stringtranslate.com

Fase (ondas)

Gráfico de un ciclo de una función sinusoidal. La fase de cada valor de argumento, relativa al inicio del ciclo, se muestra en la parte inferior, en grados de 0° a 360° y en radianes de 0 a 2π.

En física y matemáticas , la fase (símbolo φ o ϕ) de una onda u otra función periódica de alguna variable real (como el tiempo) es una cantidad en forma de ángulo que representa la fracción del ciclo cubierto hasta . Se expresa en una escala tal que varía una vuelta completa a medida que la variable recorre cada período (y recorre cada ciclo completo). Puede medirse en cualquier unidad angular como grados o radianes , aumentando así 360° o cuando la variable completa un período completo. [1]

Esta convención es especialmente apropiada para una función sinusoidal , ya que su valor en cualquier argumento puede expresarse como , el seno de la fase, multiplicado por algún factor (la amplitud de la sinusoide). ( Se puede utilizar el coseno en lugar del seno, dependiendo de dónde se considere que comienza cada período).

Normalmente, se ignoran giros completos al expresar la fase; por lo que también es una función periódica, con el mismo período que , que explora repetidamente el mismo rango de ángulos que atraviesa cada período. Entonces, se dice que está "en la misma fase" cuando dos valores de argumento y (es decir, ) si la diferencia entre ellos es un número entero de períodos.

El valor numérico de la fase depende de la elección arbitraria del inicio de cada período y del intervalo de ángulos al que se asignará cada período.

El término "fase" también se utiliza cuando se compara una función periódica con una versión desplazada de la misma. Si el cambio se expresa como una fracción del período y luego se escala a un ángulo que abarca una vuelta completa, se obtiene el cambio de fase , el desplazamiento de fase o la diferencia de fase en relación con . Si es una función "canónica" para una clase de señales, como lo es para todas las señales sinusoidales, entonces se llama fase inicial de .

Definición matemática

Sea una señal periódica (es decir, una función de una variable real) y su período (es decir, el número real positivo más pequeño tal que para todos ). Entonces la fase de en cualquier argumento es

Aquí se denota la parte fraccionaria de un número real, descartando su parte entera; eso es, ; y es un valor de "origen" arbitrario del argumento, que se considera el comienzo de un ciclo.

Este concepto se puede visualizar imaginando un reloj con una manecilla que gira a velocidad constante, dando una vuelta completa cada segundo, y apuntando hacia arriba en el tiempo . La fase es entonces el ángulo desde la posición de las 12:00 hasta la posición actual de la manecilla, en el tiempo , medido en el sentido de las agujas del reloj .

El concepto de fase es más útil cuando el origen se elige en función de las características de . Por ejemplo, para una sinusoide, una elección conveniente es cualquier lugar donde el valor de la función cambie de cero a positivo.

La fórmula anterior da la fase como un ángulo en radianes entre 0 y . Para obtener la fase como un ángulo entre y , se usa en su lugar

La fase expresada en grados (de 0° a 360°, o de −180° a +180°) se define de la misma manera, excepto que "360°" en lugar de "2π".

Consecuencias

Con cualquiera de las definiciones anteriores, la fase de una señal periódica también es periódica, con el mismo período :

La fase es cero al inicio de cada período; eso es

Además, para cualquier elección dada del origen , el valor de la señal para cualquier argumento depende sólo de su fase en . Es decir, se puede escribir , donde es una función de un ángulo, definido solo para una vuelta completa, que describe la variación de los rangos durante un solo período.

De hecho, cada señal periódica con una forma de onda específica se puede expresar como

Agregar y comparar fases

Dado que las fases son ángulos, cualquier giro completo generalmente debe ignorarse al realizar operaciones aritméticas con ellas. Es decir, la suma y la diferencia de dos fases (en grados) deben calcularse mediante las fórmulas

190° + 200°190 + 200 = 39030 − 50 = − 20

Se aplican fórmulas similares para radianes, con en lugar de 360.

Cambio de fase

Ilustración del cambio de fase. El eje horizontal representa un ángulo (fase) que aumenta con el tiempo.
Desfasador usando modulador IQ

La diferencia entre las fases de dos señales periódicas se denomina diferencia de fase o desplazamiento de fase relativo a . [1] En valores de cuando la diferencia es cero, se dice que las dos señales están en fase; de lo contrario, están desfasados ​​entre sí.

En la analogía del reloj, cada señal está representada por una manecilla (o puntero) del mismo reloj, y ambas giran a velocidades constantes pero posiblemente diferentes. La diferencia de fase es entonces el ángulo entre las dos manecillas, medido en el sentido de las agujas del reloj.

La diferencia de fase es particularmente importante cuando se suman dos señales mediante un proceso físico, como dos ondas sonoras periódicas emitidas por dos fuentes y grabadas juntas por un micrófono. Este suele ser el caso en sistemas lineales , cuando se cumple el principio de superposición .

Para argumentos en los que la diferencia de fase es cero, las dos señales tendrán el mismo signo y se reforzarán entre sí. Se dice que se está produciendo una interferencia constructiva . En argumentos cuando las fases son diferentes, el valor de la suma depende de la forma de onda.

Para sinusoides

Para señales sinusoidales, cuando la diferencia de fase es de 180° ( radianes), se dice que las fases son opuestas y que las señales están en antifase . Entonces las señales tienen signos opuestos y se produce una interferencia destructiva . Por el contrario, una inversión de fase implica un cambio de fase de 180 grados. [2]

Cuando la diferencia de fase es un cuarto de vuelta (un ángulo recto, +90° = π/2 o −90° = 270° = −π/2 = 3π/2 ), a veces se dice que las señales sinusoidales están en cuadratura , por ejemplo , componentes en fase y en cuadratura de una señal compuesta o incluso señales diferentes (por ejemplo, voltaje y corriente).

Si las frecuencias son diferentes, la diferencia de fase aumenta linealmente con el argumento . Los cambios periódicos de refuerzo y oposición provocan un fenómeno llamado paliza .

Para señales desplazadas

La diferencia de fase es especialmente importante cuando se compara una señal periódica con una versión desplazada y posiblemente escalada de la misma. Es decir, supongamos que para algunas constantes y todo . Supongamos también que el origen para calcular la fase de también se ha desplazado. En ese caso, la diferencia de fase es una constante (independiente de ), llamada "desplazamiento de fase" o "desplazamiento de fase" en relación con . En la analogía del reloj, esta situación corresponde a las dos manecillas girando a la misma velocidad, de modo que el ángulo entre ellas es constante.

En este caso, el cambio de fase es simplemente el cambio de argumento , expresado como una fracción del período común (en términos de operación de módulo ) de las dos señales y luego escalado a una vuelta completa:

Si es un representante "canónico" de una clase de señales, como lo es de todas las señales sinusoidales, entonces el cambio de fase se denomina simplemente fase inicial de .

Por tanto, cuando dos señales periódicas tienen la misma frecuencia, siempre están en fase o siempre desfasadas. Físicamente, esta situación ocurre comúnmente, por muchas razones. Por ejemplo, las dos señales pueden ser una onda sonora periódica grabada por dos micrófonos en ubicaciones separadas. O, por el contrario, pueden ser ondas sonoras periódicas creadas por dos altavoces separados a partir de la misma señal eléctrica y grabadas por un solo micrófono. Pueden ser una señal de radio que llega a la antena receptora en línea recta y una copia de la misma que se reflejó en un gran edificio cercano.

Un ejemplo bien conocido de diferencia de fase es la longitud de las sombras vistas en diferentes puntos de la Tierra. En una primera aproximación, si es la longitud vista en un momento en un punto, y es la longitud vista al mismo tiempo en una longitud de 30° al oeste de ese punto, entonces la diferencia de fase entre las dos señales será de 30° (suponiendo que , en cada señal, cada período comienza cuando la sombra es más corta).

Para sinusoides con la misma frecuencia

Para señales sinusoidales (y algunas otras formas de onda, como cuadradas o triangulares simétricas), un cambio de fase de 180° equivale a un cambio de fase de 0° con negación de la amplitud. Cuando se suman dos señales con estas formas de onda, el mismo período y fases opuestas, la suma es idénticamente cero o es una señal sinusoidal con el mismo período y fase, cuya amplitud es la diferencia de las amplitudes originales.

El desplazamiento de fase de la función coseno con respecto a la función seno es de +90°. De ello se deduce que, para dos señales sinusoidales y con la misma frecuencia y amplitudes y , y tiene un desplazamiento de fase de +90 ° con respecto a , la suma es una señal sinusoidal con la misma frecuencia, con amplitud y desplazamiento de fase de , tal que

Señales en fase
Señales desfasadas
Representación de comparación de fases. [3]
Izquierda: la parte real de una onda plana que se mueve de arriba a abajo. Derecha: la misma onda después de que una sección central haya sufrido un cambio de fase, por ejemplo, al atravesar un vidrio de diferente espesor que las otras partes.
AE fuera de fase

Un ejemplo del mundo real de una diferencia de fase sonora ocurre en el gorjeo de una flauta nativa americana . La amplitud de diferentes componentes armónicos de la misma nota mantenida durante mucho tiempo en la flauta domina en diferentes puntos del ciclo de fase. La diferencia de fase entre los diferentes armónicos se puede observar en un espectrograma del sonido de una flauta gorjeante. [4]

Comparación de fases

La comparación de fase es una comparación de la fase de dos formas de onda, generalmente de la misma frecuencia nominal. En tiempo y frecuencia, el propósito de una comparación de fases es generalmente determinar el desplazamiento de frecuencia (diferencia entre ciclos de señal) con respecto a una referencia. [3]

Se puede realizar una comparación de fases conectando dos señales a un osciloscopio de dos canales . El osciloscopio mostrará dos señales sinusoidales, como se muestra en el gráfico de la derecha. En la imagen adyacente, la señal sinusoidal superior es la frecuencia de prueba y la señal sinusoidal inferior representa una señal de referencia.

Si las dos frecuencias fueran exactamente iguales, su relación de fase no cambiaría y ambas parecerían estacionarias en la pantalla del osciloscopio. Como las dos frecuencias no son exactamente iguales, la referencia parece estacionaria y la señal de prueba se mueve. Midiendo la velocidad de movimiento de la señal de prueba se puede determinar el desplazamiento entre frecuencias.

Se han dibujado líneas verticales a través de los puntos donde cada señal sinusoidal pasa por cero. La parte inferior de la figura muestra barras cuyo ancho representa la diferencia de fase entre las señales. En este caso, la diferencia de fase aumenta, lo que indica que la señal de prueba tiene una frecuencia más baja que la de referencia. [3]

Fórmula para la fase de una oscilación o una señal periódica.

La fase de una oscilación armónica simple o señal sinusoidal es el valor de en las siguientes funciones:

amplitudfrecuenciafasefase

fase absoluta

La fase absoluta es la fase de una forma de onda en relación con algún estándar (estrictamente hablando, la fase siempre es relativa). En la medida en que esta norma sea aceptada por todas las partes, se puede hablar de una fase absoluta en un campo de aplicación particular.

Ver también

Referencias

  1. ^ ab Ballou, Glen (2005). Manual para ingenieros de sonido (3 ed.). Prensa focal, Editorial Profesional del Golfo. pag. 1499.ISBN​ 978-0-240-80758-4.
  2. ^ "Norma federal 1037C: Glosario de términos de telecomunicaciones".
  3. ^ abc Tiempo y frecuencia de la A a la Z (12 de mayo de 2010). "Fase". Nist . Instituto Nacional de Estándares y Tecnología (NIST) . Consultado el 12 de junio de 2016 .Este contenido ha sido copiado y pegado de una página web del NIST y es de dominio público .
  4. ^ Clint Goss; Barry Higgins (2013). "El gorjeo". Flutopedia . Consultado el 6 de marzo de 2013 .

enlaces externos