En matemáticas , una operación binaria es conmutativa si cambiar el orden de los operandos no cambia el resultado. Es una propiedad fundamental de muchas operaciones binarias, y muchas demostraciones matemáticas dependen de ella. Quizás más conocida como una propiedad de la aritmética, p. ej., "3 + 4 = 4 + 3" o "2 × 5 = 5 × 2" , la propiedad también se puede utilizar en entornos más avanzados. El nombre es necesario porque hay operaciones, como la división y la resta , que no la tienen (por ejemplo, "3 − 5 ≠ 5 − 3" ); tales operaciones no son conmutativas, por lo que se las conoce como operaciones no conmutativas . La idea de que las operaciones simples, como la multiplicación y la suma de números, son conmutativas se asumió implícitamente durante muchos años. Por lo tanto, esta propiedad no se nombró hasta el siglo XIX, cuando las matemáticas comenzaron a formalizarse. [1] [2] Existe una propiedad similar para las relaciones binarias ; Se dice que una relación binaria es simétrica si la relación se aplica independientemente del orden de sus operandos; por ejemplo, la igualdad es simétrica ya que dos objetos matemáticos iguales son iguales independientemente de su orden. [3]
Una operación binaria sobre un conjunto S se denomina conmutativa si [4] [5] En otras palabras, una operación es conmutativa si cada dos elementos conmutan. Una operación que no satisface la propiedad anterior se denomina no conmutativa .
Se dice que x conmuta con y o que x e y conmutan bajo si . Es decir, un par específico de elementos puede conmutar incluso si la operación es (estrictamente) no conmutativa.
La división no es conmutativa, ya que .
La resta no es conmutativa, ya que . Sin embargo, se clasifica con más precisión como anticonmutativa , ya que .
La exponenciación no es conmutativa, ya que . Esta propiedad conduce a dos operaciones "inversas" diferentes de exponenciación (a saber, la operación de raíz n -ésima y la operación de logaritmo ), mientras que la multiplicación solo tiene una operación inversa. [6]
Algunas funciones de verdad no son conmutativas, ya que las tablas de verdad de las funciones son diferentes cuando se cambia el orden de los operandos. Por ejemplo, las tablas de verdad para (A ⇒ B) = (¬A ∨ B) y (B ⇒ A) = (A ∨ ¬B) son
La composición de funciones lineales de números reales a números reales casi siempre es no conmutativa. Por ejemplo, sea y . Entonces y Esto también se aplica de manera más general para transformaciones lineales y afines de un espacio vectorial a sí mismo (ver más abajo la representación matricial).
La multiplicación de matrices cuadradas casi siempre es no conmutativa, por ejemplo:
El producto vectorial (o producto vectorial ) de dos vectores en tres dimensiones es anticonmutativo , es decir, b × a = −( a × b ).
Los registros del uso implícito de la propiedad conmutativa se remontan a la antigüedad. Los egipcios usaban la propiedad conmutativa de la multiplicación para simplificar el cálculo de productos . [7] [8] Se sabe que Euclides asumió la propiedad conmutativa de la multiplicación en su libro Elementos . [9] Los usos formales de la propiedad conmutativa surgieron a fines del siglo XVIII y principios del XIX, cuando los matemáticos comenzaron a trabajar en una teoría de funciones. Hoy en día, la propiedad conmutativa es una propiedad básica y bien conocida que se usa en la mayoría de las ramas de las matemáticas.
El primer uso registrado del término conmutativo fue en unas memorias de François Servois en 1814, [1] [10] que usaba la palabra conmutativos al describir funciones que tienen lo que ahora se llama propiedad conmutativa. Conmutativo es la forma femenina del adjetivo francés commutatif , que se deriva del sustantivo francés commutation y del verbo francés commuter , que significa "intercambiar" o "cambiar", un cognado de to commute . El término apareció luego en inglés en 1838. [2] en el artículo de Duncan Gregory titulado "Sobre la naturaleza real del álgebra simbólica" publicado en 1840 en las Transactions of the Royal Society of Edinburgh . [11]
En lógica proposicional veritativo-funcional, conmutación [ 12] [13] o conmutatividad [14] se refieren a dos reglas válidas de reemplazo . Las reglas permiten transponer variables proposicionales dentro de expresiones lógicas en pruebas lógicas . Las reglas son: y donde " " es un símbolo metalógico que representa "puede reemplazarse en una prueba con".
La conmutatividad es una propiedad de algunos conectivos lógicos de la lógica proposicional funcional de la verdad . Las siguientes equivalencias lógicas demuestran que la conmutatividad es una propiedad de conectivos particulares. Las siguientes son tautologías funcional-veritativas .
En la teoría de grupos y conjuntos , muchas estructuras algebraicas se denominan conmutativas cuando ciertos operandos satisfacen la propiedad conmutativa. En ramas superiores de las matemáticas, como el análisis y el álgebra lineal , la conmutatividad de operaciones conocidas (como la suma y la multiplicación de números reales y complejos) se utiliza a menudo (o se supone implícitamente) en las demostraciones. [15] [16] [17]
La propiedad asociativa está estrechamente relacionada con la propiedad conmutativa. La propiedad asociativa de una expresión que contiene dos o más ocurrencias del mismo operador establece que el orden en que se realizan las operaciones no afecta el resultado final, siempre que el orden de los términos no cambie. Por el contrario, la propiedad conmutativa establece que el orden de los términos no afecta el resultado final.
La mayoría de las operaciones conmutativas que encontramos en la práctica también son asociativas. Sin embargo, la conmutatividad no implica asociatividad. Un contraejemplo es la función que es claramente conmutativa (el intercambio de x e y no afecta el resultado), pero no es asociativa (ya que, por ejemplo, pero ). Se pueden encontrar más ejemplos de este tipo en magmas conmutativos no asociativos . Además, la asociatividad tampoco implica conmutatividad; por ejemplo, la multiplicación de cuaterniones o de matrices es siempre asociativa pero no siempre conmutativa.
Algunas formas de simetría pueden vincularse directamente con la conmutatividad. Cuando una operación conmutativa se escribe como una función binaria , entonces esta función se denomina función simétrica y su gráfica en el espacio tridimensional es simétrica en el plano . Por ejemplo, si la función f se define como entonces es una función simétrica.
Para las relaciones, una relación simétrica es análoga a una operación conmutativa, en el sentido de que si una relación R es simétrica, entonces .
En la mecánica cuántica, tal como la formuló Schrödinger , las variables físicas se representan mediante operadores lineales como (es decir, multiplicar por ), y . Estos dos operadores no conmutan, como se puede ver al considerar el efecto de sus composiciones y (también llamados productos de operadores) en una función de onda unidimensional :
Según el principio de incertidumbre de Heisenberg , si los dos operadores que representan un par de variables no conmutan, entonces ese par de variables son mutuamente complementarias , lo que significa que no se pueden medir simultáneamente ni conocer con precisión. Por ejemplo, la posición y el momento lineal en la dirección de una partícula están representados por los operadores y , respectivamente (donde es la constante de Planck reducida ). Este es el mismo ejemplo excepto por la constante , por lo que nuevamente los operadores no conmutan y el significado físico es que la posición y el momento lineal en una dirección dada son complementarios.