stringtranslate.com

Anillo monoide

En álgebra abstracta , un anillo monoide es un anillo construido a partir de un anillo y un monoide , tal como un anillo de grupo se construye a partir de un anillo y un grupo .

Definición

Sea R un anillo y G un monoide. El anillo monoide o álgebra monoide de G sobre R , denotado R [ G ] o RG , es el conjunto de sumas formales , donde para cada una y r g = 0 para todos menos un número finito de g , equipado con suma de coeficientes, y el multiplicación en la que los elementos de R conmutan con los elementos de G . Más formalmente, R [ G ] es el R -módulo libre en el conjunto G , dotado de R -multiplicación lineal definida sobre los elementos base por g·h  := gh , donde el lado izquierdo se entiende como la multiplicación en R [ G ] y el lado derecho se entiende en G .

Alternativamente, se puede identificar el elemento con la función e g que asigna g a 1 y todos los demás elementos de G a 0. De esta manera, R [ G ] se identifica con el conjunto de funciones φ: GR tales que { g  : φ( g ) ≠ 0 } es finito. equipado con suma de funciones y con multiplicación definida por

.

Si G es un grupo , entonces R [ G ] también se llama anillo de grupo de G sobre R.

propiedad universal

Dados R y G , hay un homomorfismo de anillo α: RR [ G ] enviando cada r a r 1 (donde 1 es el elemento identidad de G ), y un homomorfismo monoide β: GR [ G ] (donde el este último se ve como un monoide en la multiplicación) enviando cada g a 1 g (donde 1 es la identidad multiplicativa de R ). Tenemos que α( r ) conmuta con β( g ) para todo r en R y g en G.

La propiedad universal del anillo monoide establece que dado un anillo S , un homomorfismo de anillo α': RS , y un homomorfismo monoide β': GS al monoide multiplicativo de S , tal que α'( r ) conmuta con β'( g ) para todo r en R y g en G , existe un homomorfismo de anillo único γ: R [ G ] → S tal que componer α y β con γ produce α' y β '.

Aumento

El aumento es el homomorfismo de anillo η : R [ G ] → R definido por

El núcleo de η se llama ideal de aumento. Es un módulo R gratuito con una base que consta de 1 –  g para todo g en G distinto de 1.

Ejemplos

Dado un anillo R y el monoide (aditivo) de los números naturales N (o { x n } visto multiplicativamente), obtenemos el anillo R [{ x n }] =: R [ x ] de polinomios sobre R . El monoide N n (con la suma) da el anillo polinómico con n variables: R [ N n ] =: R [ X 1 , ..., X n ].

Generalización

Si G es un semigrupo , la misma construcción produce un anillo de semigrupo R [ G ].

Ver también

Referencias

Otras lecturas