stringtranslate.com

La condición de Lindeberg

En teoría de la probabilidad , la condición de Lindeberg es una condición suficiente (y bajo ciertas condiciones también una condición necesaria) para que el teorema del límite central (CLT) se cumpla para una secuencia de variables aleatorias independientes . [1] [2] [3] A diferencia del CLT clásico, que requiere que las variables aleatorias en cuestión tengan varianza finita y sean independientes e idénticamente distribuidas , el CLT de Lindeberg solo requiere que tengan varianza finita, satisfagan la condición de Lindeberg y sean independientes . . Lleva el nombre del matemático finlandés Jarl Waldemar Lindeberg . [4]

Declaración

Sea un espacio de probabilidad y sean variables aleatorias independientes definidas en ese espacio. Suponga que los valores esperados y las varianzas existen y son finitos. también deja

Si esta secuencia de variables aleatorias independientes satisface la condición de Lindeberg :

para todos , donde 1 {…} es la función indicadora , entonces se cumple el teorema del límite central , es decir, las variables aleatorias

convergen en distribución a una variable aleatoria normal estándar como

La condición de Lindeberg es suficiente, pero en general no es necesaria (es decir, la implicación inversa no se cumple en general). Sin embargo, si la secuencia de variables aleatorias independientes en cuestión satisface

entonces la condición de Lindeberg es suficiente y necesaria, es decir, se cumple si y sólo si se cumple el resultado del teorema del límite central.

Observaciones

teorema de Feller

El teorema de Feller se puede utilizar como método alternativo para demostrar que se cumple la condición de Lindeberg. [5] Dejando y por simplicidad , el teorema establece

si , y converge débilmente a una distribución normal estándar , entonces satisface la condición de Lindeberg.


Este teorema se puede utilizar para refutar el teorema del límite central mediante el uso de la prueba por contradicción . Este procedimiento implica demostrar que la condición de Lindeberg falla por .

Interpretación

Debido a que la condición de Lindeberg implica como , garantiza que la contribución de cualquier variable aleatoria individual ( ) a la varianza es arbitrariamente pequeña, para valores suficientemente grandes de .

Ejemplo

Considere el siguiente ejemplo informativo que satisface la condición de Lindeberg. Sea una secuencia de variables aleatorias de media cero, varianza 1 iid y una secuencia no aleatoria que satisfaga:

Ahora, defina los elementos normalizados de la combinación lineal:

que satisface la condición de Lindeberg:

pero es finito por DCT y la condición de que tenemos que esto va a 0 para cada .

Ver también

Referencias

  1. ^ Billingsley, P. (1986). Probabilidad y medida (2ª ed.). Wiley. pag. 369.ISBN​ 0-471-80478-9.
  2. ^ Ceniza, RB (2000). Teoría de la probabilidad y la medida (2ª ed.). pag. 307.ISBN 0-12-065202-1.
  3. ^ Resnick, SI (1999). Un camino de probabilidad . pag. 314.
  4. ^ Lindeberg, JW (1922). "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung". Mathematische Zeitschrift . 15 (1): 211–225. doi :10.1007/BF01494395. S2CID  119730242.
  5. ^ Athreya, KB; Lahiri, SN (2006). Teoría de la medida y teoría de la probabilidad . Saltador. pag. 348.ISBN 0-387-32903-X.