stringtranslate.com

Pseudoenzyme

Pseudoenzymes are variants of enzymes (usually proteins) that are catalytically-deficient (usually inactive), meaning that they perform little or no enzyme catalysis. [1] They are believed to be represented in all major enzyme families in the kingdoms of life, where they have important signaling and metabolic functions, many of which are only now coming to light.[2] Pseudoenzymes are becoming increasingly important to analyse, especially as the bioinformatic analysis of genomes reveals their ubiquity. Their important regulatory and sometimes disease-associated functions in metabolic and signalling pathways are also shedding new light on the non-catalytic functions of active enzymes, of moonlighting proteins,[3][4] the re-purposing of proteins in distinct cellular roles (Protein moonlighting). They are also suggesting new ways to target and interpret cellular signalling mechanisms using small molecules and drugs.[5] The most intensively analyzed, and certainly the best understood pseudoenzymes in terms of cellular signalling functions are probably the pseudokinases, the pseudoproteases and the pseudophosphatases. Recently, the pseudo-deubiquitylases have also begun to gain prominence.[6][7]

Structures and roles

The difference between enzymatically active and inactive homologues has been noted (and in some cases, understood when comparing catalytically active and inactive proteins residing in recognisable families) for some time at the sequence level,[8] and some pseudoenzymes have also been referred to as 'prozymes' when they were analysed in protozoan parasites.[9] The best studied pseudoenzymes reside amongst various key signalling superfamilies of enzymes, such as the proteases,[10] the protein kinases,[11][12][13][14][15][16][17] protein phosphatases[18][19] and ubiquitin modifying enzymes.[20][21] The role of pseudoenzymes as "pseudo scaffolds" has also been recognised [22] and pseudoenzymes are now beginning to be more thoroughly studied in terms of their biology and function, in large part because they are also interesting potential targets (or anti-targets) for drug design in the context of intracellular cellular signalling complexes.[23][24]

Examples classes

See also

References

  1. ^ Ribeiro AJ, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA (Aug 2019). "Emerging concepts in pseudoenzyme classification, evolution, and signaling". Science Signaling. 12 (594): eaat9797. doi:10.1126/scisignal.aat9797. PMID 31409758.
  2. ^ Kwon A, Scott S, Taujale R, Yeung W, Kochut KJ, Eyers PA, Kannan N (April 2019). "Tracing the origin and evolution of pseudokinases across the tree of life". Science Signaling. 12 (578): eaav3810. doi:10.1126/scisignal.aav3810. PMC 6997932. PMID 31015289.
  3. ^ Jeffery CJ (Feb 2019). "The demise of catalysis, but new functions arise: pseudoenzymes as the phoenixes of the protein world". Biochemical Society Transactions. 47 (1): 371–379. doi:10.1042/BST20180473. PMID 30710059. S2CID 73437705.
  4. ^ Jeffery CJ (Dec 2019). "Multitalented actors inside and outside the cell: recent discoveries add to the number of moonlighting proteins". Biochemical Society Transactions. 47 (6): 1941–1948. doi:10.1042/BST20190798. PMID 31803903. S2CID 208643133.
  5. ^ Eyers PA, Murphy JM (November 2016). "The evolving world of pseudoenzymes: proteins, prejudice and zombies". BMC Biology. 14 (1): 98. doi:10.1186/s12915-016-0322-x. PMC 5106787. PMID 27835992.
  6. ^ Walden M, Masandi SK, Pawlowski K, Zeqiraj E (Feb 2018). "Pseudo-DUBs as allosteric activators and molecular scaffolds of protein complexes" (PDF). Biochem Soc Trans. 46 (2): 453–466. doi:10.1042/BST20160268. PMID 29472364. S2CID 3477709.
  7. ^ Walden M, Tian L, Ross RL, Sykora UM, Byrne DP, Hesketh EL, Masandi SK, Cassel J, George R, Ault JR, El Oualid F, Pawłowski K, Salvino JM, Eyers PA, Ranson NA, Del Galdo F, Greenberg RA, Zeqiraj E (May 2019). "Metabolic control of BRISC–SHMT2 assembly regulates immune signalling" (PDF). Nature. 570 (7760): 194–199. Bibcode:2019Natur.570..194W. doi:10.1038/s41586-019-1232-1. PMC 6914362. PMID 31142841.
  8. ^ Todd AE, Orengo CA, Thornton JM (October 2002). "Sequence and structural differences between enzyme and nonenzyme homologs". Structure. 10 (10): 1435–51. doi:10.1016/s0969-2126(02)00861-4. PMID 12377129.
  9. ^ Willert EK, Fitzpatrick R, Phillips MA (May 2007). "Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog". Proceedings of the National Academy of Sciences of the United States of America. 104 (20): 8275–80. Bibcode:2007PNAS..104.8275W. doi:10.1073/pnas.0701111104. PMC 1895940. PMID 17485680.
  10. ^ Adrain C, Freeman M (July 2012). "New lives for old: evolution of pseudoenzyme function illustrated by iRhoms". Nature Reviews. Molecular Cell Biology. 13 (8): 489–98. doi:10.1038/nrm3392. PMID 22781900. S2CID 806199.
  11. ^ Kwon A, Scott S, Taujale R, Yeung W, Kochut KJ, Eyers PA, Kannan N (April 2019). "Tracing the origin and evolution of pseudokinases across the tree of life". Science Signaling. 12 (578): eaav3810. doi:10.1126/scisignal.aav3810. PMC 6997932. PMID 31015289.
  12. ^ Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (December 2002). "The protein kinase complement of the human genome". Science. 298 (5600): 1912–34. Bibcode:2002Sci...298.1912M. doi:10.1126/science.1075762. PMID 12471243. S2CID 26554314.
  13. ^ Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (September 2006). "Emerging roles of pseudokinases". Trends in Cell Biology. 16 (9): 443–52. doi:10.1016/j.tcb.2006.07.003. PMID 16879967.
  14. ^ Eyers PA, Keeshan K, Kannan N (April 2017). "Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease". Trends in Cell Biology. 27 (4): 284–298. doi:10.1016/j.tcb.2016.11.002. PMC 5382568. PMID 27908682.
  15. ^ Reiterer V, Eyers PA, Farhan H (September 2014). "Day of the dead: pseudokinases and pseudophosphatases in physiology and disease". Trends in Cell Biology. 24 (9): 489–505. doi:10.1016/j.tcb.2014.03.008. PMID 24818526.
  16. ^ Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (September 2013). "The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism". Immunity. 39 (3): 443–53. doi:10.1016/j.immuni.2013.06.018. PMID 24012422.
  17. ^ Wishart MJ, Dixon JE (August 1998). "Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains". Trends in Biochemical Sciences. 23 (8): 301–6. doi:10.1016/s0968-0004(98)01241-9. PMID 9757831.
  18. ^ Reiterer V, Eyers PA, Farhan H (September 2014). "Day of the dead: pseudokinases and pseudophosphatases in physiology and disease". Trends in Cell Biology. 24 (9): 489–505. doi:10.1016/j.tcb.2014.03.008. PMID 24818526.
  19. ^ Chen MJ, Dixon JE, Manning G (April 2017). "Genomics and evolution of protein phosphatases". Science Signaling. 10 (474): eaag1796. doi:10.1126/scisignal.aag1796. PMID 28400531. S2CID 41041971.
  20. ^ Zeqiraj E, Tian L, Piggott CA, Pillon MC, Duffy NM, Ceccarelli DF, Keszei AF, Lorenzen K, Kurinov I, Orlicky S, Gish GD, Heck AJ, Guarné A, Greenberg RA, Sicheri F (September 2015). "Higher-Order Assembly of BRCC36-KIAA0157 Is Required for DUB Activity and Biological Function". Molecular Cell. 59 (6): 970–83. doi:10.1016/j.molcel.2015.07.028. PMC 4579573. PMID 26344097.
  21. ^ Strickson S, Emmerich CH, Goh ET, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F, Arthur JS, Cohen P (April 2017). "Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling". Proceedings of the National Academy of Sciences of the United States of America. 114 (17): E3481–E3489. Bibcode:2017PNAS..114E3481S. doi:10.1073/pnas.1702367114. PMC 5410814. PMID 28404732.
  22. ^ Aggarwal-Howarth S, Scott JD (April 2017). "Pseudoscaffolds and anchoring proteins: the difference is in the details". Biochemical Society Transactions. 45 (2): 371–379. doi:10.1042/bst20160329. PMC 5497583. PMID 28408477.
  23. ^ Foulkes DM, Byrne DP, Bailey FP, Eyers PA (October 2015). "Tribbles pseudokinases: novel targets for chemical biology and drug discovery?". Biochemical Society Transactions. 43 (5): 1095–103. doi:10.1042/bst20150109. PMID 26517930.
  24. ^ Byrne DP, Foulkes DM, Eyers PA (January 2017). "Pseudokinases: update on their functions and evaluation as new drug targets". Future Medicinal Chemistry. 9 (2): 245–265. doi:10.4155/fmc-2016-0207. PMID 28097887.
  25. ^ Murphy JM, Farhan H, Eyers PA (April 2017). "Bio-Zombie: the rise of pseudoenzymes in biology". Biochemical Society Transactions. 45 (2): 537–544. doi:10.1042/bst20160400. PMID 28408493.
  26. ^ McDermott SM, Stuart K (November 2017). "The essential functions of KREPB4 are developmentally distinct and required for endonuclease association with editosomes". RNA. 23 (11): 1672–1684. doi:10.1261/rna.062786.117. PMC 5648035. PMID 28802260.

External links