stringtranslate.com

Guerra antiaérea

Representación artística de los sistemas antiaéreos de corto y largo alcance utilizados por el Comando Conjunto de Defensa Aérea Terrestre de los Países Bajos

La guerra antiaérea es la contraofensiva a la guerra aérea [1] e incluye "todas las medidas diseñadas para anular o reducir la efectividad de la acción aérea hostil". [2] Abarca sistemas de armas de superficie, submarinos ( lanzados desde submarinos ) y aéreos, además de sistemas de sensores asociados, dispositivos de mando y control y medidas pasivas (por ejemplo, globos de barrera ). Puede utilizarse para proteger a las fuerzas navales , terrestres y aéreas en cualquier ubicación. Sin embargo, para la mayoría de los países, el esfuerzo principal ha tendido a ser la defensa del territorio nacional . La defensa antimisiles es una extensión de la defensa aérea, al igual que las iniciativas para adaptar la defensa aérea a la tarea de interceptar cualquier proyectil en vuelo.

La mayoría de los sistemas de armas antiaéreas (AA) modernos están optimizados para la defensa aérea de corto, medio o largo alcance, aunque algunos sistemas pueden incorporar múltiples armas (como cañones automáticos y misiles tierra-aire ). La "defensa aérea por capas" generalmente se refiere a múltiples "niveles" de sistemas de defensa aérea que, cuando se combinan, una amenaza aérea debe penetrar para alcanzar su objetivo; esta defensa generalmente se logra mediante el uso combinado de sistemas optimizados para la defensa aérea de corto, medio o largo alcance.

En algunos países, como Gran Bretaña y Alemania durante la Segunda Guerra Mundial , la Unión Soviética y la OTAN moderna y los Estados Unidos, la defensa aérea terrestre y las aeronaves de defensa aérea han estado bajo mando y control integrados. Sin embargo, si bien la defensa aérea general puede estar destinada a la defensa del territorio nacional (incluidas las instalaciones militares), las fuerzas en el terreno, dondequiera que estén, proporcionan sus propias defensas contra las amenazas aéreas.

Hasta la década de 1950, los cañones que disparaban municiones balísticas de entre 7,62 mm (0,30 pulgadas) y 152,4 mm (6 pulgadas) eran las armas estándar; luego los misiles guiados se volvieron dominantes, excepto en los alcances más cortos (como con los sistemas de armas de corto alcance , que generalmente usan cañones automáticos rotatorios o, en sistemas muy modernos, adaptaciones tierra-aire de misiles aire-aire de corto alcance , a menudo combinados en un sistema con cañones rotatorios).

Terminología

También puede llamarse contraaéreo , antiaéreo , AA , flak , defensa aérea en capas o fuerzas de defensa aérea .

El término defensa aérea probablemente fue utilizado por primera vez por el Reino Unido cuando se creó la Defensa Aérea de Gran Bretaña (ADGB) como un comando de la Real Fuerza Aérea en 1925. Sin embargo, las disposiciones en el Reino Unido también se llamaban "antiaéreas", abreviadas como AA , un término que siguió siendo de uso general hasta la década de 1950. Después de la Primera Guerra Mundial, a veces se le anteponía "ligero" o "pesado" (LAA o HAA) para clasificar un tipo de arma o unidad. Los apodos para los cañones antiaéreos incluyen "AA", "AAA" o "triple-A" (abreviaturas de "artillería antiaérea"), "flak" (del alemán Flugzeugabwehrkanone ), "ack-ack" (del alfabeto ortográfico utilizado por los británicos para la transmisión de voz de "AA"); [3] y "archie" (un término británico de la Primera Guerra Mundial probablemente acuñado por Amyas Borton , y que se cree que deriva, a través del Royal Flying Corps , de la frase del comediante de music-hall George Robey "¡Archibald, ciertamente no!" [4] ).

La OTAN define la guerra antiaérea (AAW) como "medidas adoptadas para defender una fuerza marítima contra ataques con armas aerotransportadas lanzadas desde aeronaves, barcos, submarinos y bases terrestres". [2] En algunos ejércitos, el término defensa aérea con todas las armas (AAAD) se utiliza para la defensa aérea por parte de tropas no especializadas. Otros términos de finales del siglo XX incluyen "defensa aérea terrestre" (GBAD) con términos relacionados " defensa aérea de corto alcance " (SHORAD) y sistema de defensa aérea portátil (MANPADS). Los misiles antiaéreos se denominan de diversas formas misiles tierra-aire ("SAM") y armas guiadas tierra-aire (SAGW). Algunos ejemplos son el RIM-66 Standard , el Raytheon Standard Missile 6 o el misil MBDA Aster .

Los términos no ingleses para defensa aérea incluyen el alemán Flak o FlaK ( Fliegerabwehrkanone , 'cañón de defensa aérea', [5] también citado como Flugabwehrkanone ), de donde el inglés flak , y el término ruso Protivovozdushnaya oborona ( cirílico : Противовозду́шная оборо́на), una traducción literal de 'defensa antiaérea', abreviado como PVO. [6] En ruso, los sistemas AA se llaman sistemas zenitnye (es decir, 'apuntando al cenit '). En francés, la defensa aérea se llama Défense contre les aéronefs (DCA) , aéronef significa 'aeronave'. [7]

La distancia máxima a la que un cañón o misil puede alcanzar un avión es una cifra importante. Sin embargo, se utilizan muchas definiciones diferentes y, a menos que se utilice la misma definición, no se puede comparar el rendimiento de diferentes cañones o misiles. Para los cañones antiaéreos, solo se puede utilizar de forma útil la parte ascendente de la trayectoria. Un término es "techo", que es la altura que alcanzaría un proyectil si se dispara verticalmente, lo que no es prácticamente útil en sí mismo, ya que pocos cañones antiaéreos pueden disparar verticalmente, y la duración máxima de la espoleta puede ser demasiado corta, pero potencialmente útil como estándar para comparar diferentes armas.

Los británicos adoptaron el término "techo efectivo", que significa la altitud a la que un cañón puede disparar una serie de proyectiles contra un objetivo en movimiento; esto puede verse limitado por el tiempo máximo de funcionamiento de la espoleta, así como por la capacidad del cañón. A fines de la década de 1930, la definición británica era "la altura a la que un objetivo que se acerca directamente a 400 mph [640 km/h] puede ser atacado durante 20 segundos antes de que el cañón alcance una elevación de 70 grados". [8]

Descripción general

La esencia de la defensa aérea es detectar aeronaves hostiles y destruirlas. La cuestión fundamental es alcanzar un objetivo que se mueve en el espacio tridimensional; un ataque no sólo debe coincidir con estas tres coordenadas, sino que debe realizarse en el momento en que el objetivo se encuentra en esa posición. Esto significa que los proyectiles deben ser guiados para alcanzar el objetivo o apuntar a la posición prevista del objetivo en el momento en que el proyectil lo alcance, teniendo en cuenta la velocidad y la dirección tanto del objetivo como del proyectil.

A lo largo del siglo XX, la defensa aérea fue una de las áreas de la tecnología militar que más rápidamente evolucionó, respondiendo a la evolución de las aeronaves y aprovechando tecnologías como el radar, los misiles teledirigidos y la informática (inicialmente, la informática analógica electromecánica a partir de la década de 1930, como en el caso de los equipos que se describen a continuación). Se introdujeron mejoras en los sensores, el control técnico del fuego, las armas y el mando y control. A principios del siglo XX, estos eran muy primitivos o inexistentes.

Inicialmente, los sensores eran dispositivos ópticos y acústicos desarrollados durante la Primera Guerra Mundial y continuaron en uso hasta la década de 1930, [9] pero fueron rápidamente reemplazados por el radar, que a su vez fue complementado por la optoelectrónica en la década de 1980. El comando y control siguieron siendo primitivos hasta fines de la década de 1930, cuando Gran Bretaña creó un sistema integrado [10] para ADGB que vinculaba la defensa aérea terrestre del Comando Antiaéreo del Ejército Británico , aunque la defensa aérea desplegada en el campo dependía de dispositivos menos sofisticados. La OTAN más tarde denominó a estos dispositivos un "entorno terrestre de defensa aérea", definido como "la red de sitios de radar terrestres y centros de comando y control dentro de un teatro de operaciones específico que se utilizan para el control táctico de las operaciones de defensa aérea". [2]

Las reglas de enfrentamiento son fundamentales para evitar que las defensas aéreas ataquen a aeronaves amigas o neutrales. Su uso está asistido, pero no regulado, por dispositivos electrónicos de identificación amigo-enemigo (IFF) introducidos originalmente durante la Segunda Guerra Mundial . Si bien estas reglas se originan en la más alta autoridad, pueden aplicarse diferentes reglas a diferentes tipos de defensa aérea que cubran la misma área al mismo tiempo. La AAAD generalmente opera bajo las reglas más estrictas.

La OTAN llama a estas reglas "órdenes de control de armas" (OMA), y son:

Hasta la década de 1950, los cañones que disparaban municiones balísticas eran el arma estándar; luego, los misiles guiados se convirtieron en el arma dominante, excepto en los rangos más cortos. Sin embargo, el tipo de proyectil o cabeza explosiva y su espoleta y, en el caso de los misiles, el sistema de guía eran y son variados. Los objetivos no siempre son fáciles de destruir; no obstante, las aeronaves dañadas pueden verse obligadas a abortar su misión e, incluso si logran regresar y aterrizar en territorio amigo, pueden quedar fuera de combate durante días o de forma permanente. Dejando de lado las armas pequeñas y las ametralladoras más pequeñas, los cañones de defensa aérea con base en tierra han variado en calibre desde 20 mm hasta al menos 152 mm. [11]

La defensa aérea terrestre se despliega de varias maneras:

La defensa aérea ha incluido otros elementos, aunque después de la Segunda Guerra Mundial la mayoría cayeron en desuso:

La OTAN define la defensa aérea pasiva como «medidas pasivas adoptadas para la defensa física y la protección del personal, las instalaciones esenciales y el equipo con el fin de minimizar la eficacia de los ataques aéreos y/o con misiles». [2] Sigue siendo una actividad vital para las fuerzas terrestres e incluye el camuflaje y la ocultación para evitar ser detectados por los aviones de reconocimiento y de ataque. Medidas como el camuflaje de edificios importantes eran comunes en la Segunda Guerra Mundial. Durante la Guerra Fría, las pistas y calles de rodaje de algunos aeródromos se pintaron de verde.

Organización

Si bien las armadas suelen ser responsables de su propia defensa aérea (al menos en el caso de los barcos en el mar), los acuerdos organizativos para la defensa aérea terrestre varían entre naciones y a lo largo del tiempo.

El caso más extremo fue la Unión Soviética y este modelo puede que todavía se siga en algunos países: era un servicio separado, a la par del ejército, la marina o la fuerza aérea. En la Unión Soviética, se llamaba Voyska PVO , y tenía tanto aviones de combate, separados de la fuerza aérea, como sistemas terrestres. Este se dividió en dos brazos, PVO Strany, el Servicio de Defensa Aérea Estratégica responsable de la Defensa Aérea de la Patria, creado en 1941 y convirtiéndose en un servicio independiente en 1954, y PVO SV, Defensa Aérea de las Fuerzas Terrestres. Posteriormente, estos pasaron a formar parte de la fuerza aérea y de las fuerzas terrestres respectivamente. [13] [14]

En el otro extremo, el Ejército de los Estados Unidos tiene una rama de artillería de defensa aérea que proporciona defensa aérea terrestre tanto para el territorio nacional como para el ejército en el campo; sin embargo, está operativamente bajo el mando del Comandante del Componente Aéreo de la Fuerza Conjunta . Muchas otras naciones también despliegan una rama de defensa aérea en el ejército. Algunas, como Japón o Israel, optan por integrar sus sistemas de defensa aérea terrestres en su fuerza aérea.

En Gran Bretaña y algunos otros ejércitos, la rama única de artillería ha sido responsable de la defensa aérea terrestre tanto nacional como en el extranjero, aunque hubo responsabilidad dividida con la Marina Real para la defensa aérea de las Islas Británicas en la Primera Guerra Mundial . Sin embargo, durante la Segunda Guerra Mundial , se formó el Regimiento de la RAF para proteger los aeródromos en todas partes, y esto incluía defensas aéreas ligeras. En las últimas décadas de la Guerra Fría , esto incluyó las bases operativas de la Fuerza Aérea de los Estados Unidos en el Reino Unido. Toda la defensa aérea terrestre fue eliminada de la jurisdicción de la Real Fuerza Aérea (RAF) en 2004. El Comando Antiaéreo del Ejército británico se disolvió en marzo de 1955, [15] pero durante las décadas de 1960 y 1970, el Comando de Cazas de la RAF operó misiles de defensa aérea de largo alcance para proteger áreas clave en el Reino Unido. Durante la Segunda Guerra Mundial, los Royal Marines también proporcionaron unidades de defensa aérea; Formalmente parte de la organización de defensa de la base naval móvil, se manejaban como parte integral de las defensas aéreas terrestres comandadas por el ejército.

La unidad básica de defensa aérea es típicamente una batería con 2 a 12 cañones o lanzamisiles y elementos de control de tiro. [ cita requerida ] Estas baterías, particularmente con cañones, generalmente se despliegan en un área pequeña, aunque las baterías pueden estar divididas; esto es habitual para algunos sistemas de misiles. Las baterías de misiles SHORAD a menudo se despliegan en un área con lanzadores individuales a varios kilómetros de distancia. Cuando los MANPADS son operados por especialistas, las baterías pueden tener varias docenas de equipos desplegados por separado en pequeñas secciones; los cañones de defensa aérea autopropulsados ​​pueden desplegarse en pares.

Las baterías suelen agruparse en batallones o equivalentes. En el ejército de campaña, un batallón de cañones ligeros o SHORAD suele asignarse a una división de maniobras. Los cañones más pesados ​​y los misiles de largo alcance pueden estar en brigadas de defensa aérea y estar bajo el mando de un cuerpo de ejército o de un mando superior. La defensa aérea nacional puede tener una estructura militar completa. Por ejemplo, el Mando Antiaéreo del Reino Unido, comandado por un general del ejército británico, formaba parte del ADGB. En su apogeo en 1941-42 comprendía tres cuerpos antiaéreos con 12 divisiones antiaéreas en total. [16]

Historia

Uso más antiguo

El uso de globos aerostáticos por parte del ejército de los Estados Unidos durante la Guerra Civil estadounidense obligó a los confederados a desarrollar métodos para combatirlos, que incluían el uso de artillería, armas pequeñas y saboteadores. No tuvieron éxito y la política interna llevó a que el Cuerpo de Globos Aerostáticos del ejército de los Estados Unidos se disolviera en mitad de la guerra. Los confederados también experimentaron con globos. [17]

Los turcos llevaron a cabo la primera operación antiaérea de la historia durante la guerra ítalo-turca . Aunque carecían de armas antiaéreas, fueron los primeros en derribar un avión con fuego de fusil. El primer avión que se estrelló en una guerra fue el del teniente Piero Manzini, derribado el 25 de agosto de 1912. [18] [19]

El primer uso conocido de armas diseñadas específicamente para el papel antiaéreo ocurrió durante la guerra franco-prusiana de 1870. Después del desastre de Sedán , París fue sitiada y las tropas francesas fuera de la ciudad comenzaron un intento de comunicación a través de globos . Gustav Krupp montó un cañón modificado de 1 libra (37 mm) - el Ballonabwehrkanone (cañón de defensa de globos) o BaK - en la parte superior de un carruaje tirado por caballos con el propósito de derribar estos globos. [20] [ página necesaria ]

A principios del siglo XX, los globos aerostáticos o dirigibles para uso terrestre y naval atrajeron la atención. Se propusieron varios tipos de munición: explosiva, incendiaria, cadenas de balas, balas de varilla y metralla. Se expresó la necesidad de algún tipo de trazador o rastro de humo. También se examinaron las opciones de espoleta, tanto de impacto como de tiempo. Los montajes eran generalmente de tipo pedestal, pero podían estar en plataformas de campo. Se estaban realizando pruebas en la mayoría de los países de Europa, pero solo Krupp, Erhardt, Vickers Maxim y Schneider habían publicado alguna información en 1910. Los diseños de Krupp incluían adaptaciones de su cañón de 9 libras de 65 mm, un cañón de 12 libras de 75 mm e incluso un cañón de 105 mm. Erhardt también tenía un cañón de 12 libras, mientras que Vickers Maxim ofrecía un cañón de 3 libras y Schneider un cañón de 47 mm. El cañón de globo francés apareció en 1910. Era un cañón de 11 libras, pero montado sobre un vehículo, con un peso total sin tripulación de dos toneladas. Sin embargo, como los globos se movían lentamente, las miras eran sencillas. Sin embargo, se reconocieron los desafíos que presentaban los aviones que se movían más rápido. [21]

En 1913, sólo Francia y Alemania habían desarrollado cañones de campaña adecuados para atacar globos y aviones y habían abordado cuestiones de organización militar. La Marina Real Británica pronto introduciría los cañones antiaéreos QF de 3 pulgadas y QF de 4 pulgadas y también tenía "pompones" Vickers de 1 libra de disparo rápido que podían utilizarse en varios montajes. [22] [23]

El primer cañón antiaéreo de EE. UU. fue un diseño conceptual de 1 libra del almirante Twining en 1911 para enfrentar la amenaza percibida de los dirigibles, que finalmente se utilizó como base para el primer cañón antiaéreo operativo de la Armada de EE. UU .: el cañón de 3 pulgadas/calibre 23. [24]

Primera Guerra Mundial

Cañón antiaéreo Krupp de 9 libras, modelo 1909
Una unidad antiaérea canadiense de 1918 "tomando posición"
Batería antiaérea francesa (batería AAA motorizada) que derribó un Zeppelin cerca de París. De la revista Horseless Age , 1916.

El 30 de septiembre de 1915, las tropas del ejército serbio observaron tres aviones enemigos aproximándose a Kragujevac . Los soldados les dispararon con escopetas y ametralladoras, pero no pudieron evitar que lanzaran 45 bombas sobre la ciudad, alcanzando instalaciones militares, la estación de tren y muchos otros objetivos, en su mayoría civiles, en la ciudad. Durante el bombardeo, el soldado Radoje Ljutovac disparó su cañón contra el avión enemigo y derribó con éxito uno. Se estrelló en la ciudad y ambos pilotos murieron a causa de sus heridas. El cañón que utilizó Ljutovac no fue diseñado como un cañón antiaéreo; era un cañón turco ligeramente modificado capturado durante la Primera Guerra de los Balcanes en 1912. Esta fue la primera ocasión en la historia militar en que un avión militar fue derribado con fuego de artillería tierra-aire . [25] [26] [27]

Los británicos reconocieron la necesidad de contar con capacidad antiaérea unas semanas antes de que estallara la Primera Guerra Mundial; el 8 de julio de 1914, el New York Times informó de que el gobierno británico había decidido "salpicar las costas de las Islas Británicas con una serie de torres, cada una armada con dos cañones de tiro rápido de diseño especial", mientras que "se construiría un círculo completo de torres" alrededor de "instalaciones navales" y "en otros puntos especialmente vulnerables". En diciembre de 1914, la Reserva Naval Real de Voluntarios (RNVR) estaba dotada de cañones antiaéreos y reflectores ensamblados a partir de diversas fuentes en unos nueve puertos. La Artillería de Guarnición Real (RGA) recibió la responsabilidad de la defensa antiaérea en el campo, utilizando secciones motorizadas de dos cañones. Las primeras se formaron formalmente en noviembre de 1914. Inicialmente utilizaron cañones QF de 1 libra "pom-pom" (versiones de 37 mm del cañón Maxim ). [23] [28]

Una ametralladora antiaérea Maxim en el museo antiaéreo de Finlandia, 2006

Todos los ejércitos pronto desplegaron cañones AA basados ​​a menudo en sus piezas de campaña más pequeñas, en particular el francés de 75 mm y el ruso de 76,2 mm, típicamente simplemente apoyados en algún tipo de terraplén para que la boca del cañón apuntara hacia el cielo. El ejército británico adoptó el cañón de 13 libras produciendo rápidamente nuevos montajes adecuados para el uso antiaéreo; el QF 6 cwt Mk III de 13 libras se emitió en 1915. Permaneció en servicio durante toda la guerra, pero los cañones de 18 libras se alinearon para recibir el proyectil de 13 libras con un cartucho más grande que producía el QF 9 cwt de 13 libras y estos resultaron mucho más satisfactorios. [29] Sin embargo, en general, estas soluciones ad hoc resultaron en gran medida inútiles. Con poca experiencia en el papel, sin medios para medir el objetivo, el alcance, la altura o la velocidad, la dificultad de observar las ráfagas de sus proyectiles en relación con el objetivo, los artilleros demostraron ser incapaces de ajustar correctamente la espoleta y la mayoría de las municiones explotaron muy por debajo de sus objetivos. La excepción a esta regla eran los cañones que protegían los globos de detección, en cuyo caso la altitud podía medirse con precisión a partir de la longitud del cable que sujetaba el globo.

El primer problema era la munición. Antes de la guerra se reconoció que la munición necesitaba explotar en el aire. Se usaban tanto explosivos de alto poder (HE) como metralla , principalmente la primera. Las espoletas de explosión en el aire eran ignífugas (basadas en una mecha encendida) o mecánicas (mecanismo de relojería). Las espoletas ignífugas no eran adecuadas para el uso antiaéreo. La longitud de la espoleta estaba determinada por el tiempo de vuelo, pero la velocidad de combustión de la pólvora se veía afectada por la altitud. Los pom-poms británicos solo tenían munición de espoleta de contacto. Los zeppelines , al ser globos llenos de hidrógeno, eran objetivos para los proyectiles incendiarios y los británicos los introdujeron con espoletas de explosión en el aire, tanto de tipo metralla, con proyección hacia adelante de un "pot" incendiario como con expulsión de una corriente incendiaria desde la base. Los británicos también instalaron trazadores en sus proyectiles para su uso nocturno. También había proyectiles de humo disponibles para algunos cañones antiaéreos, estas ráfagas se usaban como objetivos durante el entrenamiento. [30]

Los ataques aéreos alemanes sobre las Islas Británicas aumentaron en 1915 y los esfuerzos antiaéreos se consideraron algo ineficaces, por lo que un experto en artillería de la Marina Real , el almirante Sir Percy Scott , fue designado para realizar mejoras, en particular una defensa antiaérea integrada para Londres. Las defensas aéreas se ampliaron con más cañones antiaéreos RNVR, de 75 mm y 3 pulgadas, ya que los pom-poms resultaron ineficaces. El ejército también adoptó el cañón naval de 3 pulgadas, y en 1916 se introdujo el QF de 3 pulgadas y 20 cwt (76 mm). Como la mayoría de los ataques eran nocturnos, pronto se utilizaron reflectores y se desarrollaron métodos acústicos de detección y localización. En diciembre de 1916 había 183 secciones antiaéreas defendiendo Gran Bretaña (la mayoría con cañones de 3 pulgadas), 74 con la BEF en Francia y 10 en Oriente Medio. [31]

La artillería antiaérea era una tarea difícil. El problema era apuntar con éxito un proyectil para que explotara cerca de la posición futura de su objetivo, ya que varios factores afectaban la trayectoria prevista de los proyectiles. Esto se llamaba apuntar con el cañón por deflexión, donde los ángulos "desplazados" para el alcance y la elevación se establecían en la mira y se actualizaban a medida que el objetivo se movía. En este método, cuando las miras estaban en el objetivo, el cañón apuntaba a la posición futura del objetivo. El alcance y la altura del objetivo determinaban la longitud de la espoleta. Las dificultades aumentaron a medida que mejoraba el rendimiento de la aeronave.

Los británicos se ocuparon primero de la medición de distancias, cuando se dieron cuenta de que la distancia era la clave para producir un mejor ajuste de la espoleta. Esto condujo al telémetro de altura/telémetro (HRF), el primer modelo fue el Barr & Stroud UB2, un telémetro óptico coincidente de dos metros montado en un trípode. Medía la distancia al objetivo y el ángulo de elevación, que juntos proporcionaban la altura del avión. Se trataba de instrumentos complejos y también se utilizaban otros métodos. Al HRF pronto se le unió el indicador de altura/espoleta (HFI), que estaba marcado con ángulos de elevación y líneas de altura superpuestas con curvas de longitud de espoleta, utilizando la altura informada por el operador del HRF, se podía leer la longitud de espoleta necesaria. [32]

Sin embargo, el problema de los ajustes de desviación —"aim-off"— requería conocer la tasa de cambio en la posición del objetivo. Tanto Francia como el Reino Unido introdujeron dispositivos taquimétricos para rastrear objetivos y producir ángulos de desviación verticales y horizontales. El sistema francés Brocq era eléctrico; el operador ingresaba el rango del objetivo y tenía pantallas en los cañones; se utilizó con su 75 mm. El director del cañón británico Wilson-Dalby utilizó un par de rastreadores y taquimetría mecánica; el operador ingresaba la longitud de la espoleta y los ángulos de desviación se leían de los instrumentos. [33] [34]

Al comienzo de la Primera Guerra Mundial , el cañón de 77 mm se había convertido en el arma estándar alemana y venía montado sobre una gran barra transversal que podía transportarse fácilmente en un carro. Los cañones Krupp de 75 mm se suministraban con un sistema de mira óptica que mejoraba sus capacidades. El ejército alemán también adaptó un cañón giratorio que llegó a ser conocido por los aviadores aliados como la " cebolla llameante " por los proyectiles en vuelo. Este cañón tenía cinco cañones que lanzaban rápidamente una serie de proyectiles de artillería de 37 mm. [ cita requerida ]

A medida que los aviones comenzaron a ser utilizados contra objetivos terrestres en el campo de batalla, los cañones antiaéreos no podían ser desviados con la suficiente rapidez hacia objetivos cercanos y, al ser relativamente pocos, no siempre estaban en el lugar correcto (y a menudo eran impopulares entre las otras tropas), por lo que cambiaban de posición con frecuencia. Pronto las fuerzas agregaron varias armas basadas en ametralladoras montadas en postes. Estas armas de corto alcance demostraron ser más mortíferas, y se cree que el " Barón Rojo " fue derribado por una ametralladora antiaérea Vickers . Cuando terminó la guerra, estaba claro que las crecientes capacidades de los aviones requerirían mejores medios para adquirir objetivos y apuntar a ellos. Sin embargo, se había establecido un patrón: la guerra antiaérea emplearía armas pesadas para atacar objetivos a gran altitud y armas más ligeras para usar cuando los aviones alcanzaran altitudes más bajas.

El Predictor Mark III No. 1 que se utilizó con el cañón AA QF de 3,7 pulgadas era una computadora mecánica.
Disparos con cañón antiaéreo en Suecia, 1934

Años de entreguerras

La Primera Guerra Mundial demostró que las aeronaves podían ser una parte importante del campo de batalla, pero en algunas naciones la perspectiva de un ataque aéreo estratégico era el principal problema, ya que representaba tanto una amenaza como una oportunidad. La experiencia de cuatro años de ataques aéreos sobre Londres por parte de zepelines y bombarderos Gotha GV había influido especialmente en los británicos y fue uno de los principales impulsores, si no el principal, de la formación de una fuerza aérea independiente. A medida que las capacidades de las aeronaves y sus motores mejoraron, quedó claro que su papel en la guerra futura sería aún más crítico a medida que aumentara su alcance y su carga de armas. Sin embargo, en los años inmediatamente posteriores a la Primera Guerra Mundial, la perspectiva de otra guerra importante parecía remota, especialmente en Europa, donde se encontraban las naciones con mayor capacidad militar y había poca financiación disponible.

Cuatro años de guerra habían visto la creación de una nueva rama de actividad militar técnicamente exigente. La defensa aérea había logrado enormes avances, aunque partía de un punto de partida muy bajo. Sin embargo, era nueva y a menudo carecía de "amigos" influyentes en la competencia por una parte de los limitados presupuestos de defensa. La desmovilización significó que la mayoría de los cañones antiaéreos fueron retirados del servicio, dejando solo los más modernos.

Sin embargo, había lecciones que aprender. En particular, los británicos, que habían tenido cañones antiaéreos en la mayoría de los teatros de operaciones durante el día y los habían usado contra ataques nocturnos en su propio país. Además, también habían formado una Sección Experimental Antiaérea durante la guerra y habían acumulado grandes cantidades de datos que fueron sometidos a un análisis exhaustivo. Como resultado, publicaron el Libro de texto de artillería antiaérea en dos volúmenes en 1924-1925. Incluía cinco recomendaciones clave para el equipo antiaéreo:

Dos premisas sustentaban el enfoque británico del fuego HAA: en primer lugar, el fuego dirigido era el método principal y esto se hacía posible al predecir los datos del arma a partir del seguimiento visual del objetivo y de su altura. En segundo lugar, que el objetivo mantendría un curso, una velocidad y una altura constantes. Este HAA debía atacar objetivos a una distancia de hasta 24.000 pies (7,3 km). Se necesitaban espoletas mecánicas temporizadas porque la velocidad de combustión de la pólvora variaba con la altura, por lo que la longitud de la espoleta no era una función simple del tiempo de vuelo. El fuego automatizado aseguraba una cadencia de fuego constante que facilitaba predecir hacia dónde debía apuntarse individualmente cada proyectil. [35] [36]

En 1925, los británicos adoptaron un nuevo instrumento desarrollado por Vickers. Se trataba de una computadora analógica mecánica : el Predictor AA No 1. Dada la altura del objetivo, sus operadores rastreaban el objetivo y el predictor producía el rumbo, la elevación del cuadrante y el ajuste de la espoleta. Estos datos se transmitían eléctricamente a los cañones, donde se mostraban en diales repetidores para los oficiales que "combinaban los punteros" (los datos del objetivo y los datos reales del cañón) para orientar los cañones. Este sistema de diales eléctricos repetidores se basó en los dispositivos introducidos por la artillería costera británica en la década de 1880, y la artillería costera fue el trasfondo de muchos oficiales antiaéreos. Se adoptaron sistemas similares en otros países y, por ejemplo, el posterior Sperry M3A3 en los EE. UU., también fue utilizado por Gran Bretaña como el Predictor AA No 2. Los detectores de altura también estaban aumentando de tamaño; En Gran Bretaña, el telémetro estereoscópico Barr & Stroud UB 2 de la Primera Guerra Mundial con base óptica de siete pies fue reemplazado por el UB 7 de base óptica de nueve pies y el UB 10 de base óptica de dieciocho pies (solo se usaban en sitios antiaéreos estáticos). Goertz en Alemania y Levallois en Francia produjeron instrumentos de cinco metros (16 pies). Sin embargo, en la mayoría de los países el principal esfuerzo en armas HAA hasta mediados de la década de 1930 fue mejorar las existentes, aunque varios diseños nuevos estaban en las mesas de dibujo. [36] [37]

Desde principios de la década de 1930, ocho países desarrollaron radares ; estos desarrollos estaban lo suficientemente avanzados a fines de la década de 1930 como para que el trabajo de desarrollo de dispositivos acústicos de localización por sonido se detuviera en general, aunque el equipo se mantuvo. Además, en Gran Bretaña, el Cuerpo de Observadores voluntarios formado en 1925 proporcionó una red de puestos de observación para informar sobre aeronaves hostiles que volaban sobre Gran Bretaña. Inicialmente, el radar se utilizó para la vigilancia del espacio aéreo para detectar aeronaves hostiles que se acercaban. Sin embargo, el radar alemán Würzburg, puesto en uso en 1940, era capaz de proporcionar datos adecuados para controlar los cañones antiaéreos, y el radar británico Gun Laying, Mark I , fue diseñado para ser utilizado en posiciones de cañones antiaéreos y estaba en uso en 1939. [38]

El Tratado de Versalles impidió que Alemania tuviera armas antiaéreas y, por ejemplo, los diseñadores de Krupps se unieron a Bofors en Suecia. Se conservaron algunos cañones de la Primera Guerra Mundial y se inició algún entrenamiento antiaéreo encubierto a finales de la década de 1920. Alemania introdujo el FlaK 18 de 8,8 cm en 1933, seguido de los modelos 36 y 37 con varias mejoras, pero el rendimiento balístico no cambió. A finales de la década de 1930 apareció el FlaK 38 de 10,5 cm , seguido pronto por el 39; este fue diseñado principalmente para emplazamientos estáticos pero tenía un montaje móvil y la unidad tenía generadores de 220 V y 24 kW. En 1938 se empezó a diseñar el FlaK 12,8 cm . [39] [40]

En 1918, Gran Bretaña había probado con éxito un nuevo cañón de 3,6 pulgadas. En 1928, un cañón de 3,7 pulgadas (94 mm) se convirtió en la solución preferida, pero se necesitaron seis años para obtener financiación. La producción del cañón QF de 3,7 pulgadas comenzó en 1937; este cañón se utilizó en carruajes móviles con el ejército de campaña y cañones transportables en montajes fijos para posiciones estáticas. Al mismo tiempo, la Marina Real adoptó un nuevo cañón de 4,5 pulgadas (113 mm) en una torreta doble, que el ejército adoptó en montajes simplificados de un solo cañón para posiciones estáticas, principalmente alrededor de los puertos donde había munición naval disponible. El rendimiento de los nuevos cañones estaba limitado por su espoleta estándar No 199, con un tiempo de funcionamiento de 30 segundos, aunque una nueva espoleta de tiempo mecánica que daba 43 segundos estaba casi lista. En 1939 se introdujo un ajustador de espoletas a máquina para eliminar el ajuste manual de las espoletas. [41]

Estados Unidos terminó la Primera Guerra Mundial con dos cañones antiaéreos de 3 pulgadas y se desarrollaron mejoras durante el período de entreguerras. Sin embargo, en 1924 se comenzó a trabajar en un nuevo cañón antiaéreo de 105 mm con montaje estático, pero solo se produjeron unos pocos a mediados de la década de 1930 porque para entonces ya se había comenzado a trabajar en el cañón antiaéreo de 90 mm, con carretillas móviles y montajes estáticos capaces de atacar objetivos aéreos, marítimos y terrestres. La versión M1 fue aprobada en 1940. Durante la década de 1920 hubo algunos trabajos en un cañón de 4,7 pulgadas que caducaron, pero se reactivaron en 1937, lo que dio lugar a un nuevo cañón en 1944. [42]

Si bien la HAA y su adquisición de objetivos y control de fuego asociados fueron el foco principal de los esfuerzos antiaéreos, los objetivos de corto alcance y bajo nivel permanecieron y hacia mediados de la década de 1930 se estaban convirtiendo en un problema.

Until this time the British, at RAF insistence, continued their use of World War I machine guns, and introduced twin MG mountings for AAAD. The army was forbidden from considering anything larger than .50-inch.[citation needed] However, in 1935 their trials showed that the minimum effective round was an impact-fused 2 lb HE shell. The following year they decided to adopt the Bofors 40 mm and a twin barrel Vickers 2-pdr (40 mm) on a modified naval mount. The air-cooled Bofors was vastly superior for land use, being much lighter than the water-cooled "pom-pom", and UK production of the Bofors 40 mm was licensed. The Predictor AA No 3, as the Kerrison Predictor was officially known, was introduced with it.[43]

The 40 mm Bofors had become available in 1931. In the late 1920s the Swedish Navy had ordered the development of a 40 mm naval anti-aircraft gun from the Bofors company. It was light, rapid-firing and reliable, and a mobile version on a four-wheel carriage was soon developed. Known simply as the 40 mm, it was adopted by some 17 different nations just before World War II and is still in use today in some applications such as on coastguard frigates.

Rheinmetall in Germany developed an automatic 20 mm in the 1920s and Oerlikon in Switzerland had acquired the patent to an automatic 20 mm gun designed in Germany during World War I. Germany introduced the rapid-fire 2 cm FlaK 30 and later in the decade it was redesigned by Mauser-Werke and became the 2 cm FlaK 38.[44] Nevertheless, while 20 mm was better than a machine gun and mounted on a very small trailer made it easy to move, its effectiveness was limited. Germany therefore added a 3.7 cm. The first, the 3.7 cm FlaK 18 developed by Rheinmetall in the early 1930s, was basically an enlarged 2 cm FlaK 30. It was introduced in 1935 and production stopped the following year. A redesigned gun 3.7 cm FlaK 36 entered service in 1938, it too had a two-wheel carriage.[45] However, by the mid-1930s the Luftwaffe realised that there was still a coverage gap between 3.7 cm and 8.8 cm guns. They started development of a 5 cm gun on a four-wheel carriage.[46]

After World War I the US Army started developing a dual-role (AA/ground) automatic 37 mm cannon, designed by John M. Browning. It was standardised in 1927 as the T9 AA cannon, but trials quickly revealed that it was worthless in the ground role. However, while the shell was a bit light (well under 2 lbs) it had a good effective ceiling and fired 125 rounds per minute; an AA carriage was developed and it entered service in 1939 as the 37 mm gun M1. It proved prone to jamming, and was eventually replaced in AA units by the Bofors 40 mm. The Bofors had attracted attention from the US Navy, but none were acquired before 1939.[47] Also, in 1931 the US Army worked on a mobile anti-aircraft machine mount on the back of a heavy truck having four .30 calibre water-cooled machine guns and an optical director. It proved unsuccessful and was abandoned.[48]

The USSR introduced a new 76 mm M1931 in 1937, an 85 mm M1938[49] and developed the 37 mm M1939 (61-K), which appears to have been copied from the Bofors 40 mm. A Bofors 25 mm, essentially a scaled down 40 mm, was also copied as the 25 mm M1939.[50]

During the 1930s solid-fuel rockets were under development in the Soviet Union and Britain. In Britain the interest was for anti-aircraft fire, it quickly became clear that guidance would be required for precision. However, rockets, or "unrotated projectiles" as they were called, could be used for anti-aircraft barrages. A two-inch rocket using HE or wire obstacle warheads - the Z battery - was introduced first to deal with low-level or dive bombing attacks on smaller targets such as airfields. The three-inch was in development at the end of the inter-war period.[51]

WWI had been a war in which air warfare blossomed, but had not matured to the point of being a real threat to naval forces. The prevailing assumption was that a few relatively small caliber naval guns could manage to keep enemy aircraft beyond a range where harm might be expected. In 1939 radio controlled target drones became available to the US Navy in quantity allowing a more realistic testing of existing anti-aircraft suites against actual flying and manoeuvring targets.[52] The results were sobering to an unexpected degree.

The United States was still emerging from the effects of the Great Depression and funds for the military had been sparse to the degree that 50% of shells used were still powder fused.[52] The US Navy found that a significant portion of its shells were duds or low order detonations (incomplete detonation of the explosive contained by the shell). Virtually every major country involved in combat in World War II invested in aircraft development. The cost of aircraft research and development was small and the results could be large.[53] So rapid was the performance leaps of evolving aircraft that the British High Angle Control System (HACS) was obsolete and designing a successor very difficult for the British establishment.[54] Electronics would prove to be an enabler for effective anti-aircraft systems and both the US and UK had a growing electronics industry.[54]

In 1939 radio controlled drones became available to actually test existing systems in British and American service. The results were disappointing by any measure. High-level manoeuvring drones were virtually immune to shipboard AA systems. The US drones could simulate dive bombing which showed the dire need for autocannons. Japan introduced powered gliders in 1940 as drones but apparently was unable to dive bomb.[55] There is no evidence of other powers using drones in this application at all. It may have caused a major underestimation of the threat and an inflated view of their AA systems.[56]

Second World War

Poland's AA defences were no match for the German attack, and the situation was similar in other European countries.[57] Significant AAW (Anti-Air Warfare) started with the Battle of Britain in the summer of 1940. QF 3.7-inch AA guns provided the backbone of the ground-based AA defences, although initially significant numbers of QF 3-inch 20 cwt were also used. The Army's Anti-aircraft command, which was under operational command of RAF Fighter Command within Air Defence GB, grew to 12 AA divisions in three AA corps. Bofors 40 mm guns entered service in increasing numbers. In addition, the RAF regiment was formed in 1941 with responsibility for airfield air defence, eventually with Bofors 40 mm as their main armament. Fixed AA defences, using HAA and LAA, were established by the Army in key overseas places, notably Malta, Suez Canal and Singapore.

While the 3.7-inch was the main HAA gun in fixed defences and the only mobile HAA gun with the field army, the QF 4.5-inch gun, manned by artillery, was used in the vicinity of naval ports and made use of the naval ammunition supply. The 4.5-inch at Singapore had the first success in shooting down Japanese bombers. Mid war QF 5.25-inch naval guns started being emplaced in some permanent sites around London. This gun was also deployed in dual-role coast defence/AA positions.

German 88 mm flak gun in action against Allied bombers

Germany's high-altitude needs were originally going to be filled by a 75 mm gun from Krupp, designed in collaboration with their Swedish counterpart Bofors, but the specifications were later amended to require much higher performance. In response Krupp's engineers presented a new 88 mm design, the FlaK 36. First used in Spain during the Spanish Civil War, the gun proved to be one of the best anti-aircraft guns in the world, as well as particularly deadly against light, medium, and even early heavy tanks.

After the Dambusters raid in 1943 an entirely new system was developed that was required to knock down any low-flying aircraft with a single hit. The first attempt to produce such a system used a 50 mm gun, but this proved inaccurate and a new 55 mm gun replaced it. The system used a centralised control system including both search and targeting radar, which calculated the aim point for the guns after considering windage and ballistics, and then sent electrical commands to the guns, which used hydraulics to point themselves at high speeds. Operators simply fed the guns and selected the targets. This system, modern even by today's standards, was in late development when the war ended.

German soldier manning an MG34 anti-aircraft gun in WWII

The British had already arranged licence building of the Bofors 40 mm, and introduced these into service. These had the power to knock down aircraft of any size, yet were light enough to be mobile and easily swung. The gun became so important to the British war effort that they even produced a movie, The Gun, that encouraged workers on the assembly line to work harder. The Imperial measurement production drawings the British had developed were supplied to the Americans who produced their own (unlicensed) copy of the 40 mm at the start of the war, moving to licensed production in mid-1941.

A USAAF Consolidated B-24 Liberator hit by flak over Italy, 10 April 1945

Service trials demonstrated another problem however: that ranging and tracking the new high-speed targets was almost impossible. At short range, the apparent target area is relatively large, the trajectory is flat and the time of flight is short, allowing to correct lead by watching the tracers. At long range, the aircraft remains in firing range for a long time, so the necessary calculations can, in theory, be done by slide rules—though, because small errors in distance cause large errors in shell fall height and detonation time, exact ranging is crucial. For the ranges and speeds that the Bofors worked at, neither answer was good enough.

British QF 3.7-inch gun in London in 1939

The solution was automation, in the form of a mechanical computer, the Kerrison Predictor. Operators kept it pointed at the target, and the Predictor then calculated the proper aim point automatically and displayed it as a pointer mounted on the gun. The gun operators simply followed the pointer and loaded the shells. The Kerrison was fairly simple, but it pointed the way to future generations that incorporated radar, first for ranging and later for tracking. Similar predictor systems were introduced by Germany during the war, also adding radar ranging as the war progressed.

US coast guardsmen in the South Pacific man a 20 mm anti-aircraft cannon

A plethora of anti-aircraft gun systems of smaller calibre was available to the German Wehrmacht combined forces, and among them the 1940-origin Flakvierling quadruple-20 mm-autocannon-based anti-aircraft weapon system was one of the most often-seen weapons, seeing service on both land and sea. The similar Allied smaller-calibre air-defence weapons of the American forces were also quite capable. Their needs could cogently be met with smaller-calibre ordnance beyond using the usual singly-mounted M2 .50 caliber machine gun atop a tank's turret, as four of the ground-used "heavy barrel" (M2HB) guns were mounted together on the American Maxson M45 Quadmount weapon (as a direct answer to the Flakvierling), which were often mounted on the back of a half-track to form the M16 Multiple Gun Motor Carriage. Although of less power than Germany's 20 mm systems, the typical four or five combat batteries of an Army AAA battalion were often spread many kilometres apart from each other, rapidly attaching and detaching to larger ground combat units to provide welcome defence from enemy aircraft.

Indian troops manning a Bren light machine gun in an anti-aircraft mount in 1941

AAA battalions were also used to help suppress ground targets. Their larger 90 mm M3 gun would prove, as did the eighty-eight, to make an excellent anti-tank gun as well, and was widely used late in the war in this role. Also available to the Americans at the start of the war was the 120 mm M1 gun stratosphere gun, which was the most powerful AA gun with an impressive 60,000 ft (18 km) altitude capability, however no 120 M1 was ever fired at an enemy aircraft. The 90 mm and 120 mm guns continued to be used into the 1950s.

The United States Navy had also put some thought into the problem, When the US Navy began to rearm in 1939 in many ships the primary short ranged gun was the M2 .50 caliber machine gun. While effective in fighters at 300 to 400 yards this is point blank range in naval anti-aircraft ranges. Production of the Swiss Oerlikon 20 mm had already started to provide protection for the British and this was adopted in exchange for the M2 machine guns.[58] From December 1941 to January 1942, production had risen to not only cover all British requirements but also allowed 812 units to be actually delivered to the US Navy.[59] By the end of 1942 the 20 mm had accounted for 42% of all aircraft destroyed by the US Navy's shipboard AA. However, the King Board had noted that the balance was shifting towards the larger guns used by the fleet. The US Navy had intended to use the British pom-pom, however, the weapon required the use of cordite which BuOrd had found objectionable for US service.[60] Further investigation revealed that US powders would not work in the pom-pom.[61] Bureau of Ordnance was well aware of the Bofors 40 mm gun. The firm York Safe and Lock was negotiating with Bofors to attain the rights to the air-cooled version of the weapon. At the same time Henry Howard, an engineer, and businessman became aware of it and contacted RADM W. R. Furlong, chief of the Bureau of Ordnance. He ordered the Bofors weapon system to be investigated. York Safe and Lock would be used as the contracting agent. The system had to be redesigned for both the English measurement system and mass production, as the original documents recommended hand fitting parts and drilling to shape.[62] As early as 1928 the US Navy saw the need to replace the .50 caliber machine gun with something heavier. The 1.1"/75 (28 mm) Mark 1 was designed. Placed in quadruple mounts with a 500 rpm rate of fire it would have fit the requirements. However, the gun was suffering teething issues being prone to jamming. While this could have been solved the weight of the system was equal to that of the quad-mount Bofors 40 mm while lacking the range and power that the Bofors provided. The gun was relegated to smaller less vital ships by the end of the war.[63] The 5"/38 naval gun rounded out the US Navy's AA suite. A dual purpose mount, it was used in both the surface and AA roles with great success.

Mated with the Mark 37 director and the proximity fuse it could routinely knock drones out of the sky at ranges as far as 13,000 yards.[64]

5-inch, 40 mm and 20 mm fire directed from USS New Mexico at a Kamikaze, Battle of Okinawa, 1945

A 3"/50 MK 22 semiautomatic dual gun was produced but not employed before the end of the war and therefore beyond the scope of this article. However early marks of the 3"/50 were employed in destroyer escorts and on merchant ships. 3″/50 caliber guns (Marks 10, 17, 18, and 20) first entered service in 1915 as a refit to USS Texas (BB-35), and were subsequently mounted on many types of ships as the need for anti-aircraft protection was recognized. During World War II, they were the primary gun armament on destroyer escorts, patrol frigates, submarine chasers, minesweepers, some fleet submarines, and other auxiliary vessels, and were used as a secondary dual-purpose battery on some other types of ships, including some older battleships. They also replaced the original low-angle 4"/50 caliber guns (Mark 9) on "flush-deck" Wickes and Clemson-class destroyers to provide better anti-aircraft protection. The gun was also used on specialist destroyer conversions; the "AVD" seaplane tender conversions received two guns; the "APD" high-speed transports, "DM" minelayers, and "DMS" minesweeper conversions received three guns, and those retaining destroyer classification received six.[65]

One of eight flak towers built during World War II in Vienna
A British North Sea World War II Maunsell Fort

The Germans developed massive reinforced-concrete blockhouses, some more than six stories high, which were known as Hochbunker 'high bunkers' or "Flaktürme" flak towers, on which they placed anti-aircraft artillery. Those in cities attacked by the Allied land forces became fortresses. Several in Berlin were some of the last buildings to fall to the Soviets during the Battle of Berlin in 1945. The British built structures such as the Maunsell Forts in the North Sea, the Thames Estuary and other tidal areas upon which they based guns. After the war most were left to rot. Some were outside territorial waters, and had a second life in the 1960s as platforms for pirate radio stations, while another became the base of a micronation, the Principality of Sealand.

A USAAF B-24 bomber emerges from a cloud of flak with its No. 2 engine smoking.

Some nations started rocket research before World War II, including for anti-aircraft use. Further research started during the war. The first step was unguided missile systems like the British 2-inch RP and 3-inch, which was fired in large numbers from Z batteries, and were also fitted to warships. The firing of one of these devices during an air raid is suspected to have caused the Bethnal Green disaster in 1943.[citation needed] Facing the threat of Japanese Kamikaze attacks the British and US developed surface-to-air rockets like British Fairey Stooge or the American Lark as counter measures, but none of them were ready at the end of the war. The Germans missile research was the most advanced of the war as the Germans put considerable effort in the research and development of rocket systems for all purposes. Among them were several guided and unguided systems. Unguided systems involved the Fliegerfaust (literally "aircraft fist") rocket launcher as the first MANPADS. Guided systems were several sophisticated radio, wire, or radar guided missiles like the Wasserfall ('waterfall') rocket. Owing to the severe war situation for Germany all of those systems were only produced in small numbers and most of them were only used by training or trial units.

Flak in the Balkans, 1942 (drawing by Helmuth Ellgaard)

Another aspect of anti-aircraft defence was the use of barrage balloons to act as physical obstacle initially to bomber aircraft over cities and later for ground attack aircraft over the Normandy invasion fleets. The balloon, a simple blimp tethered to the ground, worked in two ways. Firstly, it and the steel cable were a danger to any aircraft that tried to fly among them. Secondly, to avoid the balloons, bombers had to fly at a higher altitude, which was more favourable for the guns. Barrage balloons were limited in application, and had minimal success at bringing down aircraft, being largely immobile and passive defences.

The Allies' most advanced technologies were showcased by the anti-aircraft defence against the German V-1 cruise missiles (V stands for Vergeltungswaffe, 'retaliation weapon'). The 419th and 601st anti-aircraft gun battalions of the US Army were first allocated to the Folkestone-Dover coast to defend London, and then moved to Belgium to become part of the "Antwerp X" project coordinated from the Le Grand Veneur [nl][66] in Keerbergen. With the liberation of Antwerp, the port city immediately became the highest priority target, and received the largest number of V-1 and V-2 missiles of any city. The smallest tactical unit of the operation was a gun battery consisting of four 90 mm guns firing shells equipped with a radio proximity fuse. Incoming targets were acquired and automatically tracked by SCR-584 radar,. Output from the gun-laying radar was fed to the M9 gun director, an electronic analogue computer to calculate the lead and elevation corrections for the guns. With the help of these three technologies, close to 90% of the V-1 missiles, on track to the defence zone around the port, were destroyed.[67][68]

Post-war

A 1970s-era Talos anti-aircraft missile, fired from a cruiser

Post-war analysis demonstrated that even with newest anti-aircraft systems employed by both sides, the vast majority of bombers reached their targets successfully, on the order of 90%. While these figures were undesirable during the war, the advent of the nuclear bomb considerably altered the acceptability of even a single bomber reaching its target.

The developments during World War II continued for a short time into the post-war period as well. In particular the US Army set up a huge air defence network around its larger cities based on radar-guided 90 mm and 120 mm guns. US efforts continued into the 1950s with the 75 mm Skysweeper system, an almost fully automated system including the radar, computers, power, and auto-loading gun on a single powered platform. The Skysweeper replaced all smaller guns then in use in the Army, notably the 40 mm Bofors. By 1955, the US military deemed the 40 mm Bofors obsolete due to its reduced capability to shoot down jet powered aircraft, and turned to SAM development, with the Nike Ajax and the RSD-58. In Europe NATO's Allied Command Europe developed an integrated air defence system, NATO Air Defence Ground Environment (NADGE), that later became the NATO Integrated Air Defence System.

The introduction of the guided missile resulted in a significant shift in anti-aircraft strategy. Although Germany had been desperate to introduce anti-aircraft missile systems, none became operational during World War II. Following several years of post-war development, however, these systems began to mature into viable weapons. The US started an upgrade of their defences using the Nike Ajax missile, and soon the larger anti-aircraft guns disappeared. The same thing occurred in the USSR after the introduction of their SA-2 Guideline systems.

A three-person JASDF fireteam practices using a rocket target with a training variant of a Type 91 Kai MANPADS during an exercise at Eielson Air Force Base, Alaska, as part of Red Flag – Alaska

As this process continued, the missile found itself being used for more and more of the roles formerly filled by guns. First to go were the large weapons, replaced by equally large missile systems of much higher performance. Smaller missiles soon followed, eventually becoming small enough to be mounted on armoured cars and tank chassis. These started replacing, or at least supplanting, similar gun-based SPAAG systems in the 1960s, and by the 1990s had replaced almost all such systems in modern armies. Man-portable missiles, MANPADS, as they are known today, were introduced in the 1960s and have supplanted or replaced even the smallest guns in most advanced armies.

In the 1982 Falklands War, the Argentine armed forces deployed the newest west European weapons including the 35 mm Oerlikon GDF-002 twin cannon and Roland missile. The Rapier missile system was the primary GBAD system, used by both British artillery and RAF regiment, a few brand-new FIM-92 Stinger were used by British special forces. Both sides also used the Blowpipe missile. British naval missiles used included Sea Dart and the older Sea Slug longer range systems, SeaCat and the new Sea Wolf short range systems. Machine guns in AA mountings were used both ashore and afloat.

During the 2008 South Ossetia war air power faced off against powerful SAM systems, like the 1980s Buk-M1.

In February 2018, an Israeli F-16 fighter was downed in the occupied Golan Heights province, after it had attacked an Iranian target in Syria.[69][70][71][72] In 2006, Israel also lost a helicopter over Lebanon, shot down by a Hezbollah rocket.[73]

AA warfare systems

A Gepard in motion at the 2015 Military Day in Uffenheim. The Gepard is an autonomous all-weather-capable German self-propelled anti-aircraft gun system armed with twin Oerlikon GDF.
Bangladesh Army CS/AA3 35 mm twin anti-aircraft gun system along with its FW-2 fire control radar system behind. CS/AA3 is a Chinese variant of the Oerlikon GDF

Although the firearms used by the infantry, particularly machine guns, can be used to engage low altitude air targets, on occasion with notable success, their effectiveness is generally limited and the muzzle flashes reveal infantry positions. Speed and altitude of modern jet aircraft limit target opportunities, and critical systems may be armoured in aircraft designed for the ground attack role. Adaptations of the standard autocannon, originally intended for air-to-ground use, and heavier artillery systems were commonly used for most anti-aircraft gunnery, starting with standard pieces on new mountings, and evolving to specially designed guns with much higher performance prior to World War II.

The shells fired by these weapons are usually fitted with different types of fuses (barometric, time-delay, or proximity) to explode close to the airborne target, releasing a shower of fast metal fragments. For shorter-range work, a lighter weapon with a higher rate of fire is required, to increase a hit probability on a fast airborne target. Weapons between 20 mm and 40 mm calibre have been widely used in this role. Smaller weapons, typically .50 calibre or even 8 mm rifle calibre guns have been used in the smallest mounts.

Unlike the heavier guns, these smaller weapons are in widespread use due to their low cost and ability to quickly follow the target. Classic examples of autocannons and large calibre guns are the 40 mm autocannon from Bofors and the 8.8 cm FlaK 18, 36 gun designed by Krupp. Artillery weapons of this sort have for the most part been superseded by the effective surface-to-air missile systems that were introduced in the 1950s, although they were still retained by many nations. The development of surface-to-air missiles began in Nazi Germany during the late World War II with missiles such as the Wasserfall, though no working system was deployed before the war's end, and represented new attempts to increase effectiveness of the anti-aircraft systems faced with growing threat from bombers. Land-based SAMs can be deployed from fixed installations or mobile launchers, either wheeled or tracked. The tracked vehicles are usually armoured vehicles specifically designed to carry SAMs.

Larger SAMs may be deployed in fixed launchers, but can be towed/re-deployed at will. The SAMs launched by individuals are known in the United States as the Man-Portable Air Defence Systems (MANPADS). MANPADS of the former Soviet Union have been exported around the World, and can be found in use by many armed forces. Targets for non-ManPAD SAMs will usually be acquired by air-search radar, then tracked before/while a SAM is "locked-on" and then fired. Potential targets, if they are military aircraft, will be identified as friend or foe before being engaged. The developments in the latest and relatively cheap short-range missiles have begun to replace autocannons in this role.

Soviet 85mm anti-aircraft guns deployed in the neighborhood of St Isaac's Cathedral during the Siege of Leningrad (formerly Petrograd, now called St. Petersburg) in 1941.

The interceptor aircraft (or simply interceptor) is a type of fighter aircraft designed specifically to intercept and destroy enemy aircraft, particularly bombers, usually relying on high speed and altitude capabilities. A number of jet interceptors such as the F-102 Delta Dagger, the F-106 Delta Dart, and the MiG-25 were built in the period starting after the end of World War II and ending in the late 1960s, when they became less important due to the shifting of the strategic bombing role to ICBMs. Invariably the type is differentiated from other fighter aircraft designs by higher speeds and shorter operating ranges, as well as much reduced ordnance payloads.

The radar systems use electromagnetic waves to identify the range, altitude, direction, or speed of aircraft and weather formations to provide tactical and operational warning and direction, primarily during defensive operations. In their functional roles they provide target search, threat detection, guidance, reconnaissance, navigation, instrumentation, and weather reporting support to combat operations.

Anti-UAV defences

An anti-UAV defence system (AUDS) is a system for defence against military unmanned aerial vehicles. A variety of designs have been developed, using lasers,[74] net-guns and air-to-air netting, signal jamming, and hi-jacking by means of in-flight hacking.[75] Anti-UAV defence systems have been deployed against ISIL drones during the Battle of Mosul (2016–2017).[76][77]

Alternative approaches for dealing with UAVs have included using a shotgun at close range, and for smaller drones, training eagles to snatch them from the air.[75] This only works on relatively small UAVs and loitering munitions (also called "suicide drones"). Larger UCAVs such as the MQ-1 Predator can be (and frequently are) shot down like manned aircraft of similar sizes and flight profiles.[78][79]

The Royal Navy's Type 45 destroyers are advanced air defence ships

Future developments

Guns are being increasingly pushed into specialist roles, such as the Dutch Goalkeeper CIWS, which uses the GAU-8 Avenger 30 mm seven-barrel Gatling gun for last ditch anti-missile and anti-aircraft defence. Even this formerly front-line weapon is currently being replaced by new missile systems, such as the RIM-116 Rolling Airframe Missile, which is smaller, faster, and allows for mid-flight course correction (guidance) to ensure a hit. To bridge the gap between guns and missiles, Russia in particular produces the Kashtan CIWS, which uses both guns and missiles for final defence with two six-barrelled 30 mm Gsh-6-30 rotary canon and eight 9M311 surface-to-air missiles provide for its defensive capabilities.

Upsetting this development to all-missile systems is the current move to stealth aircraft. Long range missiles depend on long-range detection to provide significant lead. Stealth designs cut detection ranges so much that the aircraft is often never even seen, and when it is, it is often too late for an intercept. Systems for detection and tracking of stealthy aircraft are a major problem for anti-aircraft development.

However, as stealth technology grows, so does anti-stealth technology. Multiple transmitter radars such as those from bistatic radars and low-frequency radars are said to have the capabilities to detect stealth aircraft. Advanced forms of thermographic cameras such as those that incorporate QWIPs would be able to optically see a stealth aircraft regardless of the aircraft's radar cross-section (RCS). In addition, side-looking radars, high-powered optical satellites, and sky-scanning, high-aperture, high sensitivity radars such as radio telescopes, would all be able to narrow down the location of a stealth aircraft under certain parameters.[80] The newest SAMs have a claimed ability to be able to detect and engage stealth targets, with the most notable being the Russian S-400, which is claimed to be able to detect a target with a 0.05-square metre RCS from 90 km away.[81]

Another potential weapon system for anti-aircraft use is the laser. Although air planners have imagined lasers in combat since the late 1960s, only the most modern laser systems are currently reaching what could be considered "experimental usefulness". In particular the Tactical High Energy Laser can be used in the anti-aircraft and anti-missile role. The ALKA directed-energy weapon (DEW) system is a Turkish dual electromagnetic/laser weapon developed by Roketsan allegedly used to destroy one of GNC's Wing Loong II UAVs; if true, this would represent the first known time a vehicle mounted combat laser was used to destroy another combat vehicle during genuine wartime conditions.[82]

The future of projectile based weapons may be found in the railgun. Currently tests are underway on developing systems that could create as much damage as a Tomahawk, but at a fraction of the cost. In February 2008 the US Navy tested a railgun; it fired a shell at 5,600 miles (9,000 km) per hour using 10 megajoules of energy. Its expected performance is over 13,000 miles (21,000 km) per hour muzzle velocity, accurate enough to hit a 5-metre target from 200 nautical miles (370 km) away while shooting at 10 shots per minute. It is expected to be ready in 2020 to 2025.[83] These systems, while currently designed for static targets, would only need the ability to be retargeted to become the next generation of AA system.

Force structures

Most Western and Commonwealth militaries integrate air defence purely with the traditional services of the military (i.e. army, navy and air force), as a separate arm or as part of artillery. In the British Army for instance, air defence is part of the artillery arm, while in the Pakistan Army, it was split off from the artillery to form a separate arm of its own in 1990. This is in contrast to some (largely communist or ex-communist) countries where not only are there provisions for air defence in the army, navy and air force but there are specific branches that deal only with the air defence of territory, for example, the Soviet PVO Strany. The USSR also had a separate strategic rocket force in charge of nuclear intercontinental ballistic missiles.

Navy

Soviet/Russian AK-630 CIWS (close-in weapon system)
Model of the multirole IDAS missile of the German Navy, which can be fired from submerged anti-aircraft weapon systems

Smaller boats and ships typically have machine-guns or fast cannons, which can often be deadly to low-flying aircraft if linked to a radar-directed fire-control system radar-controlled cannon for point defence. Some vessels like Aegis-equipped destroyers and cruisers are as much a threat to aircraft as any land-based air defence system. In general, naval vessels should be treated with respect by aircraft, however the reverse is equally true. Carrier battle groups are especially well defended, as not only do they typically consist of many vessels with heavy air defence armament but they are also able to launch fighter jets for combat air patrol overhead to intercept incoming airborne threats.

Nations such as Japan use their SAM-equipped vessels to create an outer air defence perimeter and radar picket in the defence of its Home islands, and the United States also uses its Aegis-equipped ships as part of its Aegis Ballistic Missile Defense System in the defence of the Continental United States.

Some modern submarines, such as the Type 212 submarines of the German Navy, are equipped with surface-to-air missile systems, since helicopters and anti-submarine warfare aircraft are significant threats. The subsurface launched anti-air missile was first purposed by US Navy Rear Admiral Charles B. Momsen, in a 1953 article.[84]

Layered air defence

A RIM-67 surface to air missile intercepts a Firebee drone at White Sands, 1980.

Layered air defence in naval tactics, especially within a carrier group, is often built around a system of concentric layers with the aircraft carrier at the centre. The outer layer will usually be provided by the carrier's aircraft, specifically its AEW&C aircraft combined with the CAP. If an attacker is able to penetrate this layer, then the next layers would come from the surface-to-air missiles carried by the carrier's escorts; the area-defence missiles, such as the RIM-67 Standard, with a range of up to 100 nmi, and the point-defence missiles, like the RIM-162 ESSM, with a range of up to 30 nmi. Finally, virtually every modern warship will be fitted with small-calibre guns, including a CIWS, which is usually a radar-controlled Gatling gun of between 20 mm and 30 mm calibre capable of firing several thousand rounds per minute.[85]

Army

Armies typically have air defence in depth, from integral man-portable air-defense systems (MANPADS) such as the RBS 70, Stinger and Igla at smaller force levels up to army-level missile defence systems such as Angara and Patriot. Often, the high-altitude long-range missile systems force aircraft to fly at low level, where anti-aircraft guns can bring them down. As well as the small and large systems, for effective air defence there must be intermediate systems. These may be deployed at regiment-level and consist of platoons of self-propelled anti-aircraft platforms, whether they are self-propelled anti-aircraft guns (SPAAGs), integrated air-defence systems like 2K22 Tunguska or all-in-one surface-to-air missile platforms like Roland or SA-8 Gecko.

On a national level the United States Army was atypical in that it was primarily responsible for the missile air defences of the Continental United States with systems such as Project Nike.

Air force

A USAF F-22A Raptor firing an AIM-120 air to air missile

Air defence by air forces is typically provided by fighter jets carrying air-to-air missiles. However, most air forces choose to augment airbase defence with surface-to-air missile systems as they are such valuable targets and subject to attack by enemy aircraft. In addition, some countries choose to put all air defence responsibilities under the air force.

Area air defence

Area air defence, the air defence of a specific area or location, (as opposed to point defence), have historically been operated by both armies (Anti-Aircraft Command in the British Army, for instance) and Air Forces (the United States Air Force's CIM-10 Bomarc). Area defence systems have medium to long range and can be made up of various other systems and networked into an area defence system (in which case it may be made up of several short range systems combined to effectively cover an area). An example of area defence is the defence of Saudi Arabia and Israel by MIM-104 Patriot missile batteries during the first Gulf War, where the objective was to cover populated areas.

Tactics

Mobility

The Russian Pantsir-S1 can engage targets while moving, thus achieving high survivability.

Most modern air defence systems are fairly mobile. Even the larger systems tend to be mounted on trailers and are designed to be fairly quickly broken down or set up. In the past, this was not always the case. Early missile systems were cumbersome and required much infrastructure; many could not be moved at all. With the diversification of air defence there has been much more emphasis on mobility. Most modern systems are usually either self-propelled (i.e. guns or missiles are mounted on a truck or tracked chassis) or towed. Even systems that consist of many components (transporter/erector/launchers, radars, command posts etc.) benefit from being mounted on a fleet of vehicles. In general, a fixed system can be identified, attacked and destroyed whereas a mobile system can show up in places where it is not expected. Soviet systems especially concentrate on mobility, after the lessons learnt in the Vietnam war between the US and Vietnam with the SA-2 Guideline.

Air defence versus air defence suppression

AGM-88 HARM under the fuselage ofn a Luftwaffe Panavia Tornado

Israel and the US Air Force[citation needed], in conjunction with the members of NATO, have developed significant tactics for air defence suppression. Dedicated weapons such as anti-radiation missiles and advanced electronics intelligence and electronic countermeasures platforms seek to suppress or negate the effectiveness of an opposing air-defence system. It is an arms race; as better jamming, countermeasures and anti-radiation weapons are developed, so are better SAM systems with ECCM capabilities and the ability to shoot down anti-radiation missiles and other munitions aimed at them or the targets they are defending.

Insurgent tactics

Stinger missiles supplied by the United States were used against the aircraft of the Soviet Union by the Afghan mujahideen during the Soviet occupation of Afghanistan in the Cold War. Rocket-propelled grenades (RPGs) can be—and often are—used against hovering helicopters (e.g., by Somali militiamen during the 1993 Battle of Mogadishu. Firing an RPG at steep angles poses a danger to the user, because the backblast from firing reflects off the ground. In Somalia, militia members sometimes welded a steel plate onto the exhaust end of an RPG's tube to deflect pressure away from the shooter when shooting up at US helicopters.[citation needed] RPGs are used in this role only when more effective weapons are not available.

Another example of using RPGs against helicopters is Operation Anaconda in March 2002 in Afghanistan. Taliban insurgents defending Shah-i-Kot Valley used RPGs in a direct fire role against landing helicopters. Four rangers were killed[86] when their helicopter was shot down by an RPG, and SEAL team member Neil C. Roberts fell out of his helicopter when it was hit by two RPGs.[87] In other instances helicopters have been shot down in Afghanistan during a mission[88] in Wardak province. One feature that makes RPGs useful in air defence is that they are fused to automatically detonate at 920 m.[89] If aimed into the air this causes the warhead to airburst which can release a limited but potentially damaging amount of shrapnel hitting a helicopter landing or taking off.[citation needed]

For insurgents the most effective method of countering aircraft is to attempt to destroy them on the ground, either by penetrating an airbase perimeter and destroying aircraft individually, e.g. the September 2012 Camp Bastion raid, or finding a position where aircraft can be engaged with indirect fire, such as mortars. A recent trend emerging during the Syrian Civil War is the use of ATGM against landing helicopters.[90]

See also

References

Citations

  1. ^ Wragg, David W. (1973). A Dictionary of Aviation. Osprey. p. 37.
  2. ^ a b c d e AAP-6
  3. ^ "ack-ack, adj. and n.". Archived 24 September 2015 at the Wayback Machine OED Online. September 2013. Oxford University Press. (accessed 14 September 2013).
  4. ^ "Air Vice-Marshal A E Borton". Air of Authority – A History of RAF Organisation. Rafweb.org. Archived from the original on 3 March 2009.
  5. ^ "flak". Merriam-Webster Online Dictionary. Archived from the original on 14 May 2008. Retrieved 30 June 2008.
  6. ^ Bellamy 1986, p. 219.
  7. ^ le petit Larousse 2013 p20–p306
  8. ^ Hogg WW2 pg 99–100
  9. ^ Hearst Magazines (December 1930). "Huge Ear Locates Planes and Tells Their Speed". Popular Mechanics. Hearst Magazines. p. 895.
  10. ^ Checkland and Holwell pg. 127
  11. ^ Routledge 1994, p. 456.
  12. ^ Dahl, Per F. (1999). Heavy water and the wartime race for nuclear energy. Bristol [England]: Institute of Physics. ISBN 0-585-25449-4. OCLC 45728821.
  13. ^ Bellamy 1986, p. 82.
  14. ^ Bellamy 1986, p. 213.
  15. ^ Beckett 2008, 178.
  16. ^ Routledge 1994, p. 396–397.
  17. ^ Spring 2007 issue of the American Association of Aviation Historians Journal
  18. ^ "Turco-Italian War".
  19. ^ James D. Crabtree: On air defense, ISBN 0275947920, Greenwood Publishing Group, page 9
  20. ^ Essential Militaria: Facts, Legends, and Curiosities About Warfare Through the Ages, Nicholas Hobbs, Atlantic Monthly Press 2004, ISBN 0-8021-1772-4
  21. ^ Bethel pg 56–80
  22. ^ Routledge 1994, p. 3.
  23. ^ a b Routledge 1994, p. 4.
  24. ^ Hearst Magazines (December 1911). "New American Aerial Weapons". Popular Mechanics. Hearst Magazines. p. 776.
  25. ^ "How was the first military airplane shot down". National Geographic. Archived from the original on 31 August 2015. Retrieved 5 August 2015.
  26. ^ "Ljutovac, Radoje". Amanet Society. Archived from the original on 6 October 2014. Retrieved 5 August 2015.
  27. ^ "Radoje Raka Ljutovac – first person in the world to shoot down an airplane with a cannon". Pečat. 30 September 2014. Archived from the original on 12 August 2015. Retrieved 5 August 2015.
  28. ^ Routledge 1994, p. 5.
  29. ^ Routledge 1994, p. 6.
  30. ^ The Ministry of Munitions pg 40–41
  31. ^ Routledge 1994, p. 8–17.
  32. ^ Routledge 1994, p. 14–15.
  33. ^ Routledge 1994, p. 14–20.
  34. ^ The Ministry of Munitions pg 11
  35. ^ Routledge 1994, p. 48.
  36. ^ a b Routledge 1994, p. 49.
  37. ^ Routledge 1994, p. 50.
  38. ^ Routledge 1994, p. 95-97.
  39. ^ Hogg 1997, p. 14.
  40. ^ Hogg 1997, p. 162–177.
  41. ^ Hogg Allied WW2 pg 97–107
  42. ^ Hogg Allied WW2 pg 114–119
  43. ^ Hogg Allied WW2 pg 108–110
  44. ^ Hogg 1997, p. 144–147.
  45. ^ Hogg 1997, p. 150–152.
  46. ^ Hogg 1997, p. 155–156.
  47. ^ Hogg Allied WW2 pg 115–117
  48. ^ Hearst Magazines (December 1931). "Uncle Sam's Latest Weapons For War in the Air". Popular Mechanics. Hearst Magazines. p. 944.
  49. ^ Hogg Allied WW2 pg 127–130
  50. ^ Hogg Allied WW2 pg 131
  51. ^ Routledge 1994, p. 56.
  52. ^ a b Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 242
  53. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 266
  54. ^ a b Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 271
  55. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 1617
  56. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 1642
  57. ^ "The Battle of Britain". raf100schools.org.uk. Archived from the original on 17 September 2018.
  58. ^ Friedman, 2014 Location 8687
  59. ^ Friedman, 2014 Location 8713
  60. ^ Bulletin of Ordnance Information, No.245, pp. 54–60.
  61. ^ Friedman, 2014 Location 8620
  62. ^ Friedman, 2014 Location 8956-8620
  63. ^ "USA 1.1"/75 (28 mm) Mark 1 and Mark 2 - NavWeaps". Archived from the original on 30 September 2018. Retrieved 2 March 2019.
  64. ^ "USA 5"/38 (12.7 cm) Mark 12 - NavWeaps". Archived from the original on 28 September 2017. Retrieved 2 March 2019.
  65. ^ Silverstone 1968 pp. 112, 212, 215, 276, 303
  66. ^ "Le Grand Veneur Keerbergen operation Antwerp X". YouTube. 25 January 2014. Archived from the original on 15 November 2016. Retrieved 16 March 2016.
  67. ^ Cruise Missile Defence: Defending Antwerp against the V-1, Lt. Col. John A. Hamilton
  68. ^ The Defense of Antwerp Against the V-1 Missile, R.J. Backus, LTC, Fort Leavenworth, KS, 1971
  69. ^ "Israeli F-16 jet shot down by Syria fire, says military". aljazeera.com. Aljazeera. 10 February 2018. Archived from the original on 21 May 2019. Retrieved 14 March 2019.
  70. ^ Lubell, Maayan; Barrington, Lisa (10 February 2018). "Israeli jet shot down after bombing Iranian site in Syria". Reuters. reuters.com. Archived from the original on 3 March 2019. Retrieved 14 March 2019.
  71. ^ "Israeli jet crashes after attacking Iranian targets in Syria". france24.com. France24. 10 February 2018. Archived from the original on 18 December 2018. Retrieved 14 March 2019.
  72. ^ Toi Staff (11 February 2018). "Pilot of downed F-16 jet regains consciousness, taken off respirator". timesofisrael.com. The times of Israel. Archived from the original on 13 February 2018. Retrieved 14 March 2019.
  73. ^ "Syria shoots down Israeli warplane as conflict escalates". bbc.com. BBC News. 10 February 2018. Archived from the original on 6 April 2019. Retrieved 15 March 2019.
  74. ^ Sweetman, Bill (2 April 2015). "Lasers Technology Targets Mini-UAVs". Aviation Week. Archived from the original on 14 December 2016. Retrieved 11 March 2017.
  75. ^ a b Schechter, Erik (5 April 2016). "What's Really the Best the Way to Take Down a Drone?". Popular Mechanics. Archived from the original on 13 March 2017. Retrieved 11 March 2017.
  76. ^ "AUDS Counter UAV System by Blighter spoted [sic] in Mosul Iraq". Twitter. Archived from the original on 15 March 2017. Retrieved 11 March 2017.
  77. ^ "Blighter® AUDS Anti-UAV Defence System". www.blighter.com. 2016. Archived from the original on 12 March 2017. Retrieved 11 March 2017.
  78. ^ Everstine, Brian (29 June 2015). "Air Force: Lost Predator was shot down in Syria". Air Force Times. Retrieved 18 November 2021.
  79. ^ Smith, Saphora; Kube, Courtney; Gubash, Charlene; Gains, Mosheh (21 August 2019). "U.S. military drone shot down over Yemen, officials say". NBC News. Retrieved 18 November 2021.
  80. ^ "Anti-Stealth Technology" (PDF). Archived from the original (PDF) on 4 November 2011. Retrieved 15 August 2010.
  81. ^ Carlo Kopp (November 2003). "Asia's new SAMs" (PDF). Australian Aviation: 30. Archived from the original (PDF) on 23 July 2006. Retrieved 9 July 2006.
  82. ^ Peck, Michael (1 September 2019). "Did A Turkish Combat Laser Shoot Down A Chinese Drone?". The National Interest. Retrieved 17 March 2022.
  83. ^ Col. Y Udaya Chandar (Retd.) (2017). The Modern Weaponry of the World's Armed Forces. Notion Press. ISBN 9781946983794.
  84. ^ Hearst Magazines (August 1953). "Will the New Submarines Rule the Seas?". Popular Mechanics. Hearst Magazines. pp. 74–78.
  85. ^ Naval Strike Forum. "What it takes to successfully attack an American Aircraft carrier". Lexington Institute. p. 15
  86. ^ "Stacked Up Over Anaconda". Air Force Magazine. Retrieved 2 October 2020.
  87. ^ "Operation Anaconda Overview" (PDF). Archived from the original (PDF) on 10 October 2015. Retrieved 27 January 2020.
  88. ^ "Investigation Confirms RPG Downed Chinook". Air Force Magazine. 14 October 2011. Retrieved 2 October 2020.
  89. ^ "ODIN - OE Data Integration Network".
  90. ^ Kaaman, Hugo [@HKaaman] (18 May 2018). "Anti-Tank Guided Missile (ATGM) strikes on helicopters during the Syrian Civil War - I made a short compilation detailing the 8 recorded ATGM strikes on helicopters in Syria. 3 strikes on parked helis, 2 on landing helis, 2 on helis after emergency landings & 1 on heli in-flight https://t.co/Za6azGABVV" (Tweet). Retrieved 31 December 2020 – via Twitter.

Sources

Enlaces externos