendimiento debido a la presión de los insectos o la interferencia de las malezas. [400] [401]

Reseña del año 2014

Una revisión de 2014 concluyó que los efectos de los cultivos transgénicos en la agricultura eran positivos. [348] Según The Economist , el metanálisis consideró todos los exámenes publicados en inglés sobre los impactos agronómicos y económicos entre 1995 y marzo de 2014. El estudio encontró que los cultivos tolerantes a los herbicidas tienen costos de producción más bajos, mientras que para los cultivos resistentes a los insectos el uso reducido de pesticidas fue compensado por precios más altos de las semillas, dejando los costos generales de producción aproximadamente iguales. [402]

Los rendimientos aumentaron un 9% en el caso de la tolerancia a los herbicidas y un 25% en el de la resistencia a los insectos. Los agricultores que adoptaron cultivos transgénicos obtuvieron un 69% más de beneficios que los que no lo hicieron. El estudio concluyó que los cultivos transgénicos ayudan a los agricultores de los países en desarrollo, aumentando los rendimientos en 14 puntos porcentuales. [402]

Los investigadores consideraron algunos estudios que no fueron revisados ​​por pares y algunos que no informaron tamaños de muestra. Intentaron corregir el sesgo de publicación al considerar fuentes más allá de las revistas académicas . El gran conjunto de datos permitió que el estudio controlara variables potencialmente confusas, como el uso de fertilizantes. Por otra parte, concluyeron que la fuente de financiación no influyó en los resultados del estudio. [402]

Reseña del año 2010

Un artículo de 2010, apoyado por CropLife International, resumió los resultados de 49 estudios revisados ​​por pares. [403] [404] En promedio, los agricultores en los países desarrollados aumentaron sus rendimientos en un 6% y en un 29% en los países en desarrollo.

La labranza disminuyó entre un 25% y un 58% en los cultivos de soja resistentes a los herbicidas. Los cultivos resistentes al glifosato permitieron a los agricultores plantar hileras más juntas, ya que no tuvieron que controlar las malezas postemergentes con labranza mecánica. [405] Las aplicaciones de insecticidas en los cultivos Bt se redujeron entre un 14% y un 76%. El 72% de los agricultores de todo el mundo experimentaron resultados económicos positivos.

Reseña del año 2009

En 2009, la Unión de Científicos Preocupados , un grupo opuesto a la ingeniería genética y la clonación de animales destinados a la alimentación, resumió estudios revisados ​​por pares sobre la contribución de la soja y el maíz transgénicos al rendimiento en los EE. UU. [406] El informe concluyó que otros métodos agrícolas habían hecho una mayor contribución a los aumentos del rendimiento de los cultivos nacionales en los últimos años que la ingeniería genética.

Estudio de Wisconsin

Un estudio inusualmente publicado como correspondencia en lugar de como artículo examinó el maíz modificado para expresar cuatro rasgos (resistencia al barrenador europeo del maíz, resistencia al gusano de la raíz del maíz, tolerancia al glifosato y tolerancia al glifosinato) individualmente y en combinación en campos de Wisconsin de 1990 a 2010. [407] La ​​variación en el rendimiento de un año a otro se redujo, lo que equivale a un aumento del rendimiento de 0,8 a 4,2 bushels por acre. Los cambios en el rendimiento de bushels por acre fueron +6,4 para la resistencia al barrenador europeo del maíz, +5,76 para la tolerancia al glufosinato, -5,98 para la tolerancia al glifosato y -12,22 para la resistencia al gusano de la raíz del maíz. El estudio encontró interacciones entre los genes en cepas híbridas de múltiples rasgos, de modo que el efecto neto varió de la suma de los efectos individuales. Por ejemplo, la combinación de resistencia al barrenador europeo del maíz y tolerancia al glufosinato aumentó los rendimientos en un 3,13 %, menor que cualquiera de los rasgos individuales [408].

Dinámica del mercado

La industria de las semillas está dominada por un pequeño número de empresas integradas verticalmente . [409] [410] En 2011, el 73% del mercado mundial estaba controlado por 10 empresas. [411]

En 2001, el USDA informó que la consolidación de la industria condujo a economías de escala , pero señaló que la decisión de algunas empresas de deshacerse de sus operaciones de semillas cuestionaba la viabilidad a largo plazo de estos conglomerados. [412] Dos economistas han dicho que el poder de mercado de las empresas de semillas podría aumentar el bienestar a pesar de sus estrategias de precios, porque "aunque la discriminación de precios a menudo se considera una distorsión no deseada del mercado, puede aumentar el bienestar total al aumentar la producción total y al hacer que los bienes estén disponibles para mercados en los que de otra manera no aparecerían". [413]

Market share gives firms the ability to set or influence price, dictate terms, and act as a barrier to entry. It also gives firms bargaining power over governments in policy making.[414][415] In March 2010, the US Department of Justice and the US Department of Agriculture held a meeting in Ankeny, Iowa, to look at the competitive dynamics in the seed industry. Christine Varney, who heads the antitrust division in the Justice Department, said that her team was investigating whether biotech-seed patents were being abused.[416] A key issue was how Monsanto licenses its patented glyphosate-tolerance trait that was in 93 percent of US soybeans grown in 2009.[417] About 250 family farmers, consumers and other critics of corporate agriculture held a town meeting prior to the government meeting to protest Monsanto's purchase of independent seed companies, patenting seeds and then raising seed prices.[416]

Intellectual property

Traditionally, farmers in all nations saved their own seed from year to year. However, since the early 1900s hybrid crops have been widely used in the developed world and seeds to grow these crops are purchased each year from seed producers.[418] The offspring of the hybrid corn, while still viable, lose hybrid vigor (the beneficial traits of the parents). This benefit of first-generation hybrid seeds is the primary reason for not planting second-generation seed. However, for non-hybrid GM crops, such as GM soybeans, seed companies use intellectual property law and tangible property common law, each expressed in contracts, to prevent farmers from planting saved seed. For example, Monsanto's typical bailment license (covering transfer of the seeds themselves) forbids saving seeds, and also requires purchasers to sign a separate patent license agreement.[419][420]

Corporations say that they need to prevent seed piracy, to fulfill financial obligations to shareholders, and to finance further development. DuPont spent approximately half its $2 billion research and development (R&D) budget on agriculture in 2011[421] while Monsanto spends 9–10% of sales on R&D.[422]

Detractors such as Greenpeace say that patent rights give corporations excessive control over agriculture.[423] The Center for Ecoliteracy claimed that "patenting seeds gives companies excessive power over something that is vital for everyone".[424] A 2000 report stated, "If the rights to these tools are strongly and universally enforced - and not extensively licensed or provided pro bono in the developing world – then the potential applications of GM technologies described previously are unlikely to benefit the less developed nations of the world for a long time" (i.e. until after the restrictions expire).[425]

Monsanto has patented its seed and it obligates farmers who choose to buy its seeds to sign a license agreement, obligating them store or sell, but not plant, all the crops that they grow.[187]: 213 [426]: 156 

Besides large agri-businesses, in some instances, GM crops are also provided by science departments or research organisations which have no commercial interests.[427]

Lawsuits filed against farmers for patent infringement

Monsanto has filed patent infringement suits against 145 farmers, but proceeded to trial with only 11.[428] In some of the latter, the defendants claimed unintentional contamination by gene flow, but Monsanto won every case.[428] Monsanto Canada's Director of Public Affairs stated, "It is not, nor has it ever been Monsanto Canada's policy to enforce its patent on Roundup Ready crops when they are present on a farmer's field by accident ... Only when there has been a knowing and deliberate violation of its patent rights will Monsanto act."[429] In 2009 Monsanto announced that after its soybean patent expires in 2014, it will no longer prohibit farmers from planting soybean seeds that they grow.[430]

One example of such litigation is the Monsanto v. Schmeiser case.[431] This case is widely misunderstood.[432] In 1997, Percy Schmeiser, a canola breeder and grower in Bruno, Saskatchewan, discovered that one of his fields had canola that was resistant to Roundup. He had not purchased this seed, which had blown onto his land from neighboring fields. He later harvested the area and saved the crop in the back of a pickup truck.[431]: para 61 & 62  Before the 1998 planting, Monsanto representatives informed Schmeiser that using this crop for seed would infringe the patent, and offered him a license, which Schmeiser refused.[431]: para 63 [433] According to the Canadian Supreme Court, after this conversation "Schmeiser nevertheless took the harvest he had saved in the pick-up truck to a seed treatment plant and had it treated for use as seed. Once treated, it could be put to no other use. Mr. Schmeiser planted the treated seed in nine fields, covering approximately 1,000 acres in all ... A series of independent tests by different experts confirmed that the canola Mr. Schmeiser planted and grew in 1998 was 95 to 98 percent Roundup resistant."[431]: para 63–64  After further negotiations between Schmeiser and Monsanto broke down, Monsanto sued Schmeiser for patent infringement and prevailed in the initial case. Schmeiser appealed and lost, and appealed again to the Canadian Supreme Court, which in 2004 ruled 5 to 4 in Monsanto's favor, stating that "it is clear on the findings of the trial judge that the appellants saved, planted, harvested and sold the crop from plants containing the gene and plant cell patented by Monsanto".[431]: para 68 

International trade

GM crops have been the source of international trade disputes and tensions within food-exporting nations over whether introduction of genetically modified crops would endanger exports to other countries.[434]

In Canada in 2010, flax exports to Europe were rejected when traces of an experimental GM flax were found in shipments.[435] This led a member of Parliament to propose Private Member's Bill C-474, which would have required that "an analysis of potential harm to export markets be conducted before the sale of any new genetically engineered seed is permitted".[436] Opponents claimed that "incorporating stringent socio-economic standards into the science-based regulatory system could spell the end of private research funding; because if private biotechnology companies can't see the possibility of a return on their investment, they'll invest their research budget elsewhere".[435] The bill was defeated 176 to 97 in 2011.[437]

Regulation

Labeling

Status

In 2014, 64 countries required labeling of all GM foods.[438][439]: 7  These include the European Union,[440][441] Japan,[442] Australia,[443] New Zealand,[443] Russia,[citation needed] China[444] and India.[445] As of March 2015, Israel was in the process of issuing regulations for labeling of food with ingredients from GMOs.[446][447]

Alaska required labeling of GMO fish and shellfish in 2005, even though no GM fish had been approved by the FDA at the time.[448] A 2014 Vermont law went into effect on July 1, 2016, and some food manufacturers (including General Mills, Mars, Kellogg's, the Campbell Soup Company, PepsiCo, ConAgra, Frito-Lay, and Bimbo Bakeries USA) began distributing products either locally or nationwide with labels such as "Partially produced with Genetic Engineering".[449][450] Other manufacturers removed about 3,000 non-compliant products from sale in Vermont.[451][452] The federal government of the United States passed a law at the end of that month pre-empting all state laws, including Vermont's. The law requires labeling regulations to be issued by July 2018, and allows indirect disclosure such as with a phone number, bar code, or web site.[453] It is unclear whether the rules will require labeling of oils and sugars from GM crops, where the final product does not contain any "genetic material" as mentioned in the law.[454]

Prior to the new federal rules taking effect, while it does require pre-market approval, the U.S. Food and Drug Administration has not required GMO labeling as long as there are no differences in health, environmental safety, and consumer expectations based on the packaging.[455][456][457]The federal rules come after GMO labeling was debated in many state legislatures[458][459] and defeated in popular referendums in Oregon (2002 and 2014), Colorado (2014),[460] California Proposition 37 (2012), and Washington Initiative 522 (2012). Connecticut[461] and Maine[462] had passed laws in 2013 and 2014 respectively, which would have required GMO food labels if Northeast states with a population of at least 20 million had passed similar laws (and for Connecticut, representing at least four states).

Other jurisdictions make such labeling voluntary or have had plans to require labeling.[463][464][465] Major GM food crop exporters like the United States (until 2018), Argentina, and Canada have adopted voluntary labeling approaches; China and Brazil have major GM (largely non-food) crops and have adopted mandatory labelling.[466]

Arguments

The American Medical Association (AMA)[10] and the American Association for the Advancement of Science[146] have opposed mandatory labeling absent scientific evidence of harm. The AMA said that even voluntary labeling is misleading unless accompanied by focused consumer education. The AAAS stated that mandatory labeling "can only serve to mislead and falsely alarm consumers".

[Labeling] efforts are not driven by evidence that GM foods are actually dangerous. Indeed, the science is quite clear: crop improvement by the modern molecular techniques of biotechnology is safe. Rather, these initiatives are driven by a variety of factors, ranging from the persistent perception that such foods are somehow "unnatural" and potentially dangerous to the desire to gain competitive advantage by legislating attachment of a label meant to alarm. Another misconception used as a rationale for labeling is that GM crops are untested.[146]

The American Public Health Association,[467] the British Medical Association[468] and the Public Health Association of Australia[469] support mandatory labeling. The European Commission argued that mandatory labeling and traceability are needed to allow for informed choice, avoid potential misleading of consumers[440] and facilitate the withdrawal of products if adverse effects on health or the environment are discovered.[441] A 2007 review on the effect of labeling laws found that once labeling went into effect, few products continued to contain GM ingredients.[470]

Objectivity of regulatory bodies

Groups such as the Union of Concerned Scientists and Center for Food Safety that have expressed concerns about the FDA's lack of a requirement for additional testing for GMO's, lack of required labeling and the presumption that GMO's are "Generally Recognized as Safe" (GRAS), have questioned whether the FDA is too close to companies that seek approval for their products.[49]

Critics in the U.S. protested the appointment of lobbyists to senior positions in the Food and Drug Administration. Michael R. Taylor, a former Monsanto lobbyist, was appointed as a senior adviser to the FDA on food safety in 1991. After leaving the FDA, Taylor became a vice-president of Monsanto. On 7 July 2009, Taylor returned to government as a senior adviser to the FDA Commissioner.[471]

In 2001, when the Starlink corn recall became public, the U.S. Environmental Protection Agency was criticized for being slow to react by Joseph Mendelson III of the Center for Food Safety.[472] He also criticized the EPA and Aventis CropScience for statements at the time of the recall, that indicated they did not anticipate that such a thing would happen.[472]

The Canadian Biotechnology Advisory Committee that reviewed Canada's regulations in 2003 was accused by environmental and citizen groups of not representing the full spectrum of public interests and for being too closely aligned to industry groups.[473]

Most of the Chinese National Biosafety Committee are involved in biotechnology, a situation that led to criticisms that they do not represent a wide enough range of public concerns.[474]

Litigation and regulation disputes

United States

Four federal district court suits have been brought against Animal and Plant Health Inspection Service (APHIS), the agency within USDA that regulates genetically modified plants. Two involved field trials (herbicide-tolerant turfgrass in Oregon; pharmaceutical-producing corn and sugar in Hawaii) and two the deregulation of GM alfalfa.[475] and GM sugar beet.[476] APHIS lost all four cases at trial, with the judges ruling they failed to diligently follow the guidelines set out in the National Environmental Policy Act. However, the Supreme Court overturned the nationwide ban on GM alfalfa[477] and an appeal court allowed the partial deregulation of GM sugar beets.[478] After APHIS prepared Environmental Impact Statements for both alfalfa and sugar beets they were approved.[479][480]

In 2014, Maui County, Hawaii approved an initiative calling for a moratorium on GMO production and research. The initiative specified penalties including fines and jail for knowing violations and did not limit its scope to commercial agriculture.[481][482] The initiative passed by about 50.2 to 47.9 percent.[483]

On December 15, 2015, the New York Times ran an op-ed titled "Are You Eating Frankenfish?", saying that the United States congress will debate whether genetically engineered salmon should be labeled.[484][485][486]

European Union

Until the 1990s, Europe's regulation was less strict than in the U.S.[487] In 1998, the use of MON810, a Bt expressing maize conferring resistance to the European corn borer, was approved for commercial cultivation in Europe. However, in the 1990s a series of unrelated food crises created consumer apprehension about food safety in general and eroded public trust in government oversight. A bovine spongiform encephalopathy outbreak was the most publicized.[488] In 1998, a de facto moratorium led to the suspension of approvals of new GMOs in the EU pending the adoption of revised rules.

In the mid-1990s, government approval of some GMO crops in the United States precipitated public concern in Europe and led to a dramatic decrease in American exports to Europe. "Prior to 1997, corn exports to Europe represented about 4% of total US corn exports, generating about $300 million in sales ... For example, before 1997, the U.S. sold about 1.75 million tons of corn annually to Spain and Portugal ... But in the 1998–99 crop year, Spain bought less than a tenth of the previous year's amount and Portugal bought none at all."[488]

In May 2003, the US and twelve other countries filed a formal complaint with the World Trade Organization that the EU was violating international trade agreements, by blocking imports of US farm products through its ban on GM food.[citation needed] The countries argued that the EU's regulatory process was far too slow and its standards were unreasonable given the scientific evidence showing that the crops were safe. The case was lobbied by Monsanto and France's Aventis, as well as by US agricultural groups such as the National Corn Growers Association. In response, in June 2003, the European Parliament ratified a U.N. biosafety protocol regulating international trade in GM food, and in July agreed to new regulations requiring labeling and traceability, as well as an opt-out provision for individual countries. The approval of new GMOs resumed in May 2004. While GMOs have been approved since then, approvals remain controversial and various countries have utilized opt-out provisions. In 2006, the World Trade Organization ruled that the pre-2004 restrictions had been violations,[489][490] although the ruling had little immediate effect since the moratorium had already been lifted.

In late 2007, the US ambassador to France recommended "moving to retaliation" to cause "some pain" against France and the European Union in an attempt to fight the French ban and changes in European policy toward genetically modified crops, according to a leaked diplomatic cable.[491]

20 out of 28 European Countries (including Switzerland) said No to GMOs until October 2015.[492][493][494]

Australia

In May 2014, the Supreme Court of the Australian state of Western Australia dismissed "Marsh v. Baxter".[495][496] The plaintiff was Steve Marsh, an organic farmer, and the defendant was Michael Baxter, his lifelong neighbour, who grew GM canola.[497] In late 2010, Marsh found seeds from Baxter's crop in his fields. Later, Marsh found escaped GM canola growing amidst his crop. Marsh reported the seed and plants to his local organic certification board, and lost the organic certification of some 70 per cent of his 478 hectare farm.[495] Marsh sued on the grounds that Baxter used a method of harvesting his crop that was substandard and negligent, and on the basis that his land had been widely contaminated.[495] In its summary judgment, the court found that approximately 245 cut canola plants were blown by the wind into Marsh's property, Eagle's Rest.[496]: 2  However, Baxter's method (swathing) was "orthodox and well accepted harvest methodology".[496]: 5  "In 2011, eight GM canola plants were found to have grown up as self-sown volunteer plants on Eagle Rest", which "were identified and pulled out", and "no more volunteer RR canola plants grew on Eagle Rest in subsequent years".[496]: 4  The summary judgment stated that the loss of organic certification "was occasioned by the erroneous application of governing NASAA Standards applicable to NASAA organic operators as regards GMOs (genetically modified organisms) at the time".[496]: 4  and that "[t]he absence of a reliable underlying evidentiary platform to support a perpetual injunction against swathing was a significant deficiency".[496]: 6 

On June 18, 2014, Marsh announced that he had filed an appeal.[498] One ground was the costs of $803,989 awarded against him. The appeal hearing commenced on 23 March 2015 and was adjourned on 25 March "to deal with an order to ascertain whether Mr Baxter's defence has been financially supported by GM-seed supplier Monsanto and/or the Pastoralists and Graziers Association (PGA)".[499][500] The Court of Appeal subsequently dismissed the appeal and ordered Marsh to pay Baxter's costs.[501]

Philippines

A petition filed May 17, 2013, by environmental group Greenpeace Southeast Asia and farmer-scientist coalition Masipag (Magsasaka at Siyentipiko sa Pagpapaunlad ng Agrikultura) asked the appellate court to stop the planting of Bt eggplant in test fields, saying the impacts of such an undertaking to the environment, native crops and human health are still unknown. The Court of Appeals granted the petition, citing the precautionary principle stating "when human activities may lead to threats of serious and irreversible damage to the environment that is scientifically plausible but uncertain, actions shall be taken to avoid or diminish the threat".[502] Respondents filed a motion for reconsideration in June 2013 and on September 20, 2013 the Court of Appeals chose to uphold their May decision saying the bt talong field trials violate the people's constitutional right to a "balanced and healthful ecology".[503][504] The Supreme Court on December 8, 2015, permanently stopped the field testing for Bt (Bacillus thuringiensis) talong (eggplant), upholding the decision of the Court of Appeals which stopped the field trials for the genetically modified eggplant.[505]

In April 2023, the Supreme Court of the Philippines issued a Writ of Kalikasan ordering the Philippine Department of Agriculture to stop the commercial distribution of genetically modified rice and eggplants in the country.[506]

Process-based regulation

Scientists have argued or elaborated a need for an evidence-based reform of regulation of genetically modified crops that moves it from regulation based on characteristics of the development-process (process-based regulation) to characteristics of the product (product-based regulation).[507][further explanation needed]

Innovation in technology and regulatory law

The first genetically modified crops were made with transgenic approaches, introducing foreign genes and sometimes using bacteria to transfer the genes. In the US, these foreign genetic elements placed the resulting plant under the jurisdiction of the USDA under the Plant Protection Act.[508][509] However, as of 2010, newer genetic engineering technologies like genome editing have allowed scientists to modify plant genomes without adding foreign genes, thus escaping USDA regulation.[508] Critics have called for regulation to be changed to keep up with changing technology.[508]

Legislation

See Farmer Assurance Provision. (This bill is commonly referred to as the "Monsanto Protection Act" by its critics.[510][511][512])

African controversies

In 2002, in the midst of a famine, Zambia refused emergency food aid that contained food from genetically modified crops, based on the precautionary principle.[513]

During a conference in the Ethiopian capital of Addis Ababa, Kingsley Amoako, Executive Secretary of the United Nations Economic Commission for Africa (UNECA), encouraged African nations to accept GM food and expressed dissatisfaction in the public's negative opinion of biotechnology.[514]

Studies for Uganda showed that transgenic bananas had a high potential to reduce rural poverty but that urban consumers with a relatively higher income might reject them.[515][516]

Critics claimed that shipment of US food to southern Africa was more about promoting the adoption of biotech crops in the region than about hunger. The US was supplying Africa with meals and support during a food crisis they were facing in the early 2000s. However, once some of the African countries realized that these shipments contained GM maize, they rejected the shipments and stopped releasing the food that had been sent to them. Critics accused the US of "exploiting the Southern African famine as a public relations tool". The U.S. countered these comments by saying that European nations were letting millions of Africans suffer from hunger and starvation because of "irrational fears over hypothetical and unproven risks". The US had a pre-GMO policy of shipping US crops as food aid, rather than buying crops in/near the countries that needed aid. The US policy was claimed to be more costly than Europe's.[517]

Genetically modified food controversies in Ghana have been widespread since 2013.

Indian controversies

India is an agrarian country with around 60% of its people depending directly or indirectly upon agriculture. From 1995 to 2013, a total of 296,438 farmers have killed themselves in India, or an average of 16,469 suicides per year.[518] During the same period, about 9.5 million people died per year in India from other causes including malnutrition, diseases and suicides that were non-farming related, or about 171 million deaths from 1995 to 2013.[519] Activists and scholars have offered a number of conflicting reasons for farmer suicides, such as monsoon failure, high debt burdens, genetically modified crops, government policies, public mental health, personal issues and family problems.[520][521][522] There are also accusations of states reporting inaccurate data on farmer suicides.[523][524]

In India, GM cotton yields in Maharashtra, Karnataka, and Tamil Nadu resulted in an average 42% increase in yield in 2002, the first year of commercial planting. A severe drought in Andhra Pradesh that year prevented any increase in yield, because the GM strain was not drought tolerant.[525] Drought-tolerant variants were later developed. Driven by substantially reduced losses to insect predation, by 2011 88% of Indian cotton was modified.[526] There are economic and environmental benefits of GM cotton to farmers in India.[527][528] A study from 2002 through 2008 on the economic impacts of Bt cotton in India, showed that Bt cotton increased yields, profits and living standards of smallholder farmers.[529] However, recently cotton bollworm has been developing resistance to Bt cotton. Consequently, in 2012 Maharashtra banned Bt cotton and ordered an independent socioeconomic study of its use.[530] Indian regulators cleared the Bt brinjal, a genetically modified eggplant, for commercialisation in October 2009. After opposition by some scientists, farmers and environmental groups, a moratorium was imposed on its release in February 2010 "for as long as it is needed to establish public trust and confidence".[531][532][533]

As of 1 January 2013, all foods containing GMOs must be labelled. The Legal Metrology (Packaged Commodities) Rules, 2011 states that "every package containing the genetically modified food shall bear at the top of its principal display panel the letters 'GM.'" The rules apply to 19 products including biscuits, breads, cereals and pulses, and a few others. The law faced criticism from consumer rights activists as well as from the packaged-food industry; both sides had major concerns that no logistical framework or regulations had been established to guide the law's implementation and enforcement. On March 21, 2014, the Indian government revalidated 10 GM-based food crops and allowed field trials of GM food crops, including wheat, rice and maize.[534]

See also

References

  1. ^ "Proposals for managing the coexistence of GM, conventional and organic crops Response to the Department for Environment, Food and Rural Affairs consultation paper" (PDF). Chartered Institute of Environmental Health. October 2006. Archived from the original (PDF) on May 25, 2017. Retrieved March 25, 2014.
  2. ^ a b "Statement on Genetically Modified Organisms in the Environment and the Marketplace". Canadian Association of Physicians for the Environment. October 2013. Archived from the original on March 26, 2014. Retrieved March 25, 2014.
  3. ^ "Genetically Modified Maize: Doctors' Chamber Warns of "Unpredictable Results" to Humans". PR Newswire. November 11, 2013.
  4. ^ "IDEA Position on Genetically Modified Foods". Irish Doctors' Environmental Association. Archived from the original on March 26, 2014. Retrieved March 25, 2014.
  5. ^ "Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. p. 7. Archived from the original (PDF) on September 7, 2012. Retrieved November 7, 2012. To better detect potential harms of bioengineered foods, the Council believes that pre-market safety assessment should shift from a voluntary notification process to a mandatory requirement
  6. ^ a b c Hollingworth RM, Bjeldanes LF, Bolger M, Kimber I, Meade BJ, Taylor SL, Wallace KB (January 2003). "The safety of genetically modified foods produced through biotechnology". Toxicological Sciences. 71 (1): 2–8. doi:10.1093/toxsci/71.1.2. PMID 12520069.
  7. ^ a b "Substantial Equivalence in Food Safety Assessment" (PDF). Council for Biotechnology Information. March 11, 2001. Archived from the original (PDF) on February 6, 2009.
  8. ^ a b c d Winter CK, Gallegos LK (2006). "Safety of Genetically Engineered Food" (PDF). University of California Agricultural and Natural Resource Service. ANR Publication 8180.
  9. ^ a b c d Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (December 2002). "Substantial equivalence – an appropriate paradigm for the safety assessment of genetically modified foods?". Toxicology. 181–182: 427–31. Bibcode:2002Toxgy.181..427K. doi:10.1016/S0300-483X(02)00488-2. PMID 12505347.
  10. ^ a b "Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Archived from the original (PDF) on September 7, 2012. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature. (first page)
  11. ^ a b United States Institute of Medicine and National Research Council (2004). Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects. National Academies Press. Free full-text. National Academies Press. pp R9-10: "In contrast to adverse health effects that have been associated with some traditional food production methods, similar serious health effects have not been identified as a result of genetic engineering techniques used in food production. This may be because developers of bioengineered organisms perform extensive compositional analyses to determine that each phenotype is desirable and to ensure that unintended changes have not occurred in key components of food."
  12. ^ a b c Key S, Ma JK, Drake PM (June 2008). "Genetically modified plants and human health". Journal of the Royal Society of Medicine. 101 (6): 290–8. doi:10.1258/jrsm.2008.070372. PMC 2408621. PMID 18515776. +pp 292-293. Foods derived from GM crops have been consumed by hundreds of millions of people across the world for more than 15 years, with no reported ill effects (or legal cases related to human health), despite many of the consumers coming from that most litigious of countries, the USA.
  13. ^ a b c Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology. 34 (1): 77–88. doi:10.3109/07388551.2013.823595. PMID 24041244. S2CID 9836802. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

    The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.
  14. ^ a b "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved August 30, 2019. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).
  15. ^ a b Ronald, Pamela (May 1, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188 (1): 11–20. doi:10.1534/genetics.111.128553. PMC 3120150. PMID 21546547. There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
  16. ^ a b

    But see also:

    Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734–742. Bibcode:2011EnInt..37..734D. doi:10.1016/j.envint.2011.01.003. PMID 21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

    Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment". Science, Technology, & Human Values. 40 (6): 883–914. doi:10.1177/0162243915598381. S2CID 40855100. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

    And contrast:

    Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 213–217. doi:10.3109/07388551.2015.1130684. ISSN 0738-8551. PMID 26767435. S2CID 11786594. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

    The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

    and

    Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (4): 1851–1855. Bibcode:2016JSFA...96.1851Y. doi:10.1002/jsfa.7523. PMID 26536836. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011). Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

    Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.
  17. ^ a b "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved August 30, 2019. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

    Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"" (PDF). American Association for the Advancement of Science. Retrieved August 30, 2019.
  18. ^ a b European Commission. Directorate-General for Research (2010). A decade of EU-funded GMO research (2001–2010) (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved August 30, 2019.
  19. ^ a b "AMA Report on Genetically Modified Crops and Foods (online summary)". American Medical Association. January 2001. Retrieved August 30, 2019. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts." "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts.

    "REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Archived from the original (PDF) on September 7, 2012. Retrieved August 30, 2019. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.
  20. ^ a b "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 30, 2015. Retrieved August 30, 2019. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  21. ^ a b National Academies Of Sciences, Engineering; Division on Earth Life Studies; Board on Agriculture Natural Resources; Committee on Genetically Engineered Crops: Past Experience Future Prospects (2016). Genetically Engineered Crops: Experiences and Prospects. The National Academies of Sciences, Engineering, and Medicine (US). p. 149. doi:10.17226/23395. ISBN 978-0-309-43738-7. PMID 28230933. Retrieved August 30, 2019. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
  22. ^ a b "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved August 30, 2019. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.
  23. ^ a b Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnology. 21 (7): 739–741. doi:10.1038/nbt0703-739. PMID 12833088. S2CID 2533628. These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
  24. ^ a b Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:

    "Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved August 30, 2019. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

    When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

    Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

    The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.
  25. ^ a b Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Archived from the original on January 9, 2019. Retrieved August 30, 2019. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
  26. ^ a b c d e Marris, Claire (July 2001). "Public views on GMOs: deconstructing the myths. Stakeholders in the GMO debate often describe public opinion as irrational. But do they really understand the public?". EMBO Reports. 2 (7): 545–8. doi:10.1093/embo-reports/kve142. PMC 1083956. PMID 11463731.
  27. ^ a b Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. Archived from the original on May 25, 2017. Retrieved August 30, 2019.
  28. ^ a b Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275. PMID 27217243. S2CID 261060.
  29. ^ a b "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved August 30, 2019.
  30. ^ a b Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. Archived from the original on June 21, 2018. Retrieved August 30, 2019.
  31. ^ a b Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time. Retrieved August 30, 2019.
  32. ^ a b Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Archived from the original on September 29, 2016. Retrieved August 30, 2019.
  33. ^ Swann JP. "The 1906 Food and Drugs Act and Its Enforcement". FDA History – Part I. U.S. Food and Drug Administration. Retrieved April 10, 2013.
  34. ^ Konnikova M (August 8, 2013). "The Psychology of Distrusting G.M.O.s". The New Yorker.
  35. ^ Brody, Jane E. (April 23, 2018). "Are G.M.O. Foods Safe?". The New York Times. ISSN 0362-4331. Retrieved January 7, 2019.
  36. ^ Pollack, Andrew (May 17, 2016). "Genetically Engineered Crops Are Safe, Analysis Finds". The New York Times. ISSN 0362-4331. Retrieved January 7, 2019.
  37. ^ Borel B (November 1, 2012). "Can Genetically Engineered Foods Harm You?". Huffington Post. Retrieved September 7, 2013.
  38. ^ Editors of Nature (May 2, 2013). "Editorial: Fields of gold". Nature. 497 (5–6): 5–6. doi:10.1038/497005b. PMID 23646363.
  39. ^ a b Harmon A (January 4, 2014). "A Lonely Quest for Facts on Genetically Modified Crops". The New York Times.
  40. ^ a b Johnson N (July 8, 2013). "The genetically modified food debate: Where do we begin?". Grist.
  41. ^ a b c Hunt L (2004). "Factors determining the public understanding of GM technologies" (PDF). AgBiotechNet. 6 (128): 1–8. Archived from the original (Review Article) on November 2, 2013. Retrieved September 16, 2012.
  42. ^ Lazarus RJ (1991). "The Tragedy of Distrust in the Implementation of Federal Environmental Law". Law and Contemporary Problems. 54 (4): 311–74. doi:10.2307/1191880. JSTOR 1191880.
  43. ^ Kloor K (October 19, 2012). "Liberals Turn a Blind Eye to Crazy Talk on GMOs". Discover Magazine. Archived from the original on November 19, 2019. Retrieved January 28, 2014.
  44. ^ Hughlett M (November 5, 2013). "Firebrand activist leads organic consumers association". Star Tribune (Minneapolis) for the Wichita Eagle. Archived from the original on February 2, 2014. Retrieved January 28, 2014.
  45. ^ Alberts B, Beachy R, Baulcombe D, Blobel G, Datta S, Fedoroff N, Kennedy D, Khush GS, Peacock J, Rees M, Sharp P (2013). "Standing up for GMOs". Science. 341 (6152): 1320. Bibcode:2013Sci...341.1320A. doi:10.1126/science.1245017. PMID 24052276.
  46. ^ Wendel JA (September 10, 2013). "Scientists, journalists and farmers join lively GMO forum". Genetic Literacy Project.
  47. ^ Kloor K (August 22, 2014). "On Double Standards and the Union of Concerned Scientists". Discover Magazine's CollideAScape. Archived from the original on November 20, 2019. Retrieved November 19, 2014.
  48. ^ "Biotechnology companies produce genetically engineered crops to control insects and weeds and to manufacture pharmaceuticals and other chemicals. The Union of Concerned Scientists works to strengthen the federal oversight needed to prevent such products from contaminating our food supply". Alternatives to Genetic Engineering. Union of Concerned Scientists. Archived from the original on October 30, 2015. Retrieved November 19, 2014.
  49. ^ a b c Marden E (2003). "Risk and Regulation: U.S. Regulatory Policy on Genetically Modified Food and Agriculture". 44 B.C.L. Rev. 733. By the late 1990s, public awareness of GM foods reached a critical level and a number of public interest groups emerged to focus on the issue. One of the early groups to focus on the issue was Mothers for Natural Law ("MFNL"), an Iowa-based organization that aimed to ban GM foods from the market....The Union of Concerned Scientists ("UCS"), an alliance of 50,000 citizens and scientists, has been another prominent voice on the issue.... As the pace of GM products entering the market increased in the 1990s, UCS became a vocal critic of what it saw as the agency's collusion with industry and failure to fully take account of allergenicity and other safety issues.
  50. ^ "Pew Research Center: The GMO debate is hugely polarizing, but the divide 'does not fall along familiar political fault lines'". December 2, 2016.
  51. ^ Food Biotechnology in the United States: Science, Regulation, and Issues Archived December 28, 2009, at the Wayback Machine Congressional Research Service: The Library of Congress 2001
  52. ^ Bittman M (September 2, 2016). "Opinion | G.M.O. Labeling Law Could Stir a Revolution". The New York Times. ISSN 0362-4331. Retrieved January 7, 2019.
  53. ^ "What if we open sourced genetic engineering? | Opensource.com". opensource.com.
  54. ^ Fecht S (April 8, 2013). "Can Syngenta help make open-source GMOs a reality?".
  55. ^ Kaufman F (July 9, 2013). "Let's Make Genetically Modified Food Open-Source". Slate.
  56. ^ Deibel E (January 9, 2014). "Open Genetic Code: on open source in the life sciences". Life Sciences, Society and Policy. 10: 2. doi:10.1186/2195-7819-10-2. PMC 4513027. PMID 26573980.
  57. ^ "Public Perceptions of Agricultural Biotechnologies in Europe homepage". Retrieved October 26, 2014.
  58. ^ "Memo from The Mellman Group, Inc. to The Pew Initiative On Food And Biotechnology" (PDF). Review Of Public Opinion Research. November 16, 2006. Archived from the original (PDF) on May 5, 2011.
  59. ^ Addario J (Spring 2002). "Horror Show: Why the debate over genetically modified organisms and other complex science stories freak out newspapers". Ryerson Review of Journalism.=.
  60. ^ Example of protester confusion. Chamberlain S (August 5, 1997). "Sara Chamberlain Dissects The Food That We Eat And Finds Some Alarming Ingredients. Article On Genetically Engineered/modified Foods For New Internationalist Magazine". New Internationalist Magazine. What would you think if I said that your dinner resembles Frankenstein an unnatural hodgepodge of alien ingredients? Fish genes are swimming in your tomato sauce, microscopic bacterial genes in your tortillas, and your veg curry has been spiked with viruses.
  61. ^ "Genetically modified (GM) foods". Food Standards Australia and New Zealand. October 4, 2012. Archived from the original on April 11, 2013. Retrieved November 5, 2012.
  62. ^ "Consumer Attitudes Survey 2007, A benchmark survey of consumers' attitudes to food issues". Food Standards Australia New Zealand. January 2008. Archived from the original on February 17, 2011. Retrieved November 5, 2012.
  63. ^ "Opposition decreasing or acceptance increasing?: An overview of European consumer polls on attitudes to GMOs". GMO Compass. April 16, 2009. Archived from the original on October 8, 2012. Retrieved October 10, 2012.
  64. ^ Gaskell G, Stares S, Allansdottir A, Allum N, Castro P, Esmer Y, et al. (October 2010). "Europeans and Biotechnology in 2010: Winds of change?" (PDF). A report to the European Commission's Directorate-General for Research] European Commission Directorate-General for Research 2010 Science in Society and Food, Agriculture & Fisheries, & Biotechnology, EUR 24537 EN.
  65. ^ Gaskell G, Allansdottir A, Allum N, Castro P, Esmer Y, Fischler C, et al. (February 2011). "The 2010 Eurobarometer on the life sciences". Nature Biotechnology. 29 (2): 113–14. doi:10.1038/nbt.1771. PMID 21301431. S2CID 1709175.
  66. ^ "2019 Eurobarometer Reveals Most Europeans Hardly Care About GMOs". Crop Biotech Update. Retrieved May 22, 2020.
  67. ^ "Deloitte 2010 Food Survey – Genetically Modified Foods" (PDF). Archived from the original (PDF) on December 27, 2010. Retrieved October 10, 2012.
  68. ^ Kopeck A (July 27, 2013). "Strong Support for Labeling Modified Foods". The New York Times.
  69. ^ Shapiro N (October 24, 2013). "GMOs: Group Refutes Claim of 'Scientific Consensus'". Seattle Weekly. Archived from the original on October 28, 2013. Retrieved November 16, 2013.
  70. ^ a b Fusaro D (November 7, 2013). "European Scientists Ask for GMO Research". Food Processing.
  71. ^ Morand C (October 16, 2013). "Le prix mondial de l'alimentation à Monsanto et Syngenta? Une farce" [The World Food Prize Monsanto and Syngenta? A joke]. Le Temps (in French).
  72. ^ "Choice of Monsanto Betrays World Food Prize Purpose, Say Global Leaders". Huffington Post. June 26, 2013.
  73. ^ Charles, Dan (June 19, 2013). "And The Winner Of The World Food Prize Is ... The Man From Monsanto". NPR. National Public Radio.
  74. ^ "Energy-environment world food prize event in Iowa confronts divisive issues of biotech crops and global warming". Washington Post. Archived from the original on December 8, 2018. Retrieved October 1, 2013.
  75. ^ Funk C, Rainie L (January 29, 2015). "Public and Scientists' Views on Science and Society" (PDF). pewinternet.org. Pew Research Center. p. 37. Archived from the original (Full report PDF file) on April 29, 2015. Retrieved April 28, 2015. Fully 88% of AAAS scientists say it is generally safe to eat genetically modified (GM) foods compared with 37% of the general public who say the same, a gap of 51 percentage points.Link to key data Archived January 9, 2019, at the Wayback Machine
  76. ^ Take the Flour Back Press Release, 27/05/12 European activists link up to draw the line against GM
  77. ^ Driver A (May 2, 2012). "Scientists urge protestors not to trash GM trials". Farmers Guardian. Archived from the original on September 3, 2012.
  78. ^ "GM wheat trial belongs in a laboratory". BBC News. May 2, 2012.
  79. ^ "Don't Destroy Research Q & A". Sense about Science. July 25, 2012. Archived from the original on October 18, 2012.
  80. ^ a b Associated Press, 25 May 2013 in The Guardian. Millions march against GM crops
  81. ^ a b c Quick D (May 26, 2013). "More than 100 participate in Charleston's March Against Monsanto, one of 300+ in world on Saturday". The Post and Courier. Retrieved June 18, 2013.
  82. ^ a b c d e f "Protesters Around the World March Against Monsanto". USA Today. Associated Press. 26 May 2013. Retrieved 18 June 2013.
  83. ^ a b c Xia, Rosanna (28 May 2013). "Hundreds in L.A. march in global protest against Monsanto, GMOs". Los Angeles Times. Retrieved 18 June 2013.
  84. ^ "Search Results for "March against monsanto"". ABC News.
  85. ^ "Monsanto protests around the world". The Washington Post. 25 May 2013. Retrieved 18 June 2013.
  86. ^ Moayyed M (May 27, 2013). "Marching against genetic engineering". The Wellingtonians. Retrieved June 21, 2013.
  87. ^ Perry B (May 26, 2013). "Protesters against GMOs, but Monsanto says crops are safe". The Maui News. Retrieved June 21, 2013.
  88. ^ "Hawaii Crop Improvement Association". Retrieved June 21, 2013.
  89. ^ Pollack A (July 28, 2013). "Seeking Support, Biotech Food Companies Pledge Transparency". The New York Times. Retrieved June 19, 2014.
  90. ^ "Experts". GMO Answers. Retrieved June 19, 2014.
  91. ^ "The Council for Biotechnology Information: Founding Members". GMO Answers. Retrieved June 28, 2014.
  92. ^ Statement: No scientific consensus on GMO safety Archived 2013-11-23 at the Wayback Machine, ENSSER, 10/21/2013
  93. ^ Hilbeck A, Binimelis R, Defarge N, Steinbrecher R, Székács A, Wickson F, et al. (2015). "No scientific consensus on GMO safety" (PDF). Environmental Sciences Europe. 27 (4): 1–6. doi:10.1186/s12302-014-0034-1. S2CID 85597477.
  94. ^ a b von Mogel KH (June 24, 2013). "GMO crops vandalized in Oregon". Biology Fortified.
  95. ^ "Fighting GM Crop Vandalism With a Government-Protected Research Site". Science Daily. February 28, 2013.
  96. ^ "Scientists speak out against vandalism of genetically modified rice". Australian Broadcasting Corporation. September 20, 2013.
  97. ^ Abrams L (September 30, 2013). "Vandals hack down Hawaii's genetically modified papaya trees: The destruction is believed to have been the work of anti-GMO activists". Salon.
  98. ^ von Mogel KH (June 25, 2013). "Oregon: Genetically modified crops vandalized". Genetic Literacy Project.
  99. ^ a b Kuntz M (2012). "Destruction of public and governmental experiments of GMO in Europe". GM Crops & Food. 3 (4): 258–64. doi:10.4161/gmcr.21231. PMID 22825391.
  100. ^ Bailey R (January 2001). "Dr. Strangelunch Or: Why we should learn to stop worrying and love genetically modified food". The Reason.
  101. ^ a b BBC News 14 June 2002 GM crops: A bitter harvest?
  102. ^ Maugh TH (June 9, 1987). "Altered Bacterium Does Its Job: Frost Failed to Damage Sprayed Test Crop, Company Says". Los Angeles Times.
  103. ^ "Greenpeace activists in costly GM protest". Sydney Morning Herald. August 2, 2012. Retrieved November 8, 2013.
  104. ^ "GM crop destroyers given suspended sentences". Canberra Times. November 19, 2012. Retrieved November 8, 2013.
  105. ^ Harmon A (August 24, 2013). "Golden Rice: Lifesaver?" (News Analysis). The New York Times. Retrieved August 25, 2013.
  106. ^ Slezak M (August 9, 2013). "Militant Filipino farmers destroy Golden Rice GM crop". NewScientist. Retrieved October 26, 2013.
  107. ^ Lynas M (August 26, 2013). "The True Story About Who Destroyed a Genetically Modified Rice Crop". Slate.
  108. ^ "'Golden rice' GM trial vandalised in the Philippines". BBC News. August 9, 2013.
  109. ^ Kloor, Keith (June 23, 2017). "Food Evolution Is Scientifically Accurate. Too Bad It Won't Convince Anyone". Slate.com. Slate. Archived from the original on November 19, 2017. Retrieved November 19, 2017.
  110. ^ Senapathy, Kavin (September 25, 2017). "Neil DeGrasse Tyson Drops Mic On Comments Criticizing Hulu For Showing Food Evolution Documentary". Forbes. US. Archived from the original on March 23, 2020.
  111. ^ Senapathy, Kavin (November 8, 2017). "'Science Moms' documentary counters anti-GMO, anti-vaccine misinformation". Genetic Literacy Project. Archived from the original on November 18, 2017.
  112. ^ Hupp, Stephen. "SIUE's Hupp Produces Skeptical Film Premiering this Weekend". SIUE.edu. Southern Illinois University Edwardsville. Archived from the original on November 18, 2017. Retrieved November 18, 2017.
  113. ^ "Laureates Letter Supporting Precision Agriculture (GMOs) | Support Precision Agriculture". www.supportprecisionagriculture.org. Retrieved October 5, 2021.
  114. ^ Sheerer M (2014). "Why Do People Believe in Conspiracy Theories?". Scientific American. p. 94.
  115. ^ Veltri GA, Suerdem AK (February 2013). "Worldviews and discursive construction of GMO-related risk perceptions in Turkey". Public Understanding of Science. 22 (2): 137–54. doi:10.1177/0963662511423334. hdl:2381/28216. PMID 23833021. S2CID 22893955.
  116. ^ "SHS Web of Conferences". www.shs-conferences.org. doi:10.1051/shsconf/20141000048. Retrieved January 31, 2016.
  117. ^ Bratspies R (2007). "Some Thoughts on the American Approach to Regulating Genetically Modified Organisms". Kansas Journal of Law and Public Policy. 16: 393. SSRN 1017832.
  118. ^ United States Court of Appeals, District of Columbia Circuit. (1985). "Foundation on Economic Trends v. Heckler". 756 F.2d 143.
  119. ^ Bashshur R (February 2013). "FDA and Regulation of GMOs". ABA Health ESource. 9 (6): 755–56. Archived from the original on September 29, 2016. Retrieved January 21, 2016.
  120. ^ U.S. District Court for the District of Columbia (September 29, 2000). "Alliance for Bio-Integrity v Shall". 116 F.Supp.2d 166 (D.D.C. 2000).
  121. ^ "Diamond v. Chakrabarthy, (1980)". Findlaw. Thomson Reuters. Retrieved October 31, 2017.
  122. ^ "35 U.S.C. 101 – Inventions Patentable". www.gpo.gov. United States Patent Office. Retrieved October 31, 2017.
  123. ^ a b Waltz E (September 2009). "GM crops: Battlefield". Nature. 461 (7260): 27–32. doi:10.1038/461027a. PMID 19727179.
  124. ^ a b Freedman DH (August 26, 2013). "The Truth about Genetically Modified Food". Scientific American. Despite overwhelming evidence that GM crops are safe to eat, the debate over their use continues to rage, and in some parts of the world, it is growing ever louder.
  125. ^ a b Stutz B (July 1, 2010). "Wanted: GM Seeds for Study". Seed Magazine. Archived from the original on July 5, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  126. ^ "Do seed companies control GM crop research? A seedy practice". Scientific American. Vol. 301. August 2009.
  127. ^ Waltz E (October 2010). "Monsanto relaxes restrictions on sharing seeds for research". Nature Biotechnology. 28 (10): 996. doi:10.1038/nbt1010-996c. PMID 20944575. S2CID 35731021.
  128. ^ "Unearthed: Are patents the problem?". Washington Post. Retrieved October 26, 2014.
  129. ^ Diels J, Cunha M, Manaia C, Sabugosa-Madeira B, Silva M (2011). "Association of financial or professional conflict of interest to research outcomes on health risks or nutritional assessment studies of genetically modified products". Food Policy. 36 (2): 197–203. doi:10.1016/j.foodpol.2010.11.016. hdl:10400.14/7585.
  130. ^ Braze M (September 10, 2014). "About Those Industry Funded GMO Studies". GMO Building Blocks. Archived from the original on September 17, 2014.
  131. ^ Zdziarski IM, Edwards JW, Carman JA, Haynes JI (2014). "GM crops and the rat digestive tract: a critical review". Environment International. 73: 423–33. Bibcode:2014EnInt..73..423Z. doi:10.1016/j.envint.2014.08.018. hdl:2440/95716. PMID 25244705.
  132. ^ Pollack A (May 17, 2016). "Genetically Engineered Crops Are Safe, Analysis Finds". The New York Times. ISSN 0362-4331. Retrieved May 18, 2016.
  133. ^ Webster B (May 18, 2016). "GM food safe to eat, say world's leading scientists". The Times. London, UK. Retrieved May 18, 2016.
  134. ^ Abbott A (January 2016). "Italian papers on genetically modified crops under investigation". Nature. 529 (7586): 268–69. Bibcode:2016Natur.529..268A. doi:10.1038/nature.2016.19183. PMID 26791701.
  135. ^ Tudisco R, Mastellone V, Cutrignelli MI, Lombardi P, Bovera F, Mirabella N, Piccolo G, Calabrò S, Avallone L, Infascelli F (2010). "Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modified soybean and in their offsprings – Retraction". Animal. 4 (10): 1662–71. doi:10.1017/S1751731110000728. PMID 22445119. (Retracted, see doi:10.1017/S1751731116000409,  Retraction Watch)
  136. ^ "EU project publishes conclusions and recommendations on GM foods". CORDIS – Community Research and Development Information Service. January 6, 2005. Archived from the original on October 20, 2013. Retrieved September 2, 2012.
  137. ^ a b König A, Cockburn A, Crevel RW, Debruyne E, Grafstroem R, Hammerling U, Kimber I, Knudsen I, Kuiper HA, Peijnenburg AA, Penninks AH, Poulsen M, Schauzu M, Wal JM (July 2004). "Assessment of the safety of foods derived from genetically modified (GM) crops". Food and Chemical Toxicology. 42 (7): 1047–88. doi:10.1016/j.fct.2004.02.019. PMID 15123382.
  138. ^ European Commission. Directorate-General for Research (2010). A decade of EU-funded GMO research (2001-2010) (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Union. doi:10.2777/97784. ISBN 978-92-79-16344-9. "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research, and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." (p. 16)
  139. ^ a b Organisation for Economic Co-operation and Development (OECD) (September 20, 2010). "Consensus Document on Molecular Characterisation of Plants Derived from Modern Biotechnology" (PDF).
  140. ^ EFSA Panel on Genetically Modified Organisms (GMO) (2012). "Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis". EFSA Journal. 10 (2): 12561. doi:10.2903/j.efsa.2012.2561. hdl:2160/44564.
  141. ^ Domingo JL (September 2016). "Safety assessment of GM plants: An updated review of the scientific literature". Food and Chemical Toxicology. 95: 12–18. doi:10.1016/j.fct.2016.06.013. PMID 27317828.
  142. ^ "Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles" (PDF). Organisation for Economic Co-operation and Development. Retrieved June 21, 2009.
  143. ^ Schauzu M (April 2000). "The concept of substantial equivalence in safety assessment of foods derived from genetically modified organisms" (PDF). AgBiotechNet. 2.
  144. ^ van Eijck P (March 10, 2010). "The History and Future of GM Potatoes". PotatoPro. Archived from the original on October 12, 2013. Retrieved September 2, 2012.
  145. ^ EFSA Panel on Genetically Modified Organisms (GMO) (2011). "Guidance for risk assessment of food and feed from genetically modified plants". EFSA Journal. 9 (5): 2150. doi:10.2903/j.efsa.2011.2150.
  146. ^ a b c American Association for the Advancement of Science (AAAS), Board of Directors (2012). Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods, and associated Press release: Legally Mandating GM Food Labels Could Mislead and Falsely Alarm Consumers Archived November 4, 2013, at the Wayback Machine
  147. ^ "UK GM expert calls for tougher tests". BBC. September 7, 1999.
  148. ^ Millstone E, Brunner E, Mayer S (October 1999). "Beyond 'substantial equivalence'". Nature. 401 (6753): 525–26. Bibcode:1999Natur.401..525M. doi:10.1038/44006. PMID 10524614. S2CID 4307069.
  149. ^ Burke D (October 1999). "No GM conspiracy". Nature. 401 (6754): 640–1. Bibcode:1999Natur.401..640.. doi:10.1038/44262. PMID 10537098. S2CID 4425162.
  150. ^ Trewavas A, Leaver CJ (October 1999). "Conventional crops are the test of GM prejudice". Nature. 401 (6754): 640. Bibcode:1999Natur.401..640T. doi:10.1038/44258. PMID 10537097. S2CID 4419649.
  151. ^ Gasson MJ (November 1999). "Genetically modified foods face rigorous safety evaluation". Nature. 402 (6759): 229. Bibcode:1999Natur.402..229G. doi:10.1038/46147. PMID 10580485. S2CID 4336796.
  152. ^ Keeler B, Lappe M (January 7, 2001). "Some Food for FDA Regulation". Los Angeles Times.
  153. ^ Domingo JL (June 2016). "Safety assessment of GM plants: An updated review of the scientific literature". Food and Chemical Toxicology. 95: 12–18. doi:10.1016/j.fct.2016.06.013. PMID 27317828.
  154. ^ Ostry V, Ovesna J, Skarkova J, Pouchova V, Ruprich J (August 2010). "A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize". Mycotoxin Research. 26 (3): 141–45. doi:10.1007/s12550-010-0056-5. PMID 23605378. S2CID 9179738.
  155. ^ Ackerman J (May 2002). "Genetically Modified Foods". National Geographic magazine. Archived from the original on April 23, 2008.
  156. ^ "OECD harmonization webpage". Oecd.org. Retrieved May 30, 2013.
  157. ^ a b Ricroch AE, Bergé JB, Kuntz M (April 2011). "Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques". Plant Physiology. 155 (4): 1752–61. doi:10.1104/pp.111.173609. PMC 3091128. PMID 21350035.
  158. ^ Herman RA, Price WD (December 2013). "Unintended compositional changes in genetically modified (GM) crops: 20 years of research". Journal of Agricultural and Food Chemistry. 61 (48): 11695–701. doi:10.1021/jf400135r. PMID 23414177.
  159. ^ Bennett D (May 7, 2006). "Our allergies, ourselves". The Boston Globe.
  160. ^ Lehrer SB, Bannon GA (May 2005). "Risks of allergic reactions to biotech proteins in foods: perception and reality". Allergy. 60 (5): 559–64. doi:10.1111/j.1398-9995.2005.00704.x. PMID 15813800. S2CID 16093517.
  161. ^ Staff (February 15, 2006). "Food Safety Evaluation: The Allergy Check". GMO Compass. Archived from the original on January 3, 2013. Retrieved December 23, 2012.
  162. ^ Herman EM (May 2003). "Genetically modified soybeans and food allergies". Journal of Experimental Botany. 54 (386): 1317–19. doi:10.1093/jxb/erg164. PMID 12709477.
  163. ^ Herman EM, Helm RM, Jung R, Kinney AJ (May 2003). "Genetic modification removes an immunodominant allergen from soybean". Plant Physiology. 132 (1): 36–43. doi:10.1104/pp.103.021865. PMC 1540313. PMID 12746509.
  164. ^ Bhalla PL, Swoboda I, Singh MB (September 1999). "Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11676–80. Bibcode:1999PNAS...9611676B. doi:10.1073/pnas.96.20.11676. PMC 18093. PMID 10500236.
  165. ^ Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (March 1996). "Identification of a Brazil-nut allergen in transgenic soybeans". The New England Journal of Medicine. 334 (11): 688–92. doi:10.1056/NEJM199603143341103. PMID 8594427.
  166. ^ Leary W (March 14, 1996). "Genetic Engineering of Crops Can Spread Allergies, Study Shows". The New York Times.
  167. ^ Streit L, Beach LR, Register JC, Jung R, Fehr WR (2001). "Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits". Crop Sci. 41 (6): 1757–60. doi:10.2135/cropsci2001.1757.
  168. ^ Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (November 2005). "Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity". Journal of Agricultural and Food Chemistry. 53 (23): 9023–30. doi:10.1021/jf050594v. PMID 16277398.
    • Emma Young (November 21, 2005). "GM pea causes allergic damage in mice". New Scientist.
  169. ^ Taylor MR, Tick JS. "The StarLink Case: Issues for the Future" (PDF). Resources for the Future, Pew Initiative on Food and Biotechnology. Archived from the original (PDF) on September 21, 2013.
  170. ^ "While EPA had no specific data to indicate that Cry9C was an allergen, the protein expressed in StarLink corn did exhibit certain characteristics (i.e. relative heat stability and extended time to digestion) that were common to known food allergens such as those found in peanuts, eggs, etc. EPA's concern was that StarLink corn may be a human food allergen and in the absence of more definitive data, EPA has not made a decision whether or not to register the human food use." Staff, EPA. November 2000 Executive Summary: EPA Preliminary Evaluation of Information Contained in the October 25, 2000 Submission from Aventis Cropscience
  171. ^ a b King D; Gordon A. (September 23, 2000). "Contaminant found in Taco Bell taco shells. Food safety coalition demands recall". Friends of the Earth (Press release). Washington, DC. Archived from the original on December 9, 2000. Retrieved November 3, 2001.
  172. ^ a b Fulmer M (September 23, 2000). "Taco Bell Recalls Shells That Used Bioengineered Corn". Los Angeles Times.
  173. ^ Lueck S, Merrick A, Millman J, Moore SD (November 3, 2000). "Corn-Recall Cost Could Reach Into the Hundreds of Millions". Wall Street Journal.
  174. ^ a b Carpenter JE, Gianessi LP (2001). "Agricultural Biotechnology: Updated Benefit Estimates" (PDF). National Center for Food and Agricultural Policy.
  175. ^ "Millers agree: Testing corn for StarLink not adding to food safety". North American Millers' Association (Press release). April 28, 2008. Archived from the original on September 5, 2008.
  176. ^ "GM Contamination Register Official Website". Archived from the original on June 5, 2005. Retrieved October 26, 2014.
  177. ^ "StarLink Corn: What Happened". University of California, Davis. Archived from the original on September 1, 2006. Retrieved August 12, 2013.
  178. ^ Keese P (2008). "Risks from GMOs due to horizontal gene transfer". Environmental Biosafety Research. 7 (3): 123–49. doi:10.1051/ebr:2008014. PMID 18801324.
  179. ^ a b Flachowsky G, Chesson A, Aulrich K (February 2005). "Animal nutrition with feeds from genetically modified plants". Archives of Animal Nutrition. 59 (1): 1–40. doi:10.1080/17450390512331342368. PMID 15889650. S2CID 12322775.
  180. ^ Beagle JM, Apgar GA, Jones KL, Griswold KE, Radcliffe JS, Qiu X, Lightfoot DA, Iqbal MJ (March 2006). "The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs". Journal of Animal Science. 84 (3): 597–607. doi:10.2527/2006.843597x. PMID 16478951.
  181. ^ Brigulla M, Wackernagel W (April 2010). "Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues". Applied Microbiology and Biotechnology. 86 (4): 1027–41. doi:10.1007/s00253-010-2489-3. PMID 20191269. S2CID 19934100.
  182. ^ Guertler P, Paul V, Albrecht C, Meyer HH (March 2009). "Sensitive and highly specific quantitative real-time PCR and ELISA for recording a potential transfer of novel DNA and Cry1Ab protein from feed into bovine milk". Analytical and Bioanalytical Chemistry. 393 (6–7): 1629–38. doi:10.1007/s00216-009-2667-2. PMID 19225766. S2CID 16984988.
  183. ^ Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY (January 2012). "Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA". Cell Research. 22 (1): 107–26. doi:10.1038/cr.2011.158. PMC 3351925. PMID 21931358.
  184. ^ Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY (July 2013). "Ineffective delivery of diet-derived microRNAs to recipient animal organisms". RNA Biology. 10 (7): 1107–16. doi:10.4161/rna.24909. PMC 3849158. PMID 23669076.
  185. ^ Witwer KW, McAlexander MA, Queen SE, Adams RJ (July 2013). "Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs". RNA Biology. 10 (7): 1080–86. doi:10.4161/rna.25246. PMC 3849155. PMID 23770773.
  186. ^ a b Uzogara SG (May 2000). "The impact of genetic modification of human foods in the 21st century: a review". Biotechnology Advances. 18 (3): 179–206. doi:10.1016/S0734-9750(00)00033-1. PMID 14538107.
  187. ^ Nelson GC, ed. (2001). Genetically Modified Organisms in Agriculture: economics and politics. Academic Press. p. 250. ISBN 9780080488868. Retrieved May 12, 2013.
  188. ^ Netherwood T, Martín-Orúe SM, O'Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (February 2004). "Assessing the survival of transgenic plant DNA in the human gastrointestinal tract". Nature Biotechnology. 22 (2): 204–09. doi:10.1038/nbt934. PMID 14730317. S2CID 31606964.
  189. ^ Käppeli O (1998). "How safe is safe enough in plant genetic engineering?". Trends in Plant Science. 3 (7): 276–81. Bibcode:1998TPS.....3..276K. doi:10.1016/S1360-1385(98)01251-5.
  190. ^ Bakshi A (2003). "Potential adverse health effects of genetically modified crops". Journal of Toxicology and Environmental Health Part B: Critical Reviews. 6 (3): 211–25. Bibcode:2003JTEHB...6..211B. doi:10.1080/10937400306469. PMID 12746139. S2CID 1346969.
  191. ^ Van Eenennaam AL, Young AE (October 2014). "Prevalence and impacts of genetically engineered feedstuffs on livestock populations". Journal of Animal Science. 92 (10): 4255–78. doi:10.2527/jas.2014-8124. PMID 25184846.
  192. ^ Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE (March 2012). "Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review". Food and Chemical Toxicology. 50 (3–4): 1134–48. doi:10.1016/j.fct.2011.11.048. PMID 22155268.
  193. ^ Magaña-Gómez JA, de la Barca AM (January 2009). "Risk assessment of genetically modified crops for nutrition and health". Nutrition Reviews. 67 (1): 1–16. doi:10.1111/j.1753-4887.2008.00130.x. PMID 19146501.
  194. ^ Dona A, Arvanitoyannis IS (February 2009). "Health risks of genetically modified foods". Critical Reviews in Food Science and Nutrition. 49 (2): 164–75. doi:10.1080/10408390701855993. PMID 18989835. S2CID 6861474.
  195. ^ Amman Klaus (2009) Human and Animal Health – Rebuttal to a Review of Dona and Arvanitoyannis 2009, part one Archived 2010-10-02 at the Wayback Machine European Federation of Biotechnology, 31 August 2009. Retrieved 28 October 2010
  196. ^ Amman, Klaus (2009) Rebuttal to a review of Dona and Arvanitoyannis 2009 Retrieved on 28 October 2010
  197. ^ Rickard C (January 2010). "Response to "Health risks of genetically modified foods"". Critical Reviews in Food Science and Nutrition. 50 (1): 85–91, author reply 92–95. doi:10.1080/10408390903467787. PMID 20047140. S2CID 214615105.
  198. ^ Aumaitre A (2004). "Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt) plants and herbicide tolerant (glyphosate, glufosinate) plants: interpretation of experimental results observed worldwide on GM plants". Italian Journal of Animal Science. 3 (2): 107–21. doi:10.4081/ijas.2004.107.
  199. ^ Domingo JL (2007). "Toxicity studies of genetically modified plants: a review of the published literature". Critical Reviews in Food Science and Nutrition. 47 (8): 721–33. doi:10.1080/10408390601177670. PMID 17987446. S2CID 15329669.
  200. ^ Vain P (June 2007). "Trends in GM crop, food and feed safety literature". Nature Biotechnology. 25 (6): 624–26. doi:10.1038/nbt0607-624b. PMID 17557092. S2CID 31493044.
  201. ^ Vain, Philippe (2007) Trends in GM crop, food and feed safety literature (2007) Archived 2012-03-19 at the Wayback Machine
  202. ^ Domingo JL, Giné Bordonaba J (May 2011). "A literature review on the safety assessment of genetically modified plants". Environment International. 37 (4): 734–42. Bibcode:2011EnInt..37..734D. doi:10.1016/j.envint.2011.01.003. PMID 21296423.
  203. ^ Domingo, José L. (September 2016). "Safety assessment of GM plants: An updated review of the scientific literature". Food and Chemical Toxicology. 95: 12–18. doi:10.1016/j.fct.2016.06.013. PMID 27317828.
  204. ^ "Physicians and Scientists for Responsible Application of Science and Technology Official Website". Psrast.org. Archived from the original on June 3, 2013. Retrieved May 30, 2013.
  205. ^ Staff (May 23, 2002). "Report to Congressional Requesters: Genetically Modified Foods]" (PDF). GAO-02-566. United States General Accounting Office. pp. 30–32.
  206. ^ "FAO/WHO (2000b) Safety Aspects of Genetically Modified Foods of Plant Origin" (PDF). Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology (Geneva, Switzerland). May–June 2000.
  207. ^ Wendell D (January 30, 2009). "The Ethics of Clinical Research". In Zalta EN (ed.). The Stanford Encyclopedia of Philosophy (Fall 2012 Edition). Metaphysics Research Lab, Stanford University.
  208. ^ Germolec DR, Kimber I, Goldman L, Selgrade M (June 2003). "Key issues for the assessment of the allergenic potential of genetically modified foods: breakout group reports". Environmental Health Perspectives. 111 (8): 1131–39. doi:10.1289/ehp.5814. PMC 1241563. PMID 12826486.
  209. ^ Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2009). "Golden Rice is an effective source of vitamin A". The American Journal of Clinical Nutrition. 89 (6): 1776–83. doi:10.3945/ajcn.2008.27119. PMC 2682994. PMID 19369372.
  210. ^ Segal C (September 17, 2012). "Alleged ethics violations surface in Tufts-backed study". Tufts Daily.
  211. ^ a b Ewen SW, Pusztai A (October 1999). "Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine". Lancet. 354 (9187): 1353–54. doi:10.1016/S0140-6736(98)05860-7. PMID 10533866. S2CID 17252112.
  212. ^ Staff. "Rowett Research Institute: Audit Report Overview". Rowett Research Institute Press Office. Archived from the original on November 5, 2013.
  213. ^ Vasconcelos IM, Oliveira JT (September 2004). "Antinutritional properties of plant lectins". Toxicon. 44 (4): 385–403. Bibcode:2004Txcn...44..385V. doi:10.1016/j.toxicon.2004.05.005. PMID 15302522.
  214. ^ Enserink M (October 1999). "Transgenic food debate. The Lancet scolded over Pusztai paper". Science. 286 (5440): 656a–656. doi:10.1126/science.286.5440.656a. PMID 10577214. S2CID 153199625.
  215. ^ Enserink M (1998). "Institute copes with genetic hot potato". Science. 281 (5380): 1124–25. doi:10.1126/science.281.5380.1124b. PMID 9735026. S2CID 46153553.
  216. ^ Randerson J (2008). "Arpad Pusztai: Biological divide". The Guardian.
  217. ^ Bourne FJ, et al. (October 28, 1998). "Audit Report Overview". Rowett Research Institute. Archived from the original on November 5, 2013. Retrieved November 28, 2010.
  218. ^ Murray N, Heap B, Hill W, Smith J, Waterfield M, Bowden R (June 1, 1999). "Review of data on possible toxicity of GM potatoes" (PDF). The Royal Society. Archived from the original (PDF) on November 19, 2021. Retrieved November 28, 2010.
  219. ^ Kuiper HA, Noteborn HP, Peijnenburg AA (October 1999). "Adequacy of methods for testing the safety of genetically modified foods". Lancet. 354 (9187): 1315–16. doi:10.1016/S0140-6736(99)00341-4. PMID 10533854. S2CID 206011261.
  220. ^ Aris A, Leblanc S (May 2011). "Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada". Reproductive Toxicology. 31 (4): 528–33. Bibcode:2011RepTx..31..528A. doi:10.1016/j.reprotox.2011.02.004. PMID 21338670. S2CID 16144327.
  221. ^ "Many Women, no Cry – OGM: environnement, santé et politique" (in English and French). Marcel-kuntz-ogm.over-blog.fr. January 16, 2012. Retrieved February 7, 2012.
  222. ^ "FSANZ response to study linking Cry1Ab protein in blood to GM foods". Food Standards Australia New Zealand. May 27, 2011. Archived from the original on January 3, 2012. Retrieved October 10, 2012.
  223. ^ "FSANZ response to study linking Cry1Ab protein in blood to GM foods". FSANZ. Archived from the original on January 3, 2012.
  224. ^ Séralini GE, Cellier D, de Vendomois JS (May 2007). "New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity". Archives of Environmental Contamination and Toxicology. 52 (4): 596–602. Bibcode:2007ArECT..52..596S. doi:10.1007/s00244-006-0149-5. PMID 17356802. S2CID 2521185.
  225. ^ de Vendômois JS, Roullier F, Cellier D, Séralini GE (2009). "A comparison of the effects of three GM corn varieties on mammalian health". International Journal of Biological Sciences. 5 (7): 706–26. doi:10.7150/ijbs.5.706. PMC 2793308. PMID 20011136.
  226. ^ Séralini G, Mesnage R, Clair E, Gress S, De Vendômois J, Cellier D (2011). "Genetically modified crops safety assessments: Present limits and possible improvements". Environmental Sciences Europe. 23: 10. doi:10.1186/2190-4715-23-10.
  227. ^ "Statement of the Scientific Panel on Genetically Modified Organisms on the analysis of data from a 90-day rat feeding study with MON 863 maize". European Food Safety Authority. June 25, 2007.
  228. ^ "EFSA review of statistical analyses conducted for the assessment of the MON 863 90-day rat feeding study". EFSA Journal. 5 (6): 19r. 2007. doi:10.2903/j.efsa.2007.19r.
  229. ^ "EFSA Minutes of the 55th Plenary Meeting of the Scientific Panel on Genetically Modified Organisms Held on 27–28 January 2010 IN Parma, Italy, Annex 1, Vendemois et al. 2009" (PDF). European Food Safety Authority report. Retrieved November 11, 2010.
  230. ^ "Guidance on conducting repeated-dose 90-day oral toxicity study in rodents on whole food/Feed". EFSA Journal. 9 (12): 2438. 2011. doi:10.2903/j.efsa.2011.2438.
  231. ^ "Review of the report by Séralini et al., (2007): "New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity"". FSANZ final assessment report. Archived from the original on May 16, 2009. Retrieved November 11, 2010.
  232. ^ "FSANZ reaffirms its risk assessment of genetically modified corn MON 863". FSANZ fact sheets 2007. July 25, 2010. Archived from the original on June 29, 2011. Retrieved November 11, 2010.
  233. ^ "Feeding studies and GM corn MON863". Food Standards Australia New Zealand. July 2012. Archived from the original on October 25, 2012. Retrieved October 10, 2012.
  234. ^ Doull J, Gaylor D, Greim HA, Lovell DP, Lynch B, Munro IC (November 2007). "Report of an Expert Panel on the reanalysis by of a 90-day study conducted by Monsanto in support of the safety of a genetically modified corn variety (MON 863)". Food and Chemical Toxicology. 45 (11): 2073–85. doi:10.1016/j.fct.2007.08.033. PMID 17900781.
  235. ^ "Opinion relating to the deposition of 15 December 2009 by the Member of Parliament, François Grosdidier, as to the conclusions of the study entitled "A comparison of the effects of three GM corn varieties on mammalian health"". English translation of French High Council of Biotechnologies Scientific Committee document. Retrieved November 11, 2010.
  236. ^ a b Allen K (November 28, 2013). "Science journal retracts French study on GM foods". Toronto Star. Retrieved November 28, 2013.
  237. ^ a b "Elsevier Announces Article Retraction from Journal Food and Chemical Toxicology". Elsevier. Retrieved November 29, 2013.
  238. ^ a b Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, de Vendômois JS (November 2012). "Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize". Food and Chemical Toxicology. 50 (11): 4221–31. doi:10.1016/j.fct.2012.08.005. PMID 22999595. (Retracted, see doi:10.1016/j.fct.2013.11.047, PMID 24490213,  Retraction Watch)
  239. ^ "Tous cobayes? (2012)". IMDb. IMDB.com. September 26, 2012.
  240. ^ Lumley T (September 20, 2012). "Roundup scare". Stats Chat website.
  241. ^ a b "Poison postures". Nature. 489 (7417): 474. September 2012. doi:10.1038/489474a. PMID 23025010.
  242. ^ Séralini GE (2012). Tous Cobayes !: OGM, pesticides et produits chimiques [All Guinea Pigs: GMOs, pesticides and chemicals] (in French). Editions Flammarion. ISBN 978-2081262362.
  243. ^ Zimmer C (September 2012). "From Darwinius to GMOs: Journalists Should Not Let Themselves Be Played". Discovery Magazine blog, The Loom. 21. Archived from the original on January 21, 2013. Retrieved October 1, 2012.
  244. ^ Hirschler B (September 19, 2012). "Study on Monsanto GM corn concerns draws scepticism". Reuters.
  245. ^ Kniss A (September 19, 2012). "Explanation of rat study". Control Freaks Blog. Archived from the original on January 24, 2016. Retrieved October 4, 2012.
  246. ^ Suzuki H, Mohr U, Kimmerle G (October 1979). "Spontaneous endocrine tumors in Sprague-Dawley rats". Journal of Cancer Research and Clinical Oncology. 95 (2): 187–96. doi:10.1007/BF00401012. PMID 521452. S2CID 33262883.
  247. ^ a b "Mortality and In-Life Patterns in Sprague-Dawley" (PDF). Huntingdon Life Sciences. Archived from the original (PDF) on October 1, 2013. Retrieved October 26, 2012.
  248. ^ a b "Sprague Dawley" (PDF). Harlan. Archived from the original (PDF) on September 29, 2013. Retrieved October 26, 2012.
  249. ^ Butler D (October 2012). "Hyped GM maize study faces growing scrutiny". Nature. 490 (7419): 158. Bibcode:2012Natur.490..158B. doi:10.1038/490158a. PMID 23060167.
  250. ^ Hirschler B, Kielland K (September 20, 2012). "Study on Monsanto GM corn concerns draws skepticism". Reuters.
  251. ^ MacKenzie D (September 19, 2012). "Study linking GM crops and cancer questioned". New Scientist. Retrieved September 26, 2012.
  252. ^ Elizabeth Finkel (October 9, 2012). "GM corn and cancer: the Séralini affai". Archived from the original on June 10, 2013.
  253. ^ Carman T (September 19, 2012). "French scientists question safety of GM corn". Washington Post.
  254. ^ Avis des Académies nationales d'Agriculture, de Médecine, de Pharmacie, des Sciences, des Technologies, et Vétérinaire sur la publication récente de G.E. Séralini et al. sur la toxicité d'un OGM Communiqué de presse 19 octobre 2012 Archived 2012-11-19 at the Wayback Machine
  255. ^ Barale-Thomas E (March 2013). "The SFPT feels compelled to point out weaknesses in the paper by Séralini et al. (2012)". Food and Chemical Toxicology. 53: 473–74. doi:10.1016/j.fct.2012.10.041. PMID 23165156.
  256. ^ Staff (October 1, 2012). "A study of the University of Caen neither constitutes a reason for a re-evaluation of genetically modified NK603 maize nor does it affect the renewal of the glyphosate approval". German Federal Institute for Risk Assessment (BfR). Retrieved October 14, 2012.
  257. ^ Staff (October 5, 2012). "BVL prüft Rattenfütterungsstudie mit gentechnisch verändertem Mais und glyphosathaltigen Pflanzenschutzmitteln (Seralini et al. 2012)" [BVL checks rat feeding study with a genetically modified maize and glyphosate pesticide (Seralini et al. 2012.)] (in German). The German Federal Office of Consumer Protection and Food Safety (BVL). Archived from the original on September 10, 2017. Retrieved October 14, 2012.
  258. ^ Staff (22 October 2012) French panel rejects study linking GM corn to cancer Agence France Presse. Retrieved 23 October 2012. From Internet Archive, archived February 1, 2013
  259. ^ Staff (8 October 2012) VIB concludes that Séralini study is not substantiated VIB Life Sciences Research Institute, Belgium. Retrieved 14 October 2012
  260. ^ Staff (October 2012). "GMO study fails to meet scientific standards". Technical University of Denmark, Danish National Food Institute. Archived from the original on January 18, 2016. Retrieved May 2, 2014.
  261. ^ Staff (November 2013). "Response to Séralini paper". Food Standards Australia New Zealand. Archived from the original on January 18, 2016. Retrieved May 3, 2014.
  262. ^ Garcia JF, Moreno FS, Nardi NB (2012). "CTNBio Considered Opinion on Sep. 2012 publication of Seralini et al.]" (PDF). Brazilian Ministry of Science Technology and Innovation, National Biosafety Technical Commission. Retrieved December 7, 2012.
  263. ^ European Food Safety Authority (EFSA) (2012). "Review of the Séralini et al. (2012) publication on a 2-year rodent feeding study with glyphosate formulations and GM maize NK603 as published online on 19 September 2012 in Food and Chemical Toxicology". EFSA Journal. 10 (10): 2910. doi:10.2903/j.efsa.2012.2910.
    • "EFSA publishes initial review on GM maize and herbicide study". European Food Safety Administration (Press release). October 4, 2012.
  264. ^ Séralini GE, Mesnage R, Defarge N, Gress S, Hennequin D, Clair E, Malatesta M, de Vendômois JS (March 2013). "Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide". Food and Chemical Toxicology. 53: 476–83. doi:10.1016/j.fct.2012.11.007. PMID 23146697.
  265. ^ Retraction Watch. November 28, 2013. Controversial Seralini GMO-rats paper to be retracted
  266. ^ Pollack A (November 28, 2013). "Paper Tying Rat Cancer to Herbicide Is Retracted". The New York Times.
  267. ^ Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, et al. (June 24, 2014). "Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize". Environmental Sciences Europe. 26 (1): 14. doi:10.1186/s12302-014-0014-5. PMC 5044955. PMID 27752412.
  268. ^ "On the path to vitamin A in rice". Science Daily. Retrieved February 9, 2020.
  269. ^ Not Just For Cows Anymore: New Cottonseed Is Safe For People To Eat
  270. ^ "History of Bt". University of California. Retrieved February 8, 2010.
  271. ^ Hall H (May 30, 2006). "Bt corn: is it worth the risk?". The Science Creative Quarterly.
  272. ^ Dorsch JA, Candas M, Griko NB, Maaty WS, Midboe EG, Vadlamudi RK, Bulla LA (September 2002). "Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis". Insect Biochemistry and Molecular Biology. 32 (9): 1025–36. doi:10.1016/S0965-1748(02)00040-1. PMID 12213239.
  273. ^ Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A, Gatehouse AM, Herman RA, Huesing JE, McLean MA, Raybould A, Shelton AM, Waggoner A (February 2011). "Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants". Transgenic Research. 20 (1): 1–22. doi:10.1007/s11248-010-9446-x. PMC 3018611. PMID 20938806.
  274. ^ Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MM, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (February 2008). "Assessment of risk of insect-resistant transgenic crops to nontarget arthropods". Nature Biotechnology. 26 (2): 203–08. doi:10.1038/nbt1381. PMID 18259178. S2CID 1159143.
  275. ^ Losey JE, Rayor LS, Carter ME (May 1999). "Transgenic pollen harms monarch larvae". Nature. 399 (6733): 214. Bibcode:1999Natur.399..214L. doi:10.1038/20338. PMID 10353241. S2CID 4424836.
  276. ^ Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (October 2001). "Impact of Bt corn pollen on monarch butterfly populations: a risk assessment". Proceedings of the National Academy of Sciences of the United States of America. 98 (21): 11937–42. Bibcode:2001PNAS...9811937S. doi:10.1073/pnas.211329998. JSTOR 3056827. PMC 59819. PMID 11559842.
  277. ^ Gatehouse AM, Ferry N, Raemaekers RJ (May 2002). "The case of the monarch butterfly: a verdict is returned". Trends in Genetics. 18 (5): 249–51. doi:10.1016/S0168-9525(02)02664-1. PMID 12047949.
  278. ^ The Guardian (2015). "US launches plan to halt decline of monarch butterfly". The Guardian.
  279. ^ Pleasants JM, Oberhauser KS (2012). "Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population" (PDF). Insect Conservation and Diversity. 6 (2): 135–44. doi:10.1111/j.1752-4598.2012.00196.x. S2CID 14595378. Archived from the original (PDF) on September 4, 2014.
  280. ^ Lövei GL, Andow DA, Arpaia S (April 2009). "Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies". Environmental Entomology. 38 (2): 293–306. doi:10.1603/022.038.0201. PMID 19389277.
  281. ^ Shelton AM, Naranjo SE, Romeis J, Hellmich RL, Wolt JD, Federici BA, Albajes R, Bigler F, Burgess EP, Dively GP, Gatehouse AM, Malone LA, Roush R, Sears M, Sehnal F (June 2009). "Setting the record straight: a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies". Transgenic Research. 18 (3): 317–22. doi:10.1007/s11248-009-9260-5. PMID 19357987.
  282. ^ Carpenter JE (2011). "Impact of GM crops on biodiversity". GM Crops. 2 (1): 7–23. doi:10.4161/gmcr.2.1.15086. PMID 21844695. S2CID 9550338.
  283. ^ Icoz I, Stotzky G (2008). "Fate and effects of insect-resistant Bt crops in soil ecosystems". Soil Biology and Biochemistry. 40 (3): 559–86. Bibcode:2008SBiBi..40..559I. doi:10.1016/j.soilbio.2007.11.002.
  284. ^ Bohan DA, Boffey CW, Brooks DR, Clark SJ, Dewar AM, Firbank LG, Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (March 2005). "Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape". Proceedings of the Royal Society B: Biological Sciences. 272 (1562): 463–74. doi:10.1098/rspb.2004.3049. PMC 1578713. PMID 15799941.
  285. ^ Strandberg B, Bruus Pedersen M, Elmegaard N (2005). "Weed and arthropod populations in conventional and genetically modified herbicide tolerant fodder beet fields". Agriculture, Ecosystems & Environment. 105 (1–2): 243–53. Bibcode:2005AgEE..105..243S. doi:10.1016/j.agee.2004.03.005.
  286. ^ Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, Scott RJ, Wilson JD, Perry JN, Clark SJ, Dawson RJ, Firbank LG (August 2006). "Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops". Proceedings of the Royal Society B: Biological Sciences. 273 (1596): 1921–28. doi:10.1098/rspb.2006.3522. PMC 1634768. PMID 16822753.
  287. ^ Chamberlain D, Freeman S, Vickery J (2007). "The effects of GMHT crops on bird abundance in arable fields in the UK". Agriculture, Ecosystems & Environment. 118 (1–4): 350–56. Bibcode:2007AgEE..118..350C. doi:10.1016/j.agee.2006.05.012.
  288. ^ Pleasants JM, Oberhauser KS (2013). "Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population". Insect Conservation and Diversity. 6 (2): 135–44. doi:10.1111/j.1752-4598.2012.00196.x. S2CID 14595378.
  289. ^ Pollack A (July 11, 2011). "In Midwest, Flutters May Be Far Fewer". The New York Times.
  290. ^ Relyea RA (2004). "The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities". Ecological Applications. 15 (2): 618–27. doi:10.1890/03-5342. S2CID 16520847.
  291. ^ Robin Meadows (2005)Common Herbicide Lethal to Wetland Species Conservation Magazine 6(3)
  292. ^ Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (May 2010). "Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China". Science. 328 (5982): 1151–54. Bibcode:2010Sci...328.1151L. doi:10.1126/science.1187881. PMID 20466880. S2CID 2093962.
  293. ^ Lang, Susan (July 25, 2006). "Profits die for Bt cotton in China". Cornell Chronicle. Retrieved October 10, 2012.
  294. ^ Wang S, Just DR, Andersen PA (2008). "Bt-cotton and secondary pests". International Journal of Biotechnology. 10 (2/3): 113–21. doi:10.1504/IJBT.2008.018348.
  295. ^ Wang Z, Lin H, Huang J, Hu R, Rozelle S, Pray C (2009). "Bt Cotton in China: Are Secondary Insect Infestations Offsetting the Benefits in Farmer Fields?". Agricultural Sciences in China. 8: 83–90. doi:10.1016/S1671-2927(09)60012-2.
  296. ^ Zhao, Jennifer H.; Ho, Peter; Azadi, Hossein (August 2012). "Erratum to: Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China". Environ Monit Assess. 184 (11): 7079. Bibcode:2012EMnAs.184.7079Z. doi:10.1007/s10661-012-2699-5.
  297. ^ Goswami, Bhaskar (September 2007). "Making a meal of Bt cotton". InfoChange. Archived from the original on June 16, 2008. Retrieved October 10, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  298. ^ "Bug makes meal of Punjab cotton, whither Bt magic?". IANS. September 2, 2007. Archived from the original on September 8, 2007. Retrieved October 10, 2012.
  299. ^ Stone GD (2011). "Field versus Farm in Warangal: Bt Cotton, Higher Yields, and Larger Questions". World Development. 39 (3): 387–98. doi:10.1016/j.worlddev.2010.09.008.
  300. ^ Field, R. J.; Conner, A. J.; Foreman, M. H. (September 6–10, 1993). "The impact of developing herbicide resistant crop plants" (PDF). In Wilson, B. J.; Swarbrick, J. T. (eds.). Proceedings I of the 10th Australian Weeds Conference and 14th Asian Pacific Weed Science Society Conference. Brisbane, Australia. pp. 315-318 ref.3. S2CID 81835152. CABD 20083026795[permanent dead link].
  301. ^ Lu BR, Snow AA (2005). "Gene Flow from Genetically Modified Rice and Its Environmental Consequences". BioScience. 55 (8). Academic Search Elite: 669. doi:10.1641/0006-3568(2005)055[0669:gffgmr]2.0.co;2.
  302. ^ Conner AJ, Glare TR, Nap JP (January 2003). "The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment". The Plant Journal. 33 (1): 19–46. doi:10.1046/j.0960-7412.2002.001607.x. PMID 12943539. S2CID 14159358.
  303. ^ Buck EH (June 7, 2011). "Genetically Engineered Fish and Seafood: Environmental Concerns" (PDF). Congressional Research Service. Retrieved September 3, 2012.
  304. ^ Pollack A (May 21, 2012). "An Entrepreneur Bankrolls a Genetically Engineered Salmon". The New York Times. Retrieved September 3, 2012.
  305. ^ "Genetically Modified Plants: Out-crossing and Gene Flow". GMO Compass. December 12, 2006. Archived from the original on May 5, 2011. Retrieved April 23, 2011.
  306. ^ Chilcutt CF, Tabashnik BE (May 2004). "Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize". Proceedings of the National Academy of Sciences of the United States of America. 101 (20): 7526–29. Bibcode:2004PNAS..101.7526C. doi:10.1073/pnas.0400546101. PMC 419639. PMID 15136739.
  307. ^ "Scientists play down 'superweed'" BBC, 25 July 2005 (source report)
  308. ^ Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (October 2004). "Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker". Proceedings of the National Academy of Sciences of the United States of America. 101 (40): 14533–38. Bibcode:2004PNAS..10114533W. doi:10.1073/pnas.0405154101. PMC 521937. PMID 15448206.
  309. ^ Pollack A (July 6, 2011). "U.S.D.A. Ruling on Bluegrass Stirs Cries of Lax Regulation". The New York Times. Retrieved February 26, 2015.
  310. ^ GMO Compass. 5 June 2009 Mexico: controlled cultivation of genetically modified maize Archived 2013-10-05 at the Wayback Machine
  311. ^ Shanahan, Mike (November 10, 2004). "Warning issued on GM maize imported to Mexico". Science and Development Network.
  312. ^ Mantell K (November 30, 2001). "GM maize found 'contaminating' wild strains". Science and Development Network.
  313. ^ Quist D, Chapela IH (November 2001). "Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico". Nature. 414 (6863): 541–43. Bibcode:2001Natur.414..541Q. doi:10.1038/35107068. PMID 11734853. S2CID 4403182.
  314. ^ Kaplinsky N, Braun D, Lisch D, Hay A, Hake S, Freeling M (April 2002). "Biodiversity (Communications arising): maize transgene results in Mexico are artefacts". Nature. 416 (6881): 601–02, discussion 600, 602. Bibcode:2002Natur.416..601K. doi:10.1038/nature739. PMID 11935145. S2CID 195690886.
  315. ^ Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (August 2005). "Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004)". Proceedings of the National Academy of Sciences of the United States of America. 102 (35): 12338–43. Bibcode:2005PNAS..10212338O. doi:10.1073/pnas.0503356102. PMC 1184035. PMID 16093316.
  316. ^ Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernández JA, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Alvarez-Buylla ER (February 2009). "Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations". Molecular Ecology. 18 (4): 750–61. Bibcode:2009MolEc..18..750P. doi:10.1111/j.1365-294X.2008.03993.x. PMC 3001031. PMID 19143938.
  317. ^ "First Wild Canola Plants With Modified Genes Found in United States". Arkansas Newswire. University of Arkansas. August 6, 2010. Retrieved October 10, 2012.
  318. ^ Genetically Modified Canola 'Escapes' Farm Fields. NPR. Retrieved 8 February 2011.
  319. ^ Black R (August 6, 2010). "GM plants 'established in the wild'". BBC News. Retrieved February 8, 2011.
  320. ^ Ersberg N (November 7, 2011). "Chemistry and Industry: GM crops are on the move". Ten Alps Publishing. Archived from the original on October 11, 2013. Retrieved July 7, 2012.
  321. ^ "Genetically Engineered Crops Benefit Many Farmers, but the Technology Needs proper Management to Remain Effective". Report by the U.S. National Academies: press release on the report "The Impact of Genetically Engineered Crops on Farm Sustainability in the United States" Office of News and Public Information, News from the Academies. April 13, 2010. Retrieved October 11, 2010.
  322. ^ "Biotech Crops Are Good For Earth, Report Finds". Npr.org. April 13, 2010. Retrieved May 30, 2013.
  323. ^ a b "Transgenic Crops: An Introduction and Resource Guide". Cls.casa.colostate.edu. Archived from the original on January 28, 2011. Retrieved March 8, 2010.
  324. ^ BBC News, Tuesday, 5 October 1999. Terminator gene halt a 'major U-turn'
  325. ^ Haider R (March 21, 2006). "Biodiversity: Don't Sell 'Suicide Seeds', Activists Warn". Inter Press Service.
  326. ^ a b Masood E (1999). "Compromise sought on 'Terminator' seed technology". Nature. 399 (6738): 721. Bibcode:1999Natur.399Q.721M. doi:10.1038/21491.
  327. ^ Pollack M, Shaffer G (2009). When Cooperation Fails: the international law and politics of genetically modified foods. Oxford University Press. ISBN 978-0-19-956705-8.
  328. ^ Williston B (September 2001). "Farmers Fight to Save Organic Crops". The Progressive Magazine.
  329. ^ Superman H (October 14, 1999). "Genetically Altered Wheat Flagged – Thailand Detects Shipment Not Cleared for Commercial Sales". Spokesman Review (Spokane, WA).
  330. ^ Gunther M (July 2, 2007). "Attack of the mutant rice". Fortune Magazine. 156 (1): 74–8, 80. PMID 17853593.
  331. ^ "APHIS Report of LibertyLink Rice Incidents" (PDF). Archived from the original (PDF) on July 21, 2013. Retrieved May 30, 2013.
  332. ^ Coghlan A (June 3, 2013). "Monsanto modified wheat mystery deepens in Oregon". New Scientist.
  333. ^ Bjerga A (May 29, 2013). "Monsanto Modified Wheat Not Approved by USDA Found in Field". Bloomberg News.
  334. ^ "Unapproved Monsanto GMO Wheat Found in Oregon". CNBC. Reuters. May 29, 2013. Retrieved May 30, 2013.
  335. ^ Allison M (June 5, 2013). "Japan's wheat-import suspension worries state growers". Seattle Times. Retrieved June 5, 2013.
  336. ^ Pollack A (May 29, 2013). "Modified Wheat Is Discovered in Oregon". The New York Times.
  337. ^ "Source of GMO wheat in Oregon remains mystery". Associated Press. August 30, 2013. Archived from the original on September 14, 2013. Retrieved August 31, 2013.
  338. ^ Allison M (June 18, 2013). "Wheat scare leaves farmers in limbo". Seattle Times.
  339. ^ Baram Ml (2011). "Governance of GM Crop and Food Safety in the United States". In Baram M, Bourrier M (eds.). Governing Risk in GM Agriculture. Cambridge University Press. pp. 15–56.
  340. ^ Flynn D (November 12, 2012). "AC21 Wants USDA to Investigate Crop Insurance for Genetic Harm To Organic Crops". Food Safety News.
  341. ^ USDA Advisory Committee on Biotechnology and 21st Century Agriculture (AC21) (November 19, 2012). "Enhancing Coexistence: A Report of the AC21 to the Secretary of Agriculture" (PDF). Archived from the original (PDF) on October 17, 2013. Retrieved June 10, 2013.{{cite web}}: CS1 maint: numeric names: authors list (link)
  342. ^ a b Czarnak-Kłos M, Rodríguez-Cerezo E (2010). "Best Practice documents for coexistence of Genetically Modified Crops with Conventional and Organic Crops" (PDF). Joint Research Centre, Institute for Prospective Technological Studies. European Commission. Retrieved October 13, 2012.
  343. ^ Smith J (December 2007). "EU caught in quandary over GMO animal feed imports". Reuters.
  344. ^ USDA National Agriculture Library GM and Non-GM Supply Chains: Their CO-EXistence and TRAceability Archived 2014-12-16 at the Wayback Machine
  345. ^ "Research – Food Quality and Safety in Europe – Projects –Keeping Track of GMOs". europa.eu. Archived from the original on December 14, 2014.
  346. ^ "About Pesticides". U.S. Environmental Protection Agency. Retrieved May 31, 2015.
  347. ^ a b Klümper W, Qaim M (2014). "A meta-analysis of the impacts of genetically modified crops". PLOS ONE. 9 (11): e111629. Bibcode:2014PLoSO...9k1629K. doi:10.1371/journal.pone.0111629. PMC 4218791. PMID 25365303.
  348. ^ How GMOs Cut The Use Of Pesticides – And Perhaps Boosted It Again
  349. ^ Perry ED, Ciliberto F, Hennessy DA, Moschini G (August 2016). "Genetically engineered crops and pesticide use in U.S. maize and soybeans". Science Advances. 2 (8): e1600850. Bibcode:2016SciA....2E0850P. doi:10.1126/sciadv.1600850. PMC 5020710. PMID 27652335.
  350. ^ "Pesticides in paradise: Hawaii's spike in birth defects puts focus on GM crops". The Guardian. 2015.
  351. ^ Shipitalo MJ, Malone RW, Owens LB (2008). "Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff". Journal of Environmental Quality. 37 (2): 401–08. Bibcode:2008JEnvQ..37..401S. doi:10.2134/jeq2006.0540. PMID 18268303. S2CID 11863934.
  352. ^ a b Benbrook CM (2012). "Impacts of genetically engineered crops on pesticide use in the U.S. – the first sixteen years". Environmental Sciences Europe. 24: 24. doi:10.1186/2190-4715-24-24.
  353. ^ "How GMOs Unleashed a Pesticide Gusher". October 3, 2012.
  354. ^ Kloor K (October 3, 2012). "When Bad News Stories Help Bad Science Go Viral". Discover. Archived from the original on May 31, 2015. Retrieved May 31, 2015.
  355. ^ Mestel R (October 24, 2012). "Examining the scientific evidence against genetically modified foods". Los Angeles Times. Archived from the original on October 30, 2012. Retrieved May 31, 2015.
  356. ^ Brookes G, Barfoot P (2012). "Global impact of biotech crops: environmental effects, 1996–2010". GM Crops & Food. 3 (2): 129–37. doi:10.4161/gmcr.20061. PMID 22534352.
  357. ^ Peeples L (October 4, 2012). "Pesticide Use Proliferating With GMO Crops, Study Warns". Huffington Post. Retrieved May 31, 2015.
  358. ^ Roh JY, Choi JY, Li MS, Jin BR, Je YH (April 2007). "Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control". Journal of Microbiology and Biotechnology. 17 (4): 547–59. PMID 18051264.
  359. ^ Marvier M, McCreedy C, Regetz J, Kareiva P (June 2007). "A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates". Science. 316 (5830): 1475–77. Bibcode:2007Sci...316.1475M. doi:10.1126/science.1139208. PMID 17556584. S2CID 23172622.
  360. ^ Brookes G, Barefoot P (2008). "Global Impact of Biotech Crops: Socio-Economic and Environmental Effects, 1996-2006". AgBioForum. 11 (1): Article 3. Archived from the original on June 3, 2018. Retrieved August 12, 2010.
  361. ^ Krishna VV, Qaim M (2012). "Bt cotton and sustainability of pesticide reductions in India". Agricultural Systems. 107: 47–55. Bibcode:2012AgSys.107...47K. doi:10.1016/j.agsy.2011.11.005.
  362. ^ Kovach J, Petzoldt C, Degni J, Tette J. "A Method to Measure the Environmental Impact of Pesticides". New York State Agricultural Experiment Station. Retrieved November 23, 2008.
  363. ^ Carrington D (June 13, 2012). "GM crops good for environment, study finds". The Guardian. Retrieved June 16, 2012.
  364. ^ Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (July 2012). "Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services". Nature. 487 (7407): 362–65. Bibcode:2012Natur.487..362L. doi:10.1038/nature11153. PMID 22722864. S2CID 4415298.
  365. ^ Neuman W, Pollack A (May 4, 2010). "U.S. Farmers Cope With Roundup-Resistant Weeds". The New York Times. p. B1. Retrieved October 10, 2012.
  366. ^ "Cotton in India". Monsanto. May 5, 2010.
  367. ^ Bagla P (March 2010). "India. Hardy cotton-munching pests are latest blow to GM crops". Science. 327 (5972): 1439. Bibcode:2010Sci...327.1439B. doi:10.1126/science.327.5972.1439. PMID 20299559.
  368. ^ Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (February 2008). "Insect resistance to Bt crops: evidence versus theory". Nature Biotechnology. 26 (2): 199–202. doi:10.1038/nbt1382. PMID 18259177. S2CID 205273664.
  369. ^ Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AM (June 2006). "Recent developments and future prospects in insect pest control in transgenic crops". Trends in Plant Science. 11 (6): 302–08. doi:10.1016/j.tplants.2006.04.001. PMID 16690346.
  370. ^ Kaskey, Jack (November 16, 2012). "DuPont-Dow Corn Defeated by Armyworms in Florida: Study". Bloomberg News.
  371. ^ Staff. "Section: Can European corn borer develop resistance to Bt corn? in the Bt Corn & European Corn Borer". University of Minnesota Extension. Archived from the original on September 28, 2013. Retrieved August 25, 2013.
  372. ^ "Economic Impact of Transgenic Crops in Developing Countries". Agbioworld.org. Retrieved February 8, 2011.
  373. ^ Areal FJ, Riesgo L, Rodríguez-Cerezo E (2012). "Economic and agronomic impact of commercialized GM crops: A meta-analysis". The Journal of Agricultural Science. 151: 7–33. doi:10.1017/S0021859612000111. S2CID 85891950.
  374. ^ Finger R, El Benni N, Kaphengst T, Evans C, Herbert S, Lehmann B, et al. (2011). "A Meta Analysis on Farm-Level Costs and Benefits of GM Crops". Sustainability. 3 (12): 743–62. doi:10.3390/su3050743. hdl:20.500.11850/42242.
  375. ^ Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (October 2010). "Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers". Science. 330 (6001): 222–25. Bibcode:2010Sci...330..222H. doi:10.1126/science.1190242. PMID 20929774. S2CID 238816.
  376. ^ Kanowski, Steve (October 8, 2010). "High-Tech Corn Fights Pests at Home and Nearby". Sci-Tech today. Retrieved October 9, 2010.[permanent dead link]
  377. ^ Falck-Zepeda JB, Traxler G, Nelson RG (2000). "Surplus Distribution from the Introduction of a Biotechnology Innovation". American Journal of Agricultural Economics. 82 (2): 360–69. doi:10.1111/0002-9092.00031. JSTOR 1244657. S2CID 153595694.
  378. ^ Brookes G, Barfoot P (May 2012). "GM crops: global socio-economic and environmental impacts 1996–2010" (PDF). PG Economics Ltd. UK. Retrieved January 3, 2012.
  379. ^ Smale M, Zambrano P, Cartel M (2006). "Bales and balance: A review of the methods used to assess the economic impact of Bt cotton on farmers in developing economies" (PDF). AgBioForum. 9 (3): 195–212. Archived from the original (PDF) on March 4, 2016. Retrieved September 16, 2012.
  380. ^ Lynas M (November 4, 2010). "What the Green Movement Got Wrong: A turncoat explains". The Daily Telegraph. Archived from the original on November 7, 2010. Retrieved November 5, 2010.
  381. ^ Planting the future: opportunities and challenges for using crop genetic improvement technologies for sustainable agriculture, EASAC policy report 21, 27.06.13.
  382. ^ Diouf J, Sheehan J (2010). "The State of Food Insecurity in the World" (PDF). Food and Agriculture Organization of the United Nations. Retrieved August 11, 2011.
  383. ^ Gillis J (June 5, 2011). "A Warming Planet Struggles to Feed Itself". The New York Times. Retrieved August 11, 2011.
  384. ^ Burke M (January 8, 2009). "Half the world's population faces major food crisis by 2100, Science study finds". Stanford University. Retrieved August 11, 2011.
  385. ^ Raney T, Pingali P (September 2007). "Sowing a Gene Revolution". Scientific American. Retrieved October 26, 2014.
  386. ^ Lal R, Hobbs PR, Uphoff N, Hansen DO, eds. (2004). Sustainable Agriculture and the International Rice-Wheat System. CRC Press. ISBN 9780824754914. Retrieved May 12, 2013.
  387. ^ Kiers ET, Leakey RR, Izac AM, Heinemann JA, Rosenthal E, Nathan D, Jiggins J (April 2008). "Ecology. Agriculture at a crossroads". Science. 320 (5874): 320–21. doi:10.1126/science.1158390. PMID 18420917. S2CID 206513018.
  388. ^ "Agriculture at a Crossroads (c) 2009"" (PDF). International Assessment of Agricultural Knowledge, Science and Technology for Development. Archived from the original (PDF) on November 30, 2014. Retrieved February 11, 2016.
  389. ^ Lappé FM, Collins J, Rosset P, Esparza L (1998). World Hunger: Twelve Myths. Grove Press. p. 224. ISBN 978-0-8021-3591-9.
  390. ^ Boucher DH (1999). The Paradox of Plenty: Hunger in a Bountiful World. Food First Books. p. 342. ISBN 978-0-935028-71-3.
  391. ^ Avise JC (2004). The Hope, Hype and Reality of Genetic Engineering: Remarkable Stories from Agriculture, Industry, Medicine and the Environment (2nd ed.). Oxford University Press. ISBN 978-0-19-803790-3. Retrieved May 12, 2013.
  392. ^ Bourne Jr JK (June 2009). "The Global Food Crisis: The End of Plenty". National Geographic. Archived from the original on May 21, 2009.
  393. ^ Pfeiffer, D. (2006). Eating Fossil Fuel: Oil, Food, and the Coming Crisis in Agriculture.
  394. ^ Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H, Nelson RJ (2004). "Biotechnology in the developing world: A case for increased investments in orphan crops". Food Policy. 29: 15–44. doi:10.1016/j.foodpol.2004.01.002.
  395. ^ Borlaug NE (2000). "Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry". Plant Physiology. 124 (2): 487–90. doi:10.1104/pp.124.2.487. PMC 1539278. PMID 11027697.
  396. ^ Kagale S, Rozwadowski K (October 2010). "Global Food Security: The Role of Agricultural Biotechnology Commentary" (PDF). Plant Physiology. Saskatoon, Saskatchewan: Saskatoon Research Centre, Agriculture and Agri-Food Canada. Archived from the original (PDF) on September 24, 2015. Retrieved January 12, 2014.
  397. ^ Nielsen R (August 2012). "Historical Corn Grain Yields for Indiana and the U.S." Corny News Network. Purdue University. Retrieved October 1, 2014.
  398. ^ "Feed grains yearbook tables – recent". National Agricultural Statistics Service. October 2014. Archived from the original on October 26, 2014. Retrieved October 1, 2014.
  399. ^ Kaphengst T, El Benni N, Evans C, Finger R, Herbert S, Morse S, Stupak N (2010). "Assessment of the economic performance of GM crops worldwide" (PDF). Report to the European Commission, March 2011. Archived from the original (PDF) on May 2, 2013.
  400. ^ Wesseler J, ed. (2005). Environmental Costs and Benefits of Transgenic Crops. Dordrecht, NL: Springer Press.
  401. ^ a b c "Genetically modified crops - Field research". Economist. November 8, 2014. Retrieved November 1, 2014.
  402. ^ Carpenter JE (April 2010). "Peer-reviewed surveys indicate positive impact of commercialized GM crops". Nature Biotechnology. 28 (4): 319–21. doi:10.1038/nbt0410-319. PMID 20379171. S2CID 3331699.
  403. ^ Carpenter J (2010). "Peer-reviewed surveys indicate positive impact of commercialized GM crops" (Slide presentation). Nature Biotechnology. 28 (4): 319–21. doi:10.1038/nbt0410-319. PMID 20379171. S2CID 3331699. Retrieved October 25, 2010.
  404. ^ "Roundup Ready soybean trait patent nears expiration in 2014". Hpj.com. Archived from the original on January 3, 2013. Retrieved May 30, 2013.
  405. ^ D. Gurian-Sherman. 2009. Failure to Yield. UCSUSA.org
  406. ^ "Do GM Crops Really Have Higher Yields?". Mother Jones. Retrieved October 26, 2014.
  407. ^ Shi G, Chavas JP, Lauer J (February 2013). "Commercialized transgenic traits, maize productivity and yield risk". Nature Biotechnology. 31 (2): 111–14. doi:10.1038/nbt.2496. PMID 23392505. S2CID 205278106.
  408. ^ Hayenga M (1998). "Structural change in the biotech seed and chemical industrial complex". AgBioForum. 1 (2): 43–55. Archived from the original on March 4, 2016. Retrieved October 10, 2012.
  409. ^ Who Owns Nature? Corporate Power and the Final Frontier in the Commodification of Life. ETC Group. 2008. p. 11.
  410. ^ Who will control the Green Economy?. ETC Group. 2011. p. 22.
  411. ^ USDA (2001). "Concentration and Technology in Agricultural Input Industries". Archived from the original on October 26, 2014. Retrieved October 26, 2014.
  412. ^ Acquaye AK, Traxler G (2005). "Monopoly power, price discrimination, and access to biotechnology innovations". AgBioForum. 8 (2&3): 127–33. Archived from the original on November 19, 2012. Retrieved October 10, 2012.
  413. ^ Murphy S (2006). "Concentrated Market Power and Agricultural Trade" (PDF). EcoFair Trade Dialog Discussion Paper #1. p. 18.
  414. ^ Who Owns Nature? Corporate Power and the Final Frontier in the Commodification of Life. ETC Group. 2008. p. 14.
  415. ^ a b Gillam C (March 11, 2010). "Farm groups call on U.S. to "bust up big ag"". Reuters.
  416. ^ Kaskey J, McQuillen W (March 12, 2010). "Monsanto's Seed Patents May Trump Antitrust Claims (Update2)". Bloomberg News.
  417. ^ History of Research at the U.S. Department of Agriculture and Agricultural Research Service Agricultural Research Service: Improving Corn. Last Modified: 6 June 2008. Originally published in U.S. Department of Agriculture. 1894–1992. Yearbooks of agriculture. U.S. Government Printing Office, Washington, DC.
  418. ^ Eagle Seed Company, Roundup Ready Seed webpage Has example of license language
  419. ^ "Syngenta Stewardship Agreement" (PDF). October 21, 2022.
  420. ^ "Dupont 2011 Annual Report (10-K Filing)". Archived from the original on April 12, 2012. Retrieved October 11, 2012. See page 2 for ag R&D percentage, page 19 for total R&D spending
  421. ^ "Monsanto Investors's page". Monsanto.com. November 3, 2008. Retrieved May 30, 2013.
  422. ^ Amy Goodman (October 24, 2012). "Michael Pollan: California's Prop 37 Fight to Label GMOs Could Galvanize Growing U.S. Food Movement". Democracy Now!. Retrieved October 26, 2012.
  423. ^ "Discussion Guide for the film Food Inc" (PDF). Center for Ecoliteracy. p. 73. Archived from the original (PDF) on February 15, 2012. Retrieved October 1, 2014.
  424. ^ "Transgenic Plants and World Agriculture" (PDF). Archived from the original (PDF) on December 15, 2005.
  425. ^ Mechlem K, Raney T (2007). "Biotechnologies and International Human rights". In Francioni F (ed.). Agricultural Technology and the Right to Food. Oxford: Hart Publishing. ISBN 978-1-84113-703-2.
  426. ^ Digital, G. L. P. (May 9, 2017). "Bangladesh's embrace of GMO technology may embolden innovation in developing countries".
  427. ^ a b "Saved Seed and Farmer Lawsuits". Monsanto. November 3, 2008. Archived from the original on February 11, 2012. Retrieved May 30, 2013.
  428. ^ Schubert R (September 9, 2002). "Schmeiser Wants to Take It to The Supreme Court". CropChoice News.
  429. ^ Pollack A (December 17, 2009). "As Patent Ends, a Seed's Use Will Survive". The New York Times. Retrieved October 1, 2014.
  430. ^ a b c d e "Canadian Supreme Court Decision". Scc.lexum.org. Archived from the original on September 5, 2012. Retrieved May 30, 2013.
  431. ^ McHughen A, Wager R (December 2010). "Popular misconceptions: agricultural biotechnology". New Biotechnology. 27 (6): 724–78. doi:10.1016/j.nbt.2010.03.006. PMID 20359558. The fear about a company claiming ownership of a farmer's crop based on the inadvertent presence of GM pollen grain or seed is ... widespread and ... unfounded.
  432. ^ Simon B (May 22, 2004). "Monsanto Wins Patent Case On Plant Genes". The New York Times.
  433. ^ Sheldon M (2002). "Regulation of Biotechnology: will we ever 'freely' trade GMOs?". Eur Rev Agric Econ. 29 (1): 155–76. doi:10.1093/erae/29.1.155.
  434. ^ a b Siekierski BJ (February 2, 2011). "Agriculture Committee continues study on biotechnology while Bill C-474 is debated". iPolitics.
  435. ^ "Private Member's Bill C-474". Parliament of Canada. Retrieved October 26, 2014.
  436. ^ "Bill to Reform Approval Process for GM Seeds Voted Down" (PDF). This Week in Canadian Agriculture Issue 4. USDA Foreign Agriculture Service: Global Agriculture Information Network (GAIN). February 7, 2011.
  437. ^ Hallenbeck T (April 27, 2014). "How GMO labeling came to pass in Vermont". Burlington Free Press.
  438. ^ Van Eenennaam A, Chassy BM, Kalaitzandonakes N, Redick TP (April 2014). "CAST Issue Paper Number 54: The Potential Impacts of Mandatory Labeling for Genetically Engineered Food in the United States". Archived from the original on April 14, 2016. Retrieved May 28, 2014.
  439. ^ a b "Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 On Genetically Modified Food And Feed" (PDF). Official Journal of the European Union. The European Parliament and the Council of the European Union. 2003. Archived from the original (PDF) on January 20, 2014. The labeling should include objective information to the effect that a food or feed consists of, contains or is produced from GMOs. Clear labeling, irrespective of the detectability of DNA or protein resulting from the genetic modification in the final product, meets the demands expressed in numerous surveys by a large majority of consumers, facilitates informed choice and precludes potential misleading of consumers as regards methods of manufacture or production.
  440. ^ a b "Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labeling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC". Official Journal L 268, 18/10/2003 P. 0024–0028. The European Parliament and the Council of the European Union. 2003. (3) Traceability requirements for GMOs should facilitate both the withdrawal of products where unforeseen adverse effects on human health, animal health or the environment, including ecosystems, are established, and the targeting of monitoring to examine potential effects on, in particular, the environment. Traceability should also facilitate the implementation of risk management measures in accordance with the precautionary principle. (4) Traceability requirements for food and feed produced from GMOs should be established to facilitate accurate labeling of such products.
  441. ^ "Food Labeling for Processed Foods". Japanese Ministry of Agriculture, Forestry and Fish. Archived from the original on March 8, 2015.
  442. ^ a b Food Standards Australia New Zealand (2012). "Labeling of GM Foods". Archived from the original on April 11, 2013. Retrieved March 14, 2013.
  443. ^ "Restrictions on Genetically Modified Organisms: China". loc.gov. March 2014.
  444. ^ Anne Sewell for the Digital Journal. Jan 11, 2013 GMO labeling signed into law in India
  445. ^ Library of Congress. Page updated February 27, 2015 Restrictions on Genetically Modified Organisms: Israel Page accessed March 21, 2015. Quote: As discussed above, labeling requirements apply to the marketing of transgenic plants, propagation material, and organisms. Labeling requirements for distribution of processed food products containing GMO components do not apply at this time."
  446. ^ "Labeling/Marketing Requirements - Israel" (PDF). US Department of Commerce, Middle East, North Africa Business Information Center. Archived from the original (PDF) on September 24, 2015. Retrieved March 21, 2015.
  447. ^ "Labeling of Genetically Engineered Fish - Alaska". Institute for Local Self-Reliance. November 21, 2008.
  448. ^ "Vermont's GMO Labeling Law Is Now In Effect. Here Are The Labels The Senate Is Trying To Get Rid Of". July 1, 2016.
  449. ^ "How Little Vermont Got Big Food Companies To Label GMOs". NPR.org. NPR.
  450. ^ King, Robert (July 10, 2016). "Vermont GMO law leads to fewer products on shelves". Washington Examiner.
  451. ^ "Why the GMO Food Labeling Debate Is Not Over". Observer. June 28, 2016.
  452. ^ National bioengineered food disclosure standard - full text
  453. ^ "Congress Just Passed A GMO Labeling Bill. Nobody's Super Happy About It". NPR.org. NPR.
  454. ^ Scatasta S, Wesseler J, Hobbs J (2007). "Differentiating the consumer benefits from labeling of GM food products". Agricultural Economics. 37 (2–3): 237–42. doi:10.1111/j.1574-0862.2007.00269.x.
  455. ^ Ball M (May 14, 2014). "Want to Know If Your Food Is Genetically Modified? Across the country, an aggressive grassroots movement is winning support with its demands for GMO labeling. If only it had science on its side". The Atlantic.
  456. ^ Van Eenennaam A, Chassy B, Kalaitzandonakes N, Redick T (2014). "The Potential Impacts of Mandatory Labeling for Genetically Engineered Food in the United States" (PDF). Council for Agricultural Science and Technology (CAST). 54 (April 2014). ISSN 1070-0021. Archived from the original (PDF) on May 29, 2014. Retrieved May 28, 2014. To date, no material differences in composition or safety of commercialized GE crops have been identified that would justify a label based on the GE nature of the product.
  457. ^ "Conn. bill looks to add labels to engineered food". Wall Street Journal. Associated Press. February 22, 2012.
  458. ^ "Editorial: Mandatory labels for genetically modified foods are a bad idea". Scientific American. Vol. 309, no. 3. September 6, 2013. p. 10. doi:10.1038/scientificamerican0913-10. PMID 24003541.
  459. ^ Runyon, Luke (November 5, 2014). "Colorado, Oregon Reject GMO Labeling". NPR.
  460. ^ "Malloy signs state GMO labeling law in Fairfield". Connecticut Post. December 12, 2013.
  461. ^ Herling DJ (January 12, 2014). "As Maine Goes, So Goes The Nation? Labeling for Foods Made with Genetically Modified Organisms (GMOs)". The National Law Review. Retrieved March 8, 2014.
  462. ^ Gruère GP, Rao SR (2007). "A Review of International Labeling Policies of Genetically Modified Food to Evaluate India's Proposed Rule". AgBioForum. 10 (1): 51–64. Archived from the original on November 19, 2012. Retrieved October 10, 2012.
  463. ^ "GM labelling advisory". Food Standards Agency. April 7, 2008. Archived from the original on August 7, 2012. Retrieved August 31, 2012.
  464. ^ Schiffman R (June 13, 2012). "How California's GM food referendum may change what America eats". The Guardian. London. Retrieved October 10, 2012.
  465. ^ Gruère GP, Rao SR (2007). "A review of international labeling policies of genetically modified food to evaluate India's proposed rule". AgBioForum. 10 (1): 51–64. Archived from the original on March 3, 2016. Retrieved October 29, 2012.
  466. ^ "Support of the Labeling of Genetically Modified Foods". Policy Number: 200111. American Public Health Association. 2001. Archived from the original on March 22, 2014.
  467. ^ "Genetically modified food and health: A second interim statement" (PDF). British Medical Association Board of Science and Education. March 2004.
  468. ^ "Genetically Modified Foods" (PDF). PHAA AGM. Public Health Association of Australia. 2007. Archived from the original (PDF) on January 20, 2014.
  469. ^ Gruere, Guillaume P.; Rao, S. R. (2007). "A Review of International Labeling Policies of Genetically Modified Food to Evaluate India's Proposed Rule". Agbioforum. ISSN 1522-936X. Retrieved November 8, 2021. Existing evidence from developed countries shows that while mandatory labeling regulations have failed thus far to demonstrate any visible benefit in terms of consumer choice and consumer information, they have contributed to the disappearance of GM food ingredients in targeted products.
  470. ^ "Noted Food Safety Expert Michael R. Taylor Named Advisor to FDA Commissioner". FDA News Release. July 7, 2009.
  471. ^ Prudham S, Morris A (2006). "Making the Market 'Safe' for GM Foods: The Case of the Canadian Biotechnology Advisory Committee". Studies in Political Economy. 78: 145–75. doi:10.1080/19187033.2006.11675105. S2CID 156666141.
  472. ^ Chen M, Shelton A, Ye GY (2011). "Insect-resistant genetically modified rice in China: from research to commercialization". Annual Review of Entomology. 56: 81–101. doi:10.1146/annurev-ento-120709-144810. PMID 20868281. S2CID 35669547.
  473. ^ McHughen A, Smyth S (January 2008). "US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars". Plant Biotechnology Journal. 6 (1): 2–12. doi:10.1111/j.1467-7652.2007.00300.x. PMID 17956539.
  474. ^ Pollack A (August 13, 2010). "Judge Revokes Approval of Modified Sugar Beets". The New York Times.
  475. ^ Supreme Court of the United States (June 21, 2010). "Monsanto et al. v Geertson Seed Farms et al" (PDF). Decision no 09-475. Retrieved March 14, 2013.
  476. ^ United States Court of Appeals for the Ninth Circuit. (February 25, 2011). "No. 10-17719, D.C. No. 3:10-cv-04038-JSW" (PDF). Retrieved March 14, 2013.
  477. ^ Staff (August 7, 2012). "Roundup Ready® Sugar Beet News] USDA Animal and Plant Health Inspection Service, Biotechnology". Archived from the original on October 13, 2010. Retrieved March 14, 2013.
  478. ^ "USDA – Roundup Ready® Alfalfa Environmental Impact Statement (EIS)". United States Department of Agriculture. December 2010. Archived from the original on September 24, 2008. Retrieved March 14, 2013.
  479. ^ "Post election struggles in the courts". SHAKA Movement. Archived from the original on October 21, 2014. Retrieved October 18, 2014.
  480. ^ Joaquin T (October 7, 2014). "Voters to decide on Maui GMO debate in one month". Hawaii News Now. Retrieved October 18, 2014.
  481. ^ Shikina R (November 5, 2014). "Voters adopt GMO ban". Honolulu Star-Advertiser. Retrieved November 5, 2014.
  482. ^ Colicchio T (December 15, 2015). "Are You Eating Frankenfish?". The New York Times.
  483. ^ Bohrer B (December 17, 2015). "Legislation Includes 'Frankenfish' Labeling Provisions". ABC News. The Associated Press. Archived from the original on December 22, 2015.
  484. ^ "Labeling of Genetically Modified salmon search results". Google Scholar.
  485. ^ Lynch D, Vogel D (2001). "The Regulation of Gmos in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Archived from the original on October 18, 2012. Retrieved October 7, 2012.
  486. ^ a b "U.S. vs. EU: An Examination of the Trade Issues Surrounding Genetically Modified Food" (PDF). Pew Initiative on Food and Biotechnology. December 2005. Archived from the original (PDF) on September 27, 2012.
  487. ^ Staff (May 23, 2007). "EU GMO ban was illegal, WTO rules". Euractive.com. Archived from the original on October 20, 2017. Retrieved October 7, 2011.
  488. ^ Staff. "EC – Approval and Marketing of Biotech Products (Disputes DS291, 292, 293)]" (PDF). World Trade Organization. Retrieved October 7, 2011.
  489. ^ Ludwig M (December 21, 2010). "WikiLeaks: US Ambassador Planned "Retaliation" Against France Over Ban on Monsanto Corn". Truthout. Archived from the original on January 1, 2011. Retrieved January 11, 2011.
  490. ^ "Majority of EU nations seek opt-out from growing GM crops". Reuters. October 4, 2015. Retrieved October 7, 2015.
  491. ^ "It's Official: 19 European Countries Say 'No' to GMOs". October 5, 2015. Retrieved October 7, 2015.
  492. ^ "Greenpeace EU". Retrieved October 7, 2015.
  493. ^ a b c Bettles C, Hinkley B (May 28, 2014). "Baxter wins GM case". The Land. Archived from the original on July 14, 2014. Retrieved July 8, 2014.
  494. ^ a b c d e f Supreme Court of Western Australia (2014). "Supreme Court of Western Australia Judgement Summary: Marsh v Baxter" (PDF). WASC 187 (Civ 1561 Of 2012).
  495. ^ Walker I (February 2014). "Steve Marsh and the Bad Seeds". Global Mail. Archived from the original on February 24, 2015. Retrieved July 8, 2014.
  496. ^ Walter M (June 18, 2014). "Media statement: Marsh v Baxter appeal". Slater & Gordon Lawyers.
  497. ^ Bettles C (March 25, 2015). "GM cost appeal on hold". Farm Weekly. Archived from the original on April 2, 2015. Retrieved March 31, 2015.
  498. ^ Hawkins B (March 28, 2015). "GM canola farmer says Pastoralists and Graziers Association set up 'fighting fund' to 'help with legal costs'". ABC News.
  499. ^ "Organic farmer loses GM appeal". ABC News. September 3, 2015.
  500. ^ "Court of Appeals decision" (PDF). Republic of the Philippines Court of Appeals. Archived from the original (PDF) on January 18, 2016.
  501. ^ "Notice of decision" (PDF). Republic of the Philippines Court of Appeals. Archived from the original (PDF) on December 22, 2015. Retrieved December 13, 2015.
  502. ^ "Resolution" (PDF). Republic of the Philippines Court of Appeals. Archived from the original (PDF) on December 22, 2015. Retrieved December 13, 2015.
  503. ^ "Philippines' Supreme Court bans development of genetically engineered products". Greenpeace International. December 11, 2015. Archived from the original on December 22, 2015.
  504. ^ "SC orders stop to commercial release of genetically modified rice, eggplant products". cnn. April 19, 2023. Archived from the original on June 1, 2023. Retrieved June 1, 2023.
  505. ^ Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda JB, et al. (September 2022). "Toward product-based regulation of crops". Science. 377 (6610): 1051–1053. Bibcode:2022Sci...377.1051G. doi:10.1126/science.abo3034. PMID 36048940. S2CID 252008948.
    • Expert debate about the proposal: "Vorschlag zur Regulation von Zuchtpflanzen" (in German). Science Media Centre Germany. Retrieved October 21, 2022.
    • University press release: "Researchers propose new framework for regulating engineered crops". North Carolina State University via phys.org. Retrieved October 21, 2022.
    • News report: "Gentechnik soll kein Grund mehr für Verbote von Nutzpflanzen sein". DER STANDARD (in Austrian German). Retrieved October 21, 2022.
  506. ^ a b c Pollack A (January 1, 2015). "By 'Editing' Plant Genes, Companies Avoid Regulation". The New York Times.
  507. ^ Ledford H (August 20, 2013). "US regulation misses some GM crops Gaps in oversight of transgenic technologies allow scientists to test the waters for speciality varieties". Nature News. 500 (7463): 389–390. doi:10.1038/500389a. PMID 23969441. S2CID 4325604.
  508. ^ Godoy M (March 21, 2013). "Did Congress Just Give GMOs A Free Pass In The Courts?". NPR. Retrieved May 29, 2013.
  509. ^ Boerma L (March 28, 2013). "Critics slam Obama for "protecting" Monsanto". CBS News. Retrieved May 29, 2013.
  510. ^ "What's Next for the 'Monsanto Protection Act'?". Yahoo! News. April 4, 2013. Retrieved May 29, 2013.
  511. ^ Lewin AC (2007). "Zambia and Genetically Modified Food Aid. Case Study #4-4 of the Program: "Food Policy for Developing Countries: The Role of Government in the Global Food System"" (PDF). Archived from the original (PDF) on November 29, 2014.
  512. ^ "Agriculture: GM Technology to Counter World Starvation?". Asia-Pacific Biotech News. 7 (25): 1613–20. 2003. doi:10.1142/S0219030303002623.
  513. ^ Kikulwe EM, Wesseler J, Falck-Zepeda J (October 2011). "Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda". Appetite. 57 (2): 401–13. doi:10.1016/j.appet.2011.06.001. PMID 21704665. S2CID 45529431.
  514. ^ Kikulwe EM, Birol E, Wesseler J, Falck-Zepeda J (2011). "A latent class approach to investigating demand for genetically modified banana in Uganda". Agricultural Economics. 42 (5): 547–60. doi:10.1111/j.1574-0862.2010.00529.x.
  515. ^ Zerbe N (January 2004). "Feeding the famine? American food aid and the GMO debate in Southern Africa" (PDF). Food Policy. 29 (6): 593–608. doi:10.1016/j.foodpol.2004.09.002. Retrieved October 27, 2014.
  516. ^ Sainath P (July 14, 2014). "Have India's farm suicides really declined?". BBC News.
  517. ^ Jha P, Gajalakshmi V, Gupta PC, Kumar R, Mony P, Dhingra N, Peto R (February 2006). "Prospective study of one million deaths in India: rationale, design, and validation results". PLOS Medicine. 3 (2): e18. doi:10.1371/journal.pmed.0030018. PMC 1316066. PMID 16354108.
  518. ^ Gruère G, Sengupta D (2011). "Bt cotton and farmer suicides in India: an evidence-based assessment". The Journal of Development Studies. 47 (2): 316–37. doi:10.1080/00220388.2010.492863. PMID 21506303. S2CID 20145281.
  519. ^ Schulman R (2013). "Shadow space: suicides and the predicament of rural India". Journal of Peasant Studies. 40 (3): 597–601. doi:10.1080/03066150.2013.801641. S2CID 155797108.
  520. ^ Das A (2011). "Farmers' suicide in India: implications for public mental health". International Journal of Social Psychiatry. 57 (1): 21–29. doi:10.1177/0020764009103645. PMID 21252353. S2CID 71852465.
  521. ^ Sainath P (2006). Everybody Loves a Good Drought. New Delhi, India: Penguin Books. ISBN 0-14-025984-8.
  522. ^ Sainath P (August 1, 2014). "How states fudge the data on declining farmer suicides".
  523. ^ Qaim M, Subramanian A, Naik G, Zilberman D (2006). "Adoption of Bt Cotton and Impact Variability: Insights from India". Review of Agricultural Economics. 28 (1): 48–58. doi:10.1111/j.1467-9353.2006.00272.x. JSTOR 3700846.
  524. ^ James C (2011). "ISAAA Brief 43, Global Status of Commercialized Biotech/GM Crops: 2011". ISAAA Briefs. Ithaca, New York: International Service for the Acquisition of Agri-biotech Applications (ISAAA). Retrieved June 2, 2012.
  525. ^ Bennett R, Ismael Y, Kambhampati U, Morse S (January 26, 2005). "Economic Impact of Genetically Modified Cotton in India". Agbioforum.org. Archived from the original on August 13, 2017. Retrieved May 30, 2013.
  526. ^ Subramanian A, Qaim M (2010). "The Impact of Bt Cotton on Poor Households in Rural India" (PDF). Journal of Development Studies. 46 (2): 295–311. doi:10.1080/00220380903002954. S2CID 154645826.
  527. ^ Kathage J, Qaim M (July 2012). "Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India". Proceedings of the National Academy of Sciences of the United States of America. 109 (29): 11652–56. Bibcode:2012PNAS..10911652K. doi:10.1073/pnas.1203647109. PMC 3406847. PMID 22753493.
  528. ^ "Maharashtra State Revokes Monsanto's Cotton Seed License". Environment News Service. August 9, 2012. Archived from the original on January 18, 2016. Retrieved September 1, 2012.
  529. ^ "India says no to first GM food crop". Agence France-Presse (AFP). New Delhi. February 9, 2010.
  530. ^ "India puts on hold first GM food crop on safety grounds". BBC. February 9, 2010. Retrieved February 9, 2010.
  531. ^ "Govt says no to Bt brinjal for now". The Times of India. February 9, 2010. Retrieved February 9, 2010.
  532. ^ Mohan V (March 21, 2014). "Govt regulator paves way for field trials of GM food crops including wheat, rice and maize". The Times Of India.

External links