stringtranslate.com

Proyecto Manhattan

El Proyecto Manhattan fue un programa de investigación y desarrollo llevado a cabo durante la Segunda Guerra Mundial para producir las primeras armas nucleares . Fue liderado por los Estados Unidos en colaboración con el Reino Unido y Canadá. De 1942 a 1946, el proyecto fue dirigido por el mayor general Leslie Groves del Cuerpo de Ingenieros del Ejército de los Estados Unidos . El físico nuclear J. Robert Oppenheimer fue el director del Laboratorio de Los Álamos que diseñó las bombas. El programa del Ejército fue designado Distrito de Manhattan , ya que su primera sede estaba en Manhattan ; el nombre reemplazó gradualmente al nombre en clave oficial, Desarrollo de materiales sustitutos , para todo el proyecto. El proyecto absorbió su homólogo británico anterior, Tube Alloys , y absorbió el programa de la Oficina de Investigación Científica y Desarrollo civil estadounidense . El Proyecto Manhattan empleó a casi 130.000 personas en su apogeo y costó casi 2000 millones de dólares estadounidenses (equivalentes a unos 27.000 millones de dólares en 2023), [1] más del 80 por ciento de los cuales se destinó a la construcción y operación de las plantas que produjeron el material fisible . La investigación y la producción se llevaron a cabo en más de 30 sitios en Estados Unidos, el Reino Unido y Canadá.

El proyecto dio como resultado dos tipos de bombas atómicas, desarrolladas simultáneamente durante la guerra: un arma de fisión relativamente simple de tipo cañón y un arma nuclear de tipo implosión más compleja . El diseño de tipo cañón Thin Man resultó poco práctico para usar con plutonio , por lo que se desarrolló un diseño de tipo cañón más simple llamado Little Boy que usaba uranio-235 . Se emplearon tres métodos para el enriquecimiento de uranio : electromagnético , gaseoso y térmico . En paralelo con el trabajo sobre el uranio se realizó un esfuerzo para producir plutonio. Después de que se demostrara la viabilidad del primer reactor nuclear artificial del mundo, el Chicago Pile-1 , en 1942 en el Laboratorio Metalúrgico de la Universidad de Chicago , el proyecto diseñó el Reactor de Grafito X-10 y los reactores de producción en el Sitio Hanford , en el que se irradiaba uranio y se transmutaba en plutonio. El arma de implosión de plutonio Fat Man fue desarrollada en un esfuerzo concertado de diseño y desarrollo por parte del Laboratorio de Los Álamos.

El proyecto también tenía la misión de reunir información sobre el proyecto de armas nucleares alemán . A través de la Operación Alsos , el personal del Proyecto Manhattan prestó servicios en Europa, a veces tras las líneas enemigas, donde recogieron materiales y documentos nucleares y arrestaron a científicos alemanes. A pesar del énfasis del Proyecto Manhattan en la seguridad, los espías atómicos soviéticos penetraron en el programa.

El primer artefacto nuclear detonado fue una bomba de tipo implosión durante la prueba Trinity , realizada en White Sands Proving Ground en Nuevo México el 16 de julio de 1945. Las bombas Little Boy y Fat Man se utilizaron un mes después en los bombardeos atómicos de Hiroshima y Nagasaki . En los años inmediatamente posteriores a la guerra, el Proyecto Manhattan realizó pruebas de armas en el atolón Bikini como parte de la Operación Crossroads , desarrolló nuevas armas, promovió el desarrollo de la red de laboratorios nacionales , apoyó la investigación médica en radiología y sentó las bases para la marina nuclear . Mantuvo el control sobre la investigación y producción de armas atómicas estadounidenses hasta la formación de la Comisión de Energía Atómica de los Estados Unidos (UNAEC) en enero de 1947.

Orígenes

El descubrimiento de la fisión nuclear por Otto Hahn y Fritz Strassmann en 1938, y su explicación teórica por parte de Lise Meitner y Otto Frisch , hicieron que la bomba atómica fuera teóricamente posible. Existían temores de que un proyecto alemán de bomba atómica desarrollara una antes, especialmente entre los científicos que eran refugiados de la Alemania nazi y otros países fascistas . [2] En agosto de 1939, los físicos nacidos en Hungría Leo Szilard y Eugene Wigner redactaron la carta Einstein-Szilard , que advertía sobre el desarrollo potencial de "bombas extremadamente poderosas de un nuevo tipo". Instaba a Estados Unidos a adquirir reservas de mineral de uranio y acelerar la investigación de Enrico Fermi y otros sobre las reacciones nucleares en cadena . [3]

Lo firmaron Albert Einstein y lo entregaron al presidente Franklin D. Roosevelt . Roosevelt pidió a Lyman Briggs, de la Oficina Nacional de Normas , que encabezara un Comité Asesor sobre el Uranio ; Briggs se reunió con Szilard, Wigner y Edward Teller en octubre de 1939. [3] El comité informó a Roosevelt en noviembre que el uranio "podría proporcionar una fuente posible de bombas con una destructividad mucho mayor que todo lo conocido hasta ahora". [4]

Enrico Fermi , John R. Dunning y Dana P. Mitchell frente al ciclotrón en el sótano de Pupin Hall en la Universidad de Columbia , 1940

En febrero de 1940, la Marina de los EE. UU. otorgó a la Universidad de Columbia 6000 dólares, [5] la mayoría de los cuales Fermi y Szilard gastaron en grafito . Un equipo de profesores de Columbia que incluía a Fermi, Szilard, Eugene T. Booth y John Dunning crearon la primera reacción de fisión nuclear en las Américas, verificando el trabajo de Hahn y Strassmann. El mismo equipo posteriormente construyó una serie de reactores nucleares prototipo (o "pilas", como los llamó Fermi) en Pupin Hall en Columbia, pero aún no pudieron lograr una reacción en cadena. [6] El Comité Asesor sobre Uranio se convirtió en el Comité Nacional de Investigación de Defensa (NDRC) sobre Uranio cuando se formó esa organización el 27 de junio de 1940. [7]

El 28 de junio de 1941, Roosevelt firmó la Orden Ejecutiva 8807, que creó la Oficina de Investigación y Desarrollo Científico (OSRD), [8] bajo la dirección de Vannevar Bush . La oficina fue autorizada a participar en proyectos de investigación e ingeniería de gran envergadura. [9] El Comité de NDRC sobre Uranio se convirtió en la Sección S-1 de la OSRD; la palabra "uranio" se eliminó por razones de seguridad. [10] En julio de 1941, Briggs propuso gastar 167.000 dólares en la investigación del uranio, en particular el isótopo uranio-235 , y el plutonio , [9] que había sido aislado por primera vez en la Universidad de California en febrero de 1941. [11] [a]

En Gran Bretaña, Frisch y Rudolf Peierls de la Universidad de Birmingham habían hecho un gran avance al investigar la masa crítica del uranio-235 en junio de 1939. [13] Sus cálculos indicaron que estaba dentro de un orden de magnitud de 10 kilogramos (22 libras), lo suficientemente pequeño para ser transportado por bombarderos contemporáneos. [14] Su memorándum Frisch-Peierls de marzo de 1940 inició el proyecto británico de bomba atómica y su Comité MAUD , [15] que recomendó unánimemente continuar con el desarrollo de una bomba atómica. [14] En julio de 1940, Gran Bretaña había ofrecido dar a los Estados Unidos acceso a su investigación, [16] y John Cockcroft de la Misión Tizard informó a los científicos estadounidenses sobre los desarrollos británicos. Descubrió que el proyecto estadounidense era más pequeño que el británico y no tan avanzado. [17]

Como parte del intercambio científico, los hallazgos del Comité MAUD fueron transmitidos a los Estados Unidos. Uno de sus miembros, el físico australiano Mark Oliphant , voló a los EE. UU. a fines de agosto de 1941 y descubrió que los datos proporcionados por el Comité MAUD no habían llegado a los físicos estadounidenses clave. Oliphant se propuso averiguar por qué aparentemente se ignoraban los hallazgos del comité. Se reunió con el Comité del Uranio y visitó Berkeley, California , donde habló de manera persuasiva con Ernest O. Lawrence . Lawrence quedó lo suficientemente impresionado como para comenzar su propia investigación sobre el uranio. A su vez, habló con James B. Conant , Arthur H. Compton y George B. Pegram . La misión de Oliphant fue, por lo tanto, un éxito; los físicos estadounidenses clave ahora eran conscientes del poder potencial de una bomba atómica. [18] [19]

El 9 de octubre de 1941, el presidente Roosevelt aprobó el programa atómico después de convocar una reunión con Vannevar Bush y el vicepresidente Henry A. Wallace . Creó un Grupo de Política Superior formado por él mismo (aunque nunca asistió a una reunión), Wallace, Bush, Conant, el secretario de Guerra Henry L. Stimson y el jefe del Estado Mayor del Ejército , el general George C. Marshall . Roosevelt eligió al Ejército para dirigir el proyecto en lugar de a la Armada, porque el Ejército tenía más experiencia en la gestión de la construcción a gran escala. Aceptó coordinar el esfuerzo con los británicos y el 11 de octubre envió un mensaje al primer ministro Winston Churchill , sugiriendo que se comunicaran sobre asuntos atómicos. [20]

Factibilidad

Propuestas

Seis hombres de traje sentados en sillas, sonriendo y riendo.
Reunión de marzo de 1940 en Berkeley, California: Ernest O. Lawrence , Arthur H. Compton , Vannevar Bush , James B. Conant , Karl T. Compton y Alfred L. Loomis

La reunión del Comité S-1 del 18 de diciembre de 1941 estuvo "impregnada de una atmósfera de entusiasmo y urgencia" [21] a raíz del ataque a Pearl Harbor y la declaración de guerra de los Estados Unidos a Japón y a Alemania . [22] Se estaba trabajando en tres técnicas para la separación de isótopos : Lawrence y su equipo en la Universidad de California investigaron la separación electromagnética , el equipo de Eger Murphree y Jesse Wakefield Beams investigó la difusión gaseosa en la Universidad de Columbia , y Philip Abelson dirigió la investigación sobre difusión térmica en la Institución Carnegie de Washington y más tarde en el Laboratorio de Investigación Naval . [23] Murphree también dirigió un proyecto de separación fallido utilizando centrífugas de gas . [24]

Mientras tanto, había dos líneas de investigación en la tecnología de los reactores nucleares : Harold Urey investigó el agua pesada en Columbia, mientras que Arthur Compton organizó el Laboratorio Metalúrgico a principios de 1942 para estudiar el plutonio y los reactores que utilizaban grafito como moderador de neutrones . [25] El Comité S-1 recomendó seguir las cinco tecnologías. Esto fue aprobado por Bush, Conant y el general de brigada Wilhelm D. Styer , que había sido designado representante del ejército en asuntos nucleares. [23]

Bush y Conant llevaron entonces la recomendación al Top Policy Group con una propuesta presupuestaria de 54 millones de dólares para la construcción por parte del Cuerpo de Ingenieros del Ejército de los Estados Unidos , 31 millones de dólares para investigación y desarrollo por parte de la OSRD y 5 millones de dólares para contingencias en el año fiscal 1943. Lo enviaron el 17 de junio de 1942 al Presidente, quien lo aprobó escribiendo "OK FDR" en el documento. [23]

Conceptos de diseño de bombas

Una serie de garabatos
Diferentes métodos de ensamblaje de bombas de fisión explorados durante la conferencia de julio de 1942

Compton pidió al físico teórico J. Robert Oppenheimer, de la Universidad de California, que se hiciera cargo de la investigación sobre cálculos de neutrones rápidos (clave para los cálculos de masa crítica y detonación de armas) de Gregory Breit , quien había renunciado el 18 de mayo de 1942 debido a preocupaciones sobre la laxa seguridad operativa. [26] John H. Manley , un físico del Laboratorio Metalúrgico, fue asignado para ayudar a Oppenheimer coordinando grupos de física experimental dispersos por todo el país. [27] Oppenheimer y Robert Serber , de la Universidad de Illinois, examinaron los problemas de la difusión de neutrones (cómo se movían los neutrones en una reacción nuclear en cadena) y la hidrodinámica (cómo podría comportarse la explosión producida por una reacción en cadena). [28]

Para revisar este trabajo y la teoría general de las reacciones de fisión, Oppenheimer y Fermi convocaron reuniones en la Universidad de Chicago en junio y en la Universidad de California en julio de 1942 con los físicos teóricos Hans Bethe , John Van Vleck , Edward Teller, Emil Konopinski , Robert Serber, Stan Frankel y Eldred C. (Carlyle) Nelson, y los físicos experimentales Emilio Segrè , Felix Bloch , Franco Rasetti , Manley y Edwin McMillan . Confirmaron tentativamente que una bomba de fisión era teóricamente posible. [28]

Las propiedades del uranio-235 puro eran relativamente desconocidas, al igual que las del plutonio, que sólo había sido aislado por Glenn Seaborg y su equipo en febrero de 1941. Los científicos que participaron en la conferencia de julio de 1942 previeron crear plutonio en reactores nucleares donde los átomos de uranio-238 absorbieran los neutrones que se habían emitido al fisionarse el uranio-235. En ese momento no se había construido ningún reactor y sólo se disponía de cantidades minúsculas de plutonio procedentes de los ciclotrones . [11] Incluso en diciembre de 1943, sólo se habían producido dos miligramos. [29] Había muchas formas de disponer el material fisionable en una masa crítica. La más sencilla era disparar un "tapón cilíndrico" en una esfera de "material activo" con un "apisonador", un material denso para concentrar los neutrones hacia el interior y mantener unida la masa reactiva para aumentar su eficiencia. [30] También exploraron diseños que involucraban esferoides , una forma primitiva de " implosión " sugerida por Richard C. Tolman , y la posibilidad de métodos autocatalíticos para aumentar la eficiencia de la bomba al explotar. [31]

Cuando la idea de la bomba de fisión quedó teóricamente establecida (al menos hasta que se dispusiera de más datos experimentales), Edward Teller presionó para que se discutiera una bomba más poderosa: la "superbomba", ahora generalmente denominada " bomba de hidrógeno ", que usaría la fuerza de una bomba de fisión detonante para encender una reacción de fusión nuclear en deuterio y tritio . [32] Teller propuso un plan tras otro, pero Bethe rechazó cada uno. La idea de la fusión se dejó de lado para concentrarse en la producción de bombas de fisión. [33] Teller planteó la posibilidad especulativa de que una bomba atómica pudiera "encender" la atmósfera debido a una reacción de fusión hipotética de núcleos de nitrógeno. [b] Bethe calculó que era "extremadamente improbable". [35] Un informe de posguerra coescrito por Teller concluyó que "cualquiera que sea la temperatura a la que se pueda calentar una sección de la atmósfera, no es probable que se inicie una cadena de reacciones nucleares autopropagantes". [36] En el relato de Serber, Oppenheimer mencionó la posibilidad de este escenario a Arthur Compton , quien "no tuvo el suficiente sentido común como para callarse el tema. De alguna manera, se metió en un documento que llegó a Washington" y "nunca se enteró". [c]

Organización

Distrito de Manhattan

El jefe de ingenieros , el general Eugene Reybold , seleccionó al coronel James C. Marshall para dirigir la parte del ejército del proyecto en junio de 1942. Marshall creó una oficina de enlace en Washington, DC, pero estableció su sede temporal en 270 Broadway en Nueva York, donde podía contar con el apoyo administrativo de la División del Atlántico Norte del Cuerpo de Ingenieros . Estaba cerca de la oficina de Manhattan de Stone & Webster , el contratista principal del proyecto, y de la Universidad de Columbia. Tenía permiso para recurrir a su antiguo comando, el Distrito de Syracuse, para el personal, y comenzó con el teniente coronel Kenneth Nichols , quien se convirtió en su adjunto. [38] [39]

Organigrama del proyecto, que muestra las divisiones de la sede del proyecto en la parte superior, el Distrito de Manhattan en el medio y las oficinas de campo en la parte inferior.
Organigrama del Proyecto Manhattan, 1 de mayo de 1946

Como la mayor parte de su tarea implicaba construcción, Marshall trabajó en cooperación con el jefe de la División de Construcción del Cuerpo de Ingenieros, el mayor general Thomas M. Robbins, y su adjunto, el coronel Leslie Groves . Reybold, Somervell y Styer decidieron llamar al proyecto "Desarrollo de materiales sustitutos", pero Groves consideró que esto llamaría la atención. Dado que los distritos de ingenieros normalmente llevaban el nombre de la ciudad donde estaban ubicados, Marshall y Groves acordaron nombrar al componente del Ejército como el Distrito de Manhattan; Reybold creó oficialmente este distrito el 13 de agosto. Informalmente, se lo conocía como el Distrito de Ingenieros de Manhattan o MED. A diferencia de otros distritos, no tenía límites geográficos y Marshall tenía la autoridad de un ingeniero de división. Desarrollo de materiales sustitutos permaneció como el nombre clave oficial del proyecto en su conjunto, pero fue reemplazado con el tiempo por "Manhattan". [39] [40]

Marshall admitió más tarde que "nunca había oído hablar de la fisión atómica, pero sabía que no se podía construir una gran planta, y mucho menos cuatro de ellas, por 90 millones de dólares". [41] Una sola planta de TNT que Nichols había construido recientemente en Pensilvania había costado 128 millones de dólares. [42] Tampoco les impresionaron las estimaciones al orden de magnitud más cercano, que Groves comparó con decirle a un proveedor de catering que se preparara para entre diez y mil invitados. [43] Un equipo de investigación de Stone & Webster ya había explorado un sitio para las plantas de producción. La Junta de Producción de Guerra recomendó sitios alrededor de Knoxville, Tennessee , un área aislada donde la Autoridad del Valle de Tennessee podría suministrar abundante energía eléctrica y los ríos podrían proporcionar agua de refrigeración para los reactores. Después de examinar varios sitios, el equipo de investigación seleccionó uno cerca de Elza, Tennessee . Conant aconsejó que se adquiriera de inmediato y Styer estuvo de acuerdo, pero Marshall contemporizó, esperando los resultados de los experimentos de reactores de Conant. [44] De los posibles procesos, sólo la separación electromagnética de Lawrence parecía suficientemente avanzada para que se pudiera comenzar la construcción. [45]

Marshall y Nichols comenzaron a reunir los recursos necesarios. El primer paso fue obtener una calificación de alta prioridad para el proyecto. Las calificaciones más altas fueron AA-1 a AA-4 en orden descendente, aunque había una calificación AAA especial reservada para emergencias. Las calificaciones AA-1 y AA-2 eran para armas y equipos esenciales, por lo que el coronel Lucius D. Clay , el subdirector del personal de Servicios y Suministros para requisitos y recursos, consideró que la calificación más alta que podía asignar era AA-3, aunque estaba dispuesto a proporcionar una calificación AAA a pedido para materiales críticos si surgiera la necesidad. [46] Nichols y Marshall estaban decepcionados; AA-3 era la misma prioridad que la planta de TNT de Nichols en Pensilvania. [47]

Comité de Política Militar

Un hombre sonriente con traje y otro con uniforme conversan alrededor de una pila de metal retorcido.
Oppenheimer y Groves en los restos de la prueba Trinity en septiembre de 1945, dos meses después de la explosión de prueba y justo después del final de la Segunda Guerra Mundial. Los cubrezapatos blancos impidieron que la radiación se pegara a las suelas de sus zapatos. [48]

Vannevar Bush se mostró insatisfecho con el fracaso del coronel Marshall en hacer avanzar el proyecto rápidamente [49] y consideró que se necesitaba un liderazgo más agresivo. Habló con Harvey Bundy y los generales Marshall, Somervell y Styer sobre sus preocupaciones, y abogó por que el proyecto se pusiera bajo la dirección de un comité de políticas de alto nivel, con un oficial prestigioso, preferiblemente Styer. [47]

Somervell y Styer seleccionaron a Groves para el puesto; el general Marshall ordenó que fuera ascendido a general de brigada, [50] ya que se consideró que el título de "general" tendría más influencia entre los científicos académicos que trabajaban en el proyecto. [51] Las órdenes de Groves lo colocaron directamente bajo Somervell en lugar de Reybold, con el coronel Marshall ahora respondiendo ante Groves. [52] Groves estableció su cuartel general en Washington, DC, en el New War Department Building , donde el coronel Marshall tenía su oficina de enlace. [53] Asumió el mando del Proyecto Manhattan el 23 de septiembre de 1942. Más tarde ese día, asistió a una reunión convocada por Stimson, que estableció un Comité de Política Militar, responsable ante el Grupo de Política Superior, compuesto por Bush (con Conant como suplente), Styer y el contralmirante William R. Purnell . [50] Tolman y Conant fueron designados más tarde como asesores científicos de Groves. [54]

El 19 de septiembre, Groves fue a ver a Donald Nelson , presidente de la Junta de Producción de Guerra, y le pidió una amplia autoridad para emitir una calificación AAA cuando fuera necesario. Nelson inicialmente se mostró reacio, pero rápidamente cedió cuando Groves amenazó con acudir al presidente. [55] Groves prometió no utilizar la calificación AAA a menos que fuera necesario. Pronto se supo que para los requisitos rutinarios del proyecto la calificación AAA era demasiado alta, pero la calificación AA-3 era demasiado baja. Después de una larga campaña, Groves finalmente recibió la autorización AA-1 el 1 de julio de 1944. [56] Según Groves, "En Washington te diste cuenta de la importancia de la máxima prioridad. Casi todo lo propuesto en la administración Roosevelt tendría máxima prioridad. Eso duraría aproximadamente una semana o dos y luego algo más obtendría máxima prioridad". [57]

Uno de los primeros problemas de Groves fue encontrar un director para el Proyecto Y , el grupo que diseñaría y construiría la bomba. La elección obvia era uno de los tres jefes de laboratorio, Urey, Lawrence o Compton, pero no podían prescindir de ellos. Compton recomendó a Oppenheimer, que ya estaba íntimamente familiarizado con los conceptos de diseño de la bomba. Sin embargo, Oppenheimer tenía poca experiencia administrativa y, a diferencia de Urey, Lawrence y Compton, no había ganado un premio Nobel, que muchos científicos creían que debía tener el jefe de un laboratorio tan importante. También había preocupaciones sobre el estatus de seguridad de Oppenheimer, ya que muchos de sus asociados eran comunistas , incluida su esposa, Kitty ; su novia, Jean Tatlock ; y su hermano, Frank . Una larga conversación en octubre de 1942 convenció a Groves y Nichols de que Oppenheimer entendía perfectamente los problemas involucrados en la creación de un laboratorio en un área remota y debería ser nombrado su director. Groves personalmente renunció a los requisitos de seguridad y emitió la autorización de Oppenheimer el 20 de julio de 1943. [58] [59]

Colaboración con el Reino Unido

Los británicos y los estadounidenses intercambiaron información nuclear, pero inicialmente no combinaron sus esfuerzos; durante 1940-41, el proyecto británico ( Tube Alloys ) fue más grande y más avanzado. [17] Gran Bretaña rechazó los intentos de Bush y Conant en agosto de 1941 de fortalecer la cooperación porque era reacia a compartir su liderazgo tecnológico y ayudar a los Estados Unidos a desarrollar su propia bomba atómica. Pero los británicos, que habían logrado avances significativos en la investigación al principio de la guerra, no tenían los recursos para llevar a cabo un programa de investigación de ese tipo mientras una gran parte de su economía estaba dedicada a combatir la guerra; Tube Alloys pronto se quedó atrás de su contraparte estadounidense. [60] Los papeles de los dos países se invirtieron, [61] y en enero de 1943 Conant notificó a los británicos que ya no recibirían información atómica excepto en ciertas áreas. [62] [63] Los británicos investigaron la posibilidad de un programa nuclear independiente, pero determinaron que no podría estar listo a tiempo para impactar la guerra en Europa . [64]

Un hombre grande con uniforme y un hombre delgado con gafas y traje y corbata están sentados en un escritorio.
Groves se reúne con James Chadwick , el jefe de la misión británica.

En marzo de 1943, Conant decidió que James Chadwick y uno o dos científicos británicos más eran lo suficientemente importantes como para que el equipo de diseño de bombas en Los Álamos los necesitara, a pesar del riesgo de revelar secretos de diseño de armas. [65] En agosto de 1943, Churchill y Roosevelt negociaron el Acuerdo de Quebec , [66] [67] que estableció el Comité de Política Combinada para coordinar los esfuerzos de los EE. UU. y el Reino Unido; Canadá no fue signatario, pero el Acuerdo preveía un representante canadiense en el Comité de Política Combinada en vista de la contribución de Canadá al esfuerzo. [68] Un acuerdo entre Roosevelt y Churchill conocido como Hyde Park Aide-Mémoire , firmado a fines de septiembre de 1944, extendió el Acuerdo de Quebec al período de posguerra y sugirió que "cuando finalmente esté disponible una 'bomba', tal vez podría, después de una madura consideración, usarse contra los japoneses, a quienes se les debería advertir que este bombardeo se repetirá hasta que se rindan". [69] [70]

Cuando se reanudó la cooperación después del Acuerdo de Quebec, el progreso y los gastos de los estadounidenses sorprendieron a los británicos. Chadwick presionó para que Gran Bretaña se involucrara en el Proyecto Manhattan al máximo y abandonó las esperanzas de un proyecto británico independiente durante la guerra. [64] Con el respaldo de Churchill, intentó asegurarse de que se cumplieran todas las solicitudes de asistencia de Groves. [71] La misión británica que llegó a los Estados Unidos en diciembre de 1943 incluía a Niels Bohr , Otto Frisch, Klaus Fuchs , Rudolf Peierls y Ernest Titterton . [72] Más científicos llegaron a principios de 1944. Mientras que los asignados a la difusión gaseosa se fueron en el otoño de 1944, los treinta y cinco que trabajaban bajo Oliphant con Lawrence en Berkeley fueron asignados a grupos de laboratorio existentes y la mayoría se quedó hasta el final de la guerra. Los diecinueve enviados a Los Álamos también se unieron a grupos existentes, principalmente relacionados con la implosión y el ensamblaje de bombas, pero no a los relacionados con el plutonio. [64] El Acuerdo de Quebec especificaba que no se utilizarían armas nucleares contra otro país sin el consentimiento mutuo de los Estados Unidos y el Reino Unido. En junio de 1945, Wilson acordó que el bombardeo nuclear de Japón quedaría registrado como una decisión del Comité de Política Combinada. [73]

En junio de 1944, el Comité de Política Combinada creó el Fondo de Desarrollo Combinado , con Groves como su presidente, para adquirir minerales de uranio y torio en los mercados internacionales. El Congo Belga y Canadá poseían gran parte del uranio del mundo fuera de Europa del Este, y el Gobierno belga en el exilio estaba en Londres. Gran Bretaña aceptó dar a los Estados Unidos la mayor parte del mineral belga, ya que no podía utilizar la mayor parte del suministro sin una investigación estadounidense restringida. [74] En 1944, el Fondo compró 3.440.000 libras (1.560.000 kg) de mineral de óxido de uranio a empresas que operaban minas en el Congo Belga. Para evitar informar al Secretario del Tesoro de los EE. UU. Henry Morgenthau Jr. , se utilizó una cuenta especial no sujeta a la auditoría y los controles habituales para guardar el dinero del Fondo. Entre 1944 y su renuncia al Fondo en 1947, Groves depositó un total de $37,5 millones. [75]

Groves valoró la temprana investigación atómica británica y las contribuciones de los científicos británicos al Proyecto Manhattan, pero afirmó que Estados Unidos habría tenido éxito sin ellos, aunque no a tiempo para el bombardeo de Hiroshima en agosto de 1945. [76] La participación británica en tiempos de guerra fue crucial para el éxito del programa de armas nucleares independiente del Reino Unido después de la guerra, cuando la Ley McMahon de 1946 puso fin temporalmente a la cooperación nuclear estadounidense. [64]

Sitios de proyectos

Mapa de los Estados Unidos y el sur de Canadá con los principales sitios del proyecto marcadosBerkeley, CaliforniaInyokern, CaliforniaRichland, WashingtonTrail, British ColumbiaWendover, UtahMonticello, UtahUravan, ColoradoLos Alamos, New MexicoAlamogordo, New MexicoAmes, IowaSt Louis, MissouriChicago, IllinoisDana, IndianaDayton, OhioSylacauga, AlabamaMorgantown, West VirginiaOak Ridge, TennesseeChalk River LaboratoriesRochester, New YorkWashington, D.C.
Una selección de sitios de Estados Unidos y Canadá importantes para el Proyecto Manhattan. La investigación y la producción se llevaron a cabo en más de treinta sitios en Estados Unidos, el Reino Unido y Canadá. Haga clic en la ubicación para obtener más información.

Cresta de roble

Los trabajadores, en su mayoría mujeres, salen de un grupo de edificios. Un cartel les exhorta a que "hagan que CEW COUNT siga protegiendo la información del proyecto".
Cambio de turno en la instalación de enriquecimiento de uranio Y-12 en Clinton Engineer Works en Oak Ridge, Tennessee , el 11 de agosto de 1945. En mayo de 1945, 82.000 personas estaban empleadas en Clinton Engineer Works. [77] Fotografía del fotógrafo del distrito de Manhattan, Ed Westcott .

Al día siguiente de hacerse cargo del proyecto, Groves fue a Tennessee con el coronel Marshall para inspeccionar el sitio propuesto allí, y Groves quedó impresionado. [78] [79] El 29 de septiembre de 1942, el subsecretario de Guerra de los Estados Unidos, Robert P. Patterson, autorizó al Cuerpo de Ingenieros a adquirir 56.000 acres (23.000 ha) de tierra mediante dominio eminente a un coste de 3,5 millones de dólares. Posteriormente se adquirieron 3.000 acres (1.200 ha) adicionales. Unas 1.000 familias se vieron afectadas por la orden, que entró en vigor el 7 de octubre. [80] Las protestas, las apelaciones legales y una investigación del Congreso en 1943 fueron en vano. [81] A mediados de noviembre, los alguaciles estadounidenses estaban colocando avisos de desalojo en las puertas de las granjas y los contratistas de construcción se estaban mudando. [82] Algunas familias recibieron un aviso de dos semanas para desalojar las granjas que habían sido sus hogares durante generaciones. [83] El costo final de la adquisición de tierras, que no se completó hasta marzo de 1945, fue de solo unos 2,6 millones de dólares, alrededor de 47 dólares por acre. [84] Cuando se le presentó una proclamación que declaraba a Oak Ridge un área de exclusión total a la que nadie podía ingresar sin permiso militar, el gobernador de Tennessee , Prentice Cooper , la rompió enojado. [85]

Inicialmente conocido como Kingston Demolition Range, el sitio fue rebautizado oficialmente como Clinton Engineer Works (CEW) a principios de 1943. [86] Mientras Stone & Webster se concentraba en las instalaciones de producción, la firma de arquitectura e ingeniería Skidmore, Owings & Merrill desarrolló una comunidad residencial para 13.000 personas. La comunidad estaba ubicada en las laderas de Black Oak Ridge, de donde la nueva ciudad de Oak Ridge obtuvo su nombre. [87] La ​​presencia del Ejército en Oak Ridge aumentó en agosto de 1943 cuando Nichols reemplazó a Marshall como jefe del Distrito de Ingenieros de Manhattan. Una de sus primeras tareas fue trasladar la sede del distrito a Oak Ridge, aunque el nombre del distrito no cambió. [88] En septiembre de 1943, la administración de las instalaciones comunitarias se subcontrató a Turner Construction Company a través de una subsidiaria, Roane-Anderson Company. [89] Los ingenieros químicos participaron en "esfuerzos frenéticos" para enriquecer uranio 235 entre un 10% y un 12%, con estrictas medidas de seguridad y rápidas aprobaciones para suministros y materiales. [90] La población de Oak Ridge pronto se expandió mucho más allá de los planes iniciales y alcanzó un máximo de 75.000 habitantes en mayo de 1945, momento en el que 82.000 personas estaban empleadas en Clinton Engineer Works, [77] y 10.000 en Roane-Anderson. [89]

Los Álamos

Mapa del sitio de Los Álamos, Nuevo México, 1943-1945

Se consideró la idea de ubicar el Proyecto Y en Oak Ridge, pero se decidió que debería estar en un lugar remoto. Por recomendación de Oppenheimer, la búsqueda de un sitio adecuado se redujo a las cercanías de Albuquerque, Nuevo México , donde Oppenheimer poseía un rancho. [91] El 16 de noviembre de 1942, Oppenheimer, Groves, Dudley y otros recorrieron las cercanías de la Escuela Rancho Los Álamos . Oppenheimer expresó una fuerte preferencia por el sitio, citando su belleza natural, que, se esperaba, inspiraría a quienes trabajaban en el proyecto. [92] [93] Los ingenieros estaban preocupados por el mal camino de acceso y si el suministro de agua sería adecuado, pero por lo demás sentían que era ideal. [94]

Patterson aprobó la adquisición del sitio el 25 de noviembre de 1942, autorizando $440,000 para la compra de 54,000 acres (22,000 ha) calculados previamente, de los cuales todos menos 8,900 acres (3,600 ha) ya eran propiedad del Gobierno Federal. [95] El Secretario de Agricultura Claude R. Wickard otorgó alrededor de 45,000 acres (18,000 ha) de tierras del Servicio Forestal de los Estados Unidos al Departamento de Guerra "mientras continúe la necesidad militar". [96] Las compras de tierras en tiempos de guerra finalmente llegaron a 49,383 acres (19,985 ha), pero solo se gastaron $414,971. [97] El trabajo comenzó en diciembre de 1942. Groves inicialmente asignó $300,000 para la construcción, tres veces la estimación de Oppenheimer, pero cuando Sundt terminó el 30 de noviembre de 1943, se habían gastado más de $7 millones. [98]

Durante la guerra, Los Álamos se conocía como "Sitio Y" o "la Colina". [99] Inicialmente, iba a ser un laboratorio militar con Oppenheimer y otros investigadores comisionados para el ejército, pero Robert Bacher e Isidor Rabi se opusieron a la idea y convencieron a Oppenheimer de que otros científicos se opondrían. Conant, Groves y Oppenheimer idearon entonces un compromiso por el cual el laboratorio sería operado por la Universidad de California bajo contrato con el Departamento de Guerra. [100] Dorothy McKibbin dirigía la sucursal en Santa Fe, donde recibía a los recién llegados y les emitía pases. [101]

Chicago

Algunos miembros del equipo de la Universidad de Chicago que trabajó en el Chicago Pile-1 , el primer reactor nuclear, incluidos Enrico Fermi y Walter Zinn en la primera fila y Harold Agnew , Leona Woods y Leó Szilárd en la segunda.

El 25 de junio de 1942, un consejo del Ejército y la OSRD decidió construir una planta piloto para la producción de plutonio en la reserva forestal de Argonne , al suroeste de Chicago. En julio, Nichols consiguió un contrato de arrendamiento de 415 hectáreas (1025 acres) del Distrito de Reserva Forestal del Condado de Cook , y el capitán James F. Grafton fue nombrado ingeniero de la zona de Chicago. Pronto se hizo evidente que la escala de las operaciones era demasiado grande para la zona, y se decidió construir la planta piloto en Oak Ridge y mantener una instalación de investigación y pruebas en Chicago. [102] [103]

Los retrasos en la instalación de la planta en Argonne llevaron a Arthur Compton a autorizar al Laboratorio Metalúrgico a construir el primer reactor nuclear bajo las gradas del Stagg Field en la Universidad de Chicago. El reactor requería una enorme cantidad de bloques de grafito altamente purificado y uranio en forma de óxido metálico y en polvo. En ese momento, había una fuente limitada de uranio metálico puro ; Frank Spedding de la Universidad Estatal de Iowa fue capaz de producir sólo dos toneladas cortas . Tres toneladas cortas fueron suministradas por Westinghouse Lamp Plant , producidas a toda prisa con un proceso improvisado. Goodyear Tire construyó un gran globo cuadrado para encerrar el reactor. [104] [105]

El 2 de diciembre de 1942, un equipo dirigido por Enrico Fermi inició la primera reacción nuclear en cadena artificial [d] autosostenida en un reactor experimental conocido como Chicago Pile-1 . [107] El punto en el que una reacción se vuelve autosostenida se conoció como "entrada crítica". Compton informó del éxito a Conant en Washington, DC, mediante una llamada telefónica codificada, diciendo: "El navegante italiano [Fermi] acaba de aterrizar en el nuevo mundo". [108] [e]

En enero de 1943, el sucesor de Grafton, el mayor Arthur V. Peterson , ordenó el desmantelamiento y reensamblaje del Chicago Pile-1 en el sitio de Argonne Forest, ya que consideraba que la operación de un reactor era demasiado peligrosa para un área densamente poblada. [109] El nuevo sitio, todavía operado por el Laboratorio Metalúrgico, se conoció como " Sitio A ". Chicago Pile-3 , el primer reactor de agua pesada, también entró en estado crítico en este sitio, el 15 de mayo de 1944. [110] [111] Después de la guerra, las operaciones en el Sitio A se trasladaron aproximadamente 6 millas (9,7 km) al condado de DuPage , la ubicación actual del Laboratorio Nacional de Argonne . [103]

Hanford

En diciembre de 1942, ya existía la preocupación de que incluso Oak Ridge se encontraba demasiado cerca de un importante centro de población (Knoxville) en el improbable caso de que se produjera un accidente nuclear importante. En noviembre de 1942, Groves contrató a DuPont para que fuera el contratista principal de la construcción del complejo de producción de plutonio. El presidente de la empresa, Walter S. Carpenter Jr. , no quería ningún tipo de beneficio; por razones legales, se acordó una tarifa nominal de un dólar. [112]

Una gran multitud de trabajadores de aspecto hosco ante un mostrador donde dos mujeres escriben. Algunos de los trabajadores llevan fotografías de identificación en sus sombreros.
Los trabajadores de Hanford cobran sus cheques de pago en la oficina de Western Union.

DuPont recomendó que el sitio se ubicara lejos de la instalación de producción de uranio existente en Oak Ridge. [113] En diciembre de 1942, Groves envió al coronel Franklin Matthias y a los ingenieros de DuPont para explorar sitios potenciales. Matthias informó que el sitio de Hanford cerca de Richland, Washington , era "ideal en prácticamente todos los aspectos". Estaba aislado y cerca del río Columbia , que podría suministrar suficiente agua para enfriar los reactores. Groves visitó el sitio en enero y estableció Hanford Engineer Works (HEW), con nombre en código "Site W". [114]

El subsecretario Patterson dio su aprobación el 9 de febrero, destinando 5 millones de dólares a la adquisición de 170.000 ha (430.000 acres). El gobierno federal reubicó a unos 1.500 residentes de los asentamientos cercanos, así como a los wanapums y otras tribus que utilizaban la zona. Surgió una disputa con los agricultores por la compensación por los cultivos, que ya se habían plantado. Cuando los plazos lo permitían, el ejército permitía que se cosecharan los cultivos, pero esto no siempre era posible. [114] El proceso de adquisición de tierras se prolongó y no se completó antes del final del Proyecto Manhattan en diciembre de 1946. [115]

La disputa no retrasó el trabajo. Aunque el progreso en el diseño del reactor en el Laboratorio Metalúrgico y DuPont no estaba lo suficientemente avanzado como para predecir con precisión el alcance del proyecto, en abril de 1943 se comenzó a construir unas instalaciones para unos 25.000 trabajadores, la mitad de los cuales se esperaba que vivieran en el lugar. En julio de 1944, se habían erigido unos 1.200 edificios y casi 51.000 personas vivían en el campamento de construcción. Como ingeniero de área, Matthias ejercía el control general del sitio. [116] En su apogeo, el campamento de construcción era la tercera ciudad más poblada del estado de Washington. [117] Hanford operaba una flota de más de 900 autobuses, más que la ciudad de Chicago. [118] Al igual que Los Álamos y Oak Ridge, Richland era una comunidad cerrada con acceso restringido, pero parecía más una típica ciudad en auge estadounidense en tiempos de guerra: el perfil militar era más bajo y los elementos de seguridad física como vallas altas y perros guardianes eran menos evidentes. [119]

Sitios canadienses

Canadá proporcionó investigación, extracción y producción de uranio y plutonio, y científicos canadienses trabajaron en Los Álamos. [120] [121]

Columbia Británica

Cominco había producido hidrógeno electrolítico en Trail, Columbia Británica , desde 1930. Urey sugirió en 1941 que podría producir agua pesada. A la planta existente de 10 millones de dólares que constaba de 3215 celdas que consumían 75 MW de energía hidroeléctrica, se agregaron celdas de electrólisis secundarias para aumentar la concentración de deuterio en el agua del 2,3% al 99,8%. Para este proceso, Hugh Taylor de Princeton desarrolló un catalizador de platino sobre carbono para las primeras tres etapas, mientras que Urey desarrolló uno de níquel- cromo para la torre de la cuarta etapa. El costo final fue de 2,8 millones de dólares. El gobierno canadiense no se enteró oficialmente del proyecto hasta agosto de 1942. La producción de agua pesada de Trail comenzó en enero de 1944 y continuó hasta 1956. El agua pesada de Trail se utilizó para Chicago Pile 3 , el primer reactor que usaba agua pesada y uranio natural, que entró en estado crítico el 15 de mayo de 1944. [122]

Ontario

El sitio de Chalk River, Ontario , fue establecido para realojar el esfuerzo aliado en el Laboratorio de Montreal fuera de un área urbana. Se construyó una nueva comunidad en Deep River, Ontario , para proporcionar residencias e instalaciones para los miembros del equipo. El sitio fue elegido por su proximidad al área de fabricación industrial de Ontario y Quebec, y la proximidad a una estación de ferrocarril adyacente a una gran base militar, Camp Petawawa . Ubicado en el río Ottawa, tenía acceso a abundante agua. El primer director del nuevo laboratorio fue Hans von Halban . Fue reemplazado por John Cockcroft en mayo de 1944, quien fue sucedido por Bennett Lewis en septiembre de 1946. Un reactor piloto conocido como ZEEP (pila experimental de energía cero) se convirtió en el primer reactor canadiense, y el primero en completarse fuera de los Estados Unidos, cuando entró en estado crítico en septiembre de 1945; Los investigadores siguieron utilizando el ZEEP hasta 1970. [123] Un reactor NRX más grande, de 10 MW , que fue diseñado durante la guerra, se completó y entró en estado crítico en julio de 1947. [122]

Territorios del Noroeste

La mina Eldorado en Port Radium era una fuente de mineral de uranio. [124]

Sitios de agua pesada

Aunque los diseños preferidos de DuPont para los reactores nucleares eran refrigerados con helio y utilizaban grafito como moderador, DuPont seguía expresando su interés en utilizar agua pesada como respaldo. El Proyecto P-9 era el nombre en clave del gobierno para el programa de producción de agua pesada. Se estimó que se necesitarían 3 toneladas cortas (2,7 t) de agua pesada al mes. La planta de Trail, entonces en construcción, podría producir 0,5 toneladas cortas (0,45 t) al mes. Por lo tanto, Groves autorizó a DuPont a establecer instalaciones de agua pesada en Morgantown Ordnance Works, cerca de Morgantown, Virginia Occidental ; en Wabash River Ordnance Works , cerca de Dana y Newport, Indiana ; y en Alabama Ordnance Works , cerca de Childersburg y Sylacauga, Alabama . Aunque se conocían como Ordnance Works y se financiaban con contratos del Departamento de Artillería , fueron construidas y operadas por el Cuerpo de Ingenieros del Ejército. Las plantas estadounidenses utilizaban un proceso diferente al de Trail; El agua pesada se extrajo por destilación, aprovechando el punto de ebullición ligeramente más alto del agua pesada. [125] [126]

Uranio

Mineral

Una muestra de un mineral de uranio de alta calidad ( tobernita ) de la mina Shinkolobwe en el Congo Belga .

La materia prima clave para el proyecto era el uranio, que se utilizaba como combustible para los reactores, como materia prima que se transformaba en plutonio y, en su forma enriquecida, en la propia bomba atómica. En 1940 se conocían cuatro grandes depósitos de uranio: en Colorado, en el norte de Canadá, en Joachimsthal en Checoslovaquia y en el Congo Belga . [127] Todos ellos, excepto Joachimstal, estaban en manos de los aliados. Un estudio de 1942 determinó que había cantidades suficientes de uranio disponibles para satisfacer los requisitos del proyecto. [128] [f] Nichols hizo arreglos con el Departamento de Estado para que se impusieran controles de exportación al óxido de uranio y negoció la compra de 1.200 toneladas cortas (1.100 t) de mineral de uranio del Congo Belga que se almacenaban en un almacén en Staten Island y las existencias restantes de mineral extraído almacenadas en el Congo. Negoció con Eldorado Gold Mines la compra de mineral de su refinería en Port Hope, Ontario. Posteriormente, el gobierno canadiense compró las acciones de la empresa hasta que esta adquirió una participación mayoritaria. [130]

Una "galleta" de metal de uranio creada a partir de la reacción de reducción del proceso Ames .

De estos minerales, los del Congo Belga eran los que contenían con diferencia la mayor cantidad de uranio por masa de roca. [131] [g] Más allá de sus necesidades en tiempos de guerra, los líderes estadounidenses y británicos concluyeron que a sus países les interesaba controlar la mayor cantidad posible de depósitos de uranio del mundo. La mina Shinkolobwe se inundó y cerró, y Nichols intentó sin éxito negociar su reapertura y la venta de toda la producción futura a los Estados Unidos con Edgar Sengier , el director de la empresa propietaria de la mina, la Union Minière du Haut-Katanga . [134] El asunto fue entonces abordado por el Comité de Política Combinada. Como el 30 por ciento de las acciones de la Union Minière estaba controlada por intereses británicos, los británicos tomaron la iniciativa en las negociaciones. En mayo de 1944, Sir John Anderson y el embajador John Winant llegaron a un acuerdo con Sengier y el gobierno belga para reabrir la mina y comprar 1.720 toneladas cortas (1.560 t) de mineral a 1,45 dólares la libra. [135] Para evitar la dependencia de los británicos y canadienses en cuanto al mineral, Groves también organizó la compra de las reservas de US Vanadium Corporation en Uravan, Colorado . [136]

El mineral en bruto se disolvió en ácido nítrico para producir nitrato de uranilo , que se procesó para obtener trióxido de uranio , que se redujo a dióxido de uranio de alta pureza . [137] En julio de 1942, Mallinckrodt producía una tonelada de óxido de alta pureza al día, pero convertirlo en uranio metálico inicialmente resultó más difícil. [138] La producción era demasiado lenta y la calidad era inaceptablemente baja. Se estableció una rama del Laboratorio Metalúrgico en el Iowa State College en Ames, Iowa , bajo la dirección de Frank Spedding para investigar alternativas. Esto se conoció como el Proyecto Ames , y su proceso Ames estuvo disponible en 1943. [139]

Separación de isótopos

El uranio natural se compone de un 99,3% de uranio-238 y un 0,7% de uranio-235, pero como sólo este último es fisible, debe separarse físicamente del isótopo más abundante. Se consideraron varios métodos para el enriquecimiento de uranio , la mayoría de los cuales se llevaron a cabo en Oak Ridge. [140] La tecnología más obvia, la centrifugadora, fracasó, pero las tecnologías de separación electromagnética, difusión gaseosa y difusión térmica tuvieron éxito y contribuyeron al proyecto. En febrero de 1943, Groves propuso la idea de utilizar la producción de algunas plantas como insumo para otras. [141]

Mapa de contornos del área de Oak Ridge. Hay un río al sur, mientras que el municipio está al norte.
Oak Ridge albergaba varias tecnologías de separación de uranio. La planta de separación electromagnética Y-12 se encuentra en la parte superior derecha. Las plantas de difusión gaseosa K-25 y K-27 se encuentran en la parte inferior izquierda, cerca de la planta de difusión térmica S-50. La X-10 se utilizaba para la producción de plutonio.

Centrífugas

En abril de 1942, el proceso de centrifugación se consideraba el único método de separación prometedor. [142] Jesse Beams había desarrollado un proceso de este tipo en la década de 1930, pero había encontrado dificultades técnicas. En 1941 comenzó a trabajar con hexafluoruro de uranio , el único compuesto gaseoso conocido del uranio, y pudo separar el uranio-235. En Columbia, Karl P. Cohen produjo un conjunto de teoría matemática que hizo posible diseñar una unidad de separación centrífuga, que Westinghouse se comprometió a construir. [143]

Ampliar esta producción a una planta de producción presentó un desafío técnico formidable. Urey y Cohen calcularon que producir un kilogramo (2,2 libras) de uranio-235 por día requeriría hasta 50.000 centrifugadoras con rotores de 1 metro (3 pies 3 pulgadas), o 10.000 centrifugadoras con rotores de 4 metros (13 pies), suponiendo que se pudieran construir rotores de 4 metros. La perspectiva de mantener tantos rotores funcionando continuamente a alta velocidad parecía desalentadora, [144] y cuando Beams puso en funcionamiento su aparato experimental, obtuvo solo el 60% del rendimiento previsto, lo que indicaba que se necesitaban más centrifugadoras. Beams, Urey y Cohen comenzaron entonces a trabajar en una serie de mejoras que prometían aumentar la eficiencia. Sin embargo, los frecuentes fallos de los motores, ejes y cojinetes a altas velocidades retrasaron el trabajo en la planta piloto. [145]

En noviembre de 1942, el Comité de Política Militar abandonó el proceso de centrifugación. [146] En su lugar, después de la guerra, en la Unión Soviética se desarrollaron con éxito centrifugadoras de gas del tipo Zippe , que acabaron convirtiéndose en el método preferido de separación de isótopos de uranio, al ser mucho más económico. [147]

Separación electromagnética

La separación electromagnética de isótopos fue desarrollada en el Laboratorio de Radiación de la Universidad de California. Este método empleaba dispositivos conocidos como calutrones . El nombre se deriva de las palabras California , universidad y ciclotrón . [148] En el proceso electromagnético, un campo magnético desvía partículas cargadas según la masa. [149] El proceso no era ni científicamente elegante ni industrialmente eficiente. [150] En comparación con una planta de difusión gaseosa o un reactor nuclear, una planta de separación electromagnética consumiría materiales más escasos, requeriría más mano de obra para operar y costaría más construirla. No obstante, el proceso fue aprobado porque se basaba en tecnología probada y, por lo tanto, representaba menos riesgo. Además, podría construirse en etapas y alcanzar rápidamente la capacidad industrial. [148]

Una gran estructura de forma ovalada.
Hipódromo Alpha I en Y-12

Marshall y Nichols descubrieron que el proceso de separación electromagnética de isótopos requeriría 5.000 toneladas cortas (4.500 toneladas) de cobre, que escaseaba desesperadamente. Sin embargo, se podía sustituir por plata, en una proporción de cobre a plata de 11:10. El 3 de agosto de 1942, Nichols se reunió con el subsecretario del Tesoro, Daniel W. Bell , y le pidió la transferencia de 6.000 toneladas de lingotes de plata del Depósito de lingotes de West Point . [151] Finalmente, se utilizaron 14.700 toneladas cortas (13.300 toneladas; 430.000.000 onzas troy). [152] Las barras de plata de 1.000 onzas troy (31 kg) se fundieron en tochos cilíndricos, se extruyeron en tiras y se enrollaron en bobinas magnéticas. [152] [153]

Un largo pasillo con muchas consolas con diales e interruptores, atendido por mujeres sentadas en taburetes altos.
Las chicas Calutron eran mujeres jóvenes que supervisaban los paneles de control de Calutron en Y-12. Gladys Owens, sentada en primer plano, no sabía en qué había estado involucrada. [154]

La responsabilidad del diseño y construcción de la planta de separación electromagnética, que pasó a llamarse Y-12 , fue asignada a Stone & Webster en junio de 1942. El diseño requería cinco unidades de procesamiento de primera etapa, conocidas como pistas de carreras Alpha, y dos unidades para el procesamiento final, conocidas como pistas de carreras Beta. En septiembre de 1943, Groves autorizó la construcción de cuatro pistas de carreras más, conocidas como Alpha II. La construcción comenzó en febrero de 1943. [155] La segunda Alpha I estuvo operativa a fines de enero de 1944, la primera Beta y la primera y tercera Alpha I entraron en funcionamiento en marzo, y la cuarta Alpha I estuvo operativa en abril. Las cuatro pistas de carreras Alpha II se completaron entre julio y octubre de 1944. [156] Tennessee Eastman fue contratada para administrar Y-12. [157] Los calutrones fueron entregados a operadores capacitados de Tennessee Eastman conocidos como Calutron Girls . [158]

Los calutrones enriquecieron inicialmente el contenido de uranio-235 entre el 13% y el 15%, y enviaron los primeros cientos de gramos de éste a Los Álamos en marzo de 1944. Sólo 1 parte de 5.825 del uranio de alimentación emergió como producto. Gran parte del resto se esparció sobre el equipo en el proceso. Los arduos esfuerzos de recuperación ayudaron a aumentar la producción al 10% del uranio de alimentación en enero de 1945. En febrero, las pistas de carreras Alpha comenzaron a recibir alimentación ligeramente enriquecida (1,4%) de la nueva planta de difusión térmica S-50, y el mes siguiente recibieron alimentación mejorada (5%) de la planta de difusión gaseosa K-25. En agosto, K-25 estaba produciendo uranio suficientemente enriquecido para alimentar directamente a las pistas Beta. [159]

Difusión gaseosa

El método más prometedor, pero también el más desafiante, de separación de isótopos fue la difusión gaseosa. La ley de Graham establece que la velocidad de efusión de un gas es inversamente proporcional a la raíz cuadrada de su masa molecular , por lo que en una caja que contiene una membrana semipermeable y una mezcla de dos gases, las moléculas más ligeras saldrán del recipiente más rápidamente que las moléculas más pesadas. La idea era que dichas cajas pudieran formarse en una cascada de bombas y membranas, con cada etapa sucesiva conteniendo una mezcla ligeramente más enriquecida. La investigación sobre el proceso fue realizada en la Universidad de Columbia por un grupo que incluía a Harold Urey, Karl P. Cohen y John R. Dunning . [160]

Vista aérea oblicua de un enorme edificio en forma de U
Planta Oak Ridge K-25

En noviembre de 1942, el Comité de Política Militar aprobó la construcción de una planta de difusión gaseosa de 600 etapas. [161] El 14 de diciembre, MW Kellogg aceptó una oferta para construir la planta, que recibió el nombre en código K-25. Se creó una entidad corporativa separada llamada Kellex para el proyecto. [162] El proceso enfrentó formidables dificultades técnicas. Se tuvo que utilizar el gas altamente corrosivo hexafluoruro de uranio porque no se pudo encontrar un sustituto, y los motores y las bombas tenían que ser herméticos al vacío y encerrados en gas inerte. El mayor problema fue el diseño de la barrera, que tenía que ser fuerte, porosa y resistente a la corrosión. Edward Adler y Edward Norris crearon una barrera de malla a partir de níquel galvanizado. Se construyó una planta piloto de seis etapas en Columbia para probar el proceso, pero el prototipo resultó ser demasiado frágil. Kellex, Bell Telephone Laboratories y Bakelite Corporation desarrollaron una barrera rival a partir de níquel en polvo. En enero de 1944, Groves ordenó la producción de la barrera Kellex. [163] [164]

El diseño de Kellex para la K-25 requería una estructura en forma de U de cuatro pisos y 0,80 km de largo que contenía 54 edificios contiguos. Estos se dividían en nueve secciones que contenían celdas de seis etapas. Un grupo de topógrafos comenzó la construcción marcando el sitio de 500 acres (2,0 km2 ) en mayo de 1943. El trabajo en el edificio principal comenzó en octubre de 1943, y la planta piloto de seis etapas estuvo lista para operar el 17 de abril de 1944. En 1945, Groves canceló las etapas superiores, ordenando a Kellex que en su lugar diseñara y construyera una unidad de alimentación lateral de 540 etapas, que se conocería como K-27. Kellex transfirió la última unidad al contratista operativo, Union Carbide and Carbon, el 11 de septiembre de 1945. El costo total, incluida la planta K-27 completada después de la guerra, ascendió a $ 480 millones. [165]

La planta de producción comenzó a funcionar en febrero de 1945 y, a medida que se iban poniendo en funcionamiento una cascada tras otra, la calidad del producto fue aumentando. En abril de 1945, el K-25 había alcanzado un enriquecimiento del 1,1% y la producción de la planta de difusión térmica S-50 empezó a utilizarse como combustible. Parte del producto producido el mes siguiente alcanzó un enriquecimiento de casi el 7%. En agosto, la última de las 2.892 etapas comenzó a funcionar. El K-25 y el K-27 alcanzaron su máximo potencial en el período inicial de posguerra, cuando eclipsaron a las otras plantas de producción y se convirtieron en los prototipos de una nueva generación de plantas. [166]

Difusión térmica

El proceso de difusión térmica se basó en la teoría de Sydney Chapman y David Enskog , que explicaba que cuando un gas mixto pasa a través de un gradiente de temperatura, el más pesado tiende a concentrarse en el extremo frío y el más ligero en el extremo cálido. [167] Fue desarrollado por científicos de la Marina de los EE. UU., pero no fue una de las tecnologías de enriquecimiento seleccionadas inicialmente para su uso en el Proyecto Manhattan. Esto se debió principalmente a las dudas sobre su viabilidad técnica, pero la rivalidad entre los servicios del Ejército y la Marina también jugó un papel. [168] El Laboratorio de Investigación Naval continuó la investigación bajo la dirección de Philip Abelson, pero hubo poco contacto con el Proyecto Manhattan hasta abril de 1944, cuando el capitán William S. Parsons , el oficial naval a cargo del desarrollo de artillería en Los Álamos, le llevó a Oppenheimer noticias de un progreso alentador en la difusión térmica. Oppenheimer informó a Groves, quien aprobó la construcción de una planta térmica el 24 de junio de 1944. [169]

Una fábrica con tres chimeneas humeantes en un recodo del río, vista desde arriba
La planta S-50 es el edificio oscuro arriba a la izquierda, detrás de la central eléctrica de Oak Ridge (con chimeneas).

Groves contrató a la HK Ferguson Company de Cleveland , Ohio, para construir la planta de difusión térmica, que fue designada S-50. [170] Los planes exigían la instalación de 2142 columnas de difusión de 48 pies de alto (15 m) dispuestas en 21 bastidores. Dentro de cada columna había tres tubos concéntricos. El vapor, obtenido de la cercana central eléctrica K-25 [h] a una presión de 100 libras por pulgada cuadrada (690 kPa) y una temperatura de 545 °F (285 °C), fluía hacia abajo a través de la tubería de níquel de 1,25 pulgadas (32 mm) más interna, mientras que el agua a 155 °F (68 °C) fluía hacia arriba a través de la tubería de hierro más externa. El hexafluoruro de uranio fluía en la tubería de cobre del medio, y la separación isotópica del uranio se producía entre las tuberías de níquel y cobre. [171] Los trabajos comenzaron el 9 de julio de 1944 y el S-50 comenzó a funcionar parcialmente en septiembre. Las fugas limitaron la producción y obligaron a cerrarla durante los meses siguientes, pero en junio de 1945 la planta del S-50 produjo 12.730 libras (5.770 kg) de producto ligeramente enriquecido. [172]

En marzo de 1945, los 21 bastidores de producción estaban en funcionamiento. Inicialmente, la producción de S-50 se alimentó a Y-12, pero a partir de marzo de 1945, los tres procesos de enriquecimiento se llevaron a cabo en serie. S-50 se convirtió en la primera etapa, enriqueciendo el uranio del 0,71% al 0,89% de uranio-235. Luego, esto se alimentó al proceso de difusión gaseosa en la planta K-25, que produjo un producto enriquecido a aproximadamente el 23%. A su vez, esto se alimentó a Y-12, [173] que lo elevó a aproximadamente el 89%, suficiente para su uso en armas nucleares. Aproximadamente 50 kilogramos (110 libras) de uranio enriquecido al 89% se entregaron a Los Álamos en julio de 1945. Los 50 kg completos, junto con algo de uranio enriquecido al 50%, con un promedio de aproximadamente el 85% enriquecido, se utilizaron en la primera bomba Little Boy . [174]

Plutonio

La segunda línea de desarrollo seguida por el Proyecto Manhattan utilizó plutonio. Aunque existen pequeñas cantidades de plutonio en la naturaleza, la mejor manera de obtener grandes cantidades es mediante un reactor. El uranio natural es bombardeado por neutrones y transmutado en uranio-239 , que se desintegra rápidamente, primero en neptunio-239 y luego en plutonio-239 . [175] Como solo se transformará una pequeña cantidad, el plutonio debe separarse químicamente del uranio restante, de cualquier impureza inicial y de los productos de fisión . [175]

Reactor de grafito X-10

Dos obreros, sobre una plataforma móvil similar a la que utilizan los limpiadores de ventanas, introducen una varilla en uno de los muchos agujeros pequeños que hay en la pared delante de ellos.
Los trabajadores cargan balas de uranio en el reactor de grafito X-10.

En marzo de 1943, DuPont comenzó la construcción de una planta de plutonio en un sitio de 112 acres (0,5 km2 ) en Oak Ridge. Concebida como una planta piloto para las instalaciones de producción más grandes en Hanford, incluía el reactor de grafito X-10 refrigerado por aire , una planta de separación química e instalaciones de apoyo. Debido a la decisión posterior de construir reactores refrigerados por agua en Hanford, solo la planta de separación química funcionó como un verdadero piloto. [176] El reactor de grafito X-10 consistía en un enorme bloque de grafito, de 24 pies (7,3 m) por lado, que pesaba alrededor de 1.500 toneladas cortas (1.400 t), rodeado por 7 pies (2,1 m) de hormigón de alta densidad como escudo contra la radiación. [176]

La mayor dificultad se encontró con las barras de uranio producidas por Mallinckrodt y Metal Hydrides. Éstas tuvieron que ser recubiertas de aluminio para evitar la corrosión y el escape de productos de fisión al sistema de refrigeración. La Grasselli Chemical Company intentó desarrollar un proceso de inmersión en caliente sin éxito. Alcoa intentó el enlatado, desarrollando un nuevo proceso para la soldadura sin fundente; el 97% de las latas pasaron una prueba de vacío estándar, pero las pruebas de alta temperatura indicaron una tasa de falla de más del 50%. No obstante, la producción comenzó en junio de 1943. El Laboratorio Metalúrgico finalmente desarrolló una técnica de soldadura mejorada con la ayuda de General Electric , que se incorporó al proceso de producción en octubre de 1943. [177]

El reactor de grafito X-10 entró en estado crítico el 4 de noviembre de 1943 con unas 30 toneladas cortas (27 t) de uranio. Una semana después, la carga se incrementó a 36 toneladas cortas (33 t), lo que elevó su generación de energía a 500 kW, y a finales de mes se crearon los primeros 500 mg de plutonio. [178] Las modificaciones graduales aumentaron la potencia a 4.000 kW en julio de 1944. El X-10 funcionó como planta de producción hasta enero de 1945, cuando se entregó a la investigación. [179]

Reactores de Hanford

Aunque se eligió un diseño refrigerado por aire para el reactor de Oak Ridge con el fin de facilitar una construcción rápida, esto no era práctico para los reactores de producción, mucho más grandes. Los diseños iniciales del Laboratorio Metalúrgico y DuPont utilizaban helio para la refrigeración, antes de determinar que un reactor refrigerado por agua era más sencillo, más barato y más rápido de construir. [180] El diseño no estuvo disponible hasta el 4 de octubre de 1943; mientras tanto, Matthias se concentró en mejorar el emplazamiento de Hanford mediante la construcción de alojamientos, la mejora de las carreteras, la construcción de un desvío ferroviario y la modernización de las líneas de electricidad, agua y teléfono. [181]

Vista aérea del reactor B de Hanford en junio de 1944. En el centro se encuentra el edificio del reactor. Pequeños camiones salpican el paisaje y dan una sensación de escala. Dos grandes torres de agua se alzan sobre la planta.
Vista aérea del sitio del reactor B de Hanford , junio de 1944

Al igual que en Oak Ridge, la mayor dificultad se encontró durante el enlatado de las pastillas de uranio, que comenzó en Hanford en marzo de 1944. Se decaparon para eliminar la suciedad y las impurezas, se sumergieron en bronce fundido, estaño y aleación de aluminio y silicio , se enlataron utilizando prensas hidráulicas y luego se taparon con soldadura por arco bajo una atmósfera de argón. Finalmente, se probaron para detectar agujeros o soldaduras defectuosas. Desafortunadamente, la mayoría de las pastillas enlatadas inicialmente no pasaron las pruebas, lo que resultó en una producción de solo un puñado por día. Pero se logró un progreso constante y en junio de 1944 la producción aumentó hasta el punto en que parecía que había suficientes pastillas enlatadas disponibles para poner en marcha el reactor B según lo programado en agosto de 1944. [182]

El 10 de octubre de 1943 se iniciaron las obras del reactor B, el primero de los seis reactores de 250 MW previstos. [183] ​​Los complejos de reactores recibieron las letras de la A a la F, y los emplazamientos B, D y F se desarrollaron primero, ya que así se maximizaba la distancia entre los reactores. Fueron los únicos construidos durante el Proyecto Manhattan. [184] Se utilizaron unas 390 toneladas cortas (350 t) de acero, 17 400 yardas cúbicas (13 300 m 3 ) de hormigón, 50 000 bloques de hormigón y 71 000 ladrillos de hormigón para construir el edificio de 37 m (120 pies) de altura.

La construcción del reactor comenzó en febrero de 1944. [185] Bajo la supervisión de Compton, Matthias, Crawford Greenewalt de DuPont , Leona Woods y Fermi, que insertó el primer tubo, el reactor se puso en marcha a partir del 13 de septiembre de 1944. Durante los días siguientes, se cargaron 838 tubos y el reactor entró en estado crítico. Poco después de la medianoche del 27 de septiembre, los operadores comenzaron a retirar las barras de control para iniciar la producción. Al principio todo parecía ir bien, pero alrededor de las 03:00 el nivel de potencia comenzó a caer y a las 06:30 el reactor se había apagado por completo. Se investigó el agua de refrigeración para ver si había una fuga o contaminación. Al día siguiente, el reactor se puso en marcha de nuevo, solo para apagarse una vez más. [186] [187]

Fermi se puso en contacto con Chien-Shiung Wu , quien identificó la causa del problema como un envenenamiento por neutrones del xenón-135 , que tiene una vida media de 9,2 horas. [188] Fermi, Woods, Donald J. Hughes y John Archibald Wheeler calcularon entonces la sección eficaz nuclear del xenón-135, que resultó ser 30.000 veces la del uranio. [189] El ingeniero de DuPont, George Graves, se había desviado del diseño original del Laboratorio Metalúrgico en el que el reactor tenía 1.500 tubos dispuestos en círculo, y había añadido 504 tubos adicionales para rellenar las esquinas. Los científicos habían considerado originalmente esta sobreingeniería una pérdida de tiempo y dinero, pero Fermi se dio cuenta de que al cargar los 2.004 tubos, el reactor podría alcanzar el nivel de potencia requerido y producir plutonio de forma eficiente. [190] El reactor D se puso en marcha el 17 de diciembre de 1944 y el reactor F el 25 de febrero de 1945. [191]

Proceso de separación

Un mapa de contorno que muestra la bifurcación de los ríos Columbia y Yakima y el límite del terreno, con siete pequeños cuadrados rojos marcados en él.
Mapa del sitio de Hanford. Los ferrocarriles flanquean las plantas al norte y al sur. Los reactores son los tres cuadrados rojos más al norte, a lo largo del río Columbia. Las plantas de separación son los dos cuadrados rojos inferiores del grupo al sur de los reactores. El cuadrado rojo inferior es el área 300.

Mientras tanto, los químicos consideraron cómo se podría separar el plutonio del uranio cuando sus propiedades químicas no se conocían. Trabajando con las cantidades minúsculas de plutonio disponibles en el Laboratorio Metalúrgico en 1942, un equipo dirigido por Charles M. Cooper desarrolló un proceso de fluoruro de lantano que fue elegido para la planta de separación piloto. Un segundo proceso de separación, el proceso de fosfato de bismuto , fue desarrollado posteriormente por Seaborg y Stanly G. Thomson. [192] Greenewalt favoreció el proceso de fosfato de bismuto debido a la naturaleza corrosiva del fluoruro de lantano, y fue seleccionado para las plantas de separación de Hanford. [193] Una vez que X-10 comenzó a producir plutonio, la planta de separación piloto se puso a prueba. El primer lote se procesó con un 40% de eficiencia, pero en los siguientes meses esto se elevó al 90%. [179]

En Hanford, la máxima prioridad se dio inicialmente a las instalaciones del área 300: edificios para probar materiales, preparar uranio y ensamblar y calibrar instrumentación. Uno de los edificios albergaba el equipo de enlatado de los cilindros de uranio, mientras que otro contenía un pequeño reactor de prueba. A pesar de su prioridad, el trabajo en el área 300 se retrasó debido a la naturaleza única y compleja de las instalaciones y a la escasez de mano de obra y materiales en tiempos de guerra. [194]

Los primeros planes preveían la construcción de dos plantas de separación en cada una de las áreas conocidas como 200-Oeste y 200-Este. Posteriormente, esto se redujo a dos, las plantas T y U, en 200-Oeste y una, la planta B, en 200-Este. [195] Cada planta de separación constaba de cuatro edificios: un edificio de celdas de proceso o "cañón" (conocido como 221), un edificio de concentración (224), un edificio de purificación (231) y un almacén de revistas (213). Los cañones tenían cada uno 800 pies (240 m) de largo y 65 pies (20 m) de ancho. Cada uno constaba de cuarenta celdas de 17,7 x 13 x 20 pies (5,4 x 4,0 x 6,1 m). [196]

Las obras de 221-T y 221-U comenzaron en enero de 1944, la primera se terminó en septiembre y la segunda en diciembre. El edificio 221-B se terminó en marzo de 1945. Debido a los altos niveles de radiactividad, el trabajo en las plantas de separación tuvo que realizarse por control remoto utilizando un circuito cerrado de televisión, algo inaudito en 1943. El mantenimiento se llevó a cabo con la ayuda de una grúa aérea y herramientas especialmente diseñadas. Los edificios 224 eran más pequeños porque tenían menos material para procesar y era menos radiactivo. Los edificios 224-T y 224-U se terminaron el 8 de octubre de 1944, y el 224-B le siguió el 10 de febrero de 1945. Los métodos de purificación que finalmente se utilizaron en 231-W aún eran desconocidos cuando comenzó la construcción el 8 de abril de 1944, pero la planta estaba terminada y los métodos fueron seleccionados a fines de año. [197] El 5 de febrero de 1945, Matthias entregó personalmente el primer envío de 80 g de nitrato de plutonio con una pureza del 95 % a un mensajero de Los Álamos en Los Ángeles. [191]

Diseño de armas

Carcasas largas con forma de tubo. Al fondo, varias carcasas ovoides y una grúa.
Una fila de carcasas de Thin Man. En el fondo se ven carcasas de Fat Man.

En 1943, los esfuerzos de desarrollo se dirigieron a un arma de fisión de tipo cañón con plutonio llamada Thin Man . La investigación inicial sobre las propiedades del plutonio se realizó utilizando plutonio-239 generado por ciclotrón, que era extremadamente puro pero solo podía crearse en cantidades muy pequeñas. Los Álamos recibió la primera muestra de plutonio del reactor Clinton X-10 en abril de 1944 y en cuestión de días Emilio Segrè descubrió un problema: el plutonio generado por reactor tenía una concentración más alta de plutonio-240, lo que resultaba en hasta cinco veces la tasa de fisión espontánea del plutonio de ciclotrón. [198]

Esto lo hizo inadecuado para su uso en un arma de tipo cañón, ya que el plutonio-240 iniciaría la reacción en cadena demasiado pronto, causando una predetonación que dispersaría la masa crítica después de que una cantidad mínima de plutonio se hubiera fisionado (un chisporroteo ). Se sugirió un cañón de mayor velocidad, pero se consideró poco práctico. También se consideró la posibilidad de separar los isótopos, pero se rechazó, ya que el plutonio-240 es aún más difícil de separar del plutonio-239 que el uranio-235 del uranio-238, e intentarlo "pospondría el arma indefinidamente". [199]

El trabajo sobre un método alternativo de diseño de bombas, conocido como implosión, había comenzado antes bajo la dirección del físico Seth Neddermeyer . La implosión usaba explosivos para aplastar una esfera subcrítica de material fisionable en una forma más pequeña y densa. La masa crítica se ensambla en mucho menos tiempo que con el método del cañón. Cuando los átomos fisionables están más juntos, la tasa de captura de neutrones aumenta, [200] por lo que también hace un uso más eficiente del material fisionable. [201] Las investigaciones de Neddermeyer de 1943 y principios de 1944 mostraron ser prometedoras, pero también dejaron en claro que un arma de implosión era más compleja que el diseño tipo cañón desde una perspectiva tanto teórica como de ingeniería. [202] En septiembre de 1943, John von Neumann , que tenía experiencia con cargas huecas , propuso usar una configuración esférica en lugar de la cilíndrica en la que estaba trabajando Neddermeyer. [203]

Diagrama que muestra un explosivo rápido, un explosivo lento, un manipulador de uranio, un núcleo de plutonio y un iniciador de neutrones.
Una bomba nuclear de tipo implosión

Un esfuerzo acelerado en el diseño de implosión, con nombre en código Fat Man , comenzó en agosto de 1944 cuando Oppenheimer implementó una reorganización radical del laboratorio de Los Álamos para centrarse en la implosión. [204] Se crearon dos nuevos grupos en Los Álamos para desarrollar el arma de implosión, la División X (para explosivos) encabezada por el experto en explosivos George Kistiakowsky y la División G (para gadget) bajo Robert Bacher. [205] [206] El nuevo diseño presentaba lentes explosivas que enfocaban la implosión en una forma esférica. [207] El diseño de lentes resultó ser lento, difícil y frustrante. [207] Se probaron varios explosivos antes de decidirse por la composición B y baratol . [208] El diseño final se parecía a un balón de fútbol, ​​​​con 20 lentes hexagonales y 12 pentagonales, cada una con un peso de aproximadamente 80 libras (36 kg). Para lograr la detonación correcta se necesitaban detonadores eléctricos rápidos, fiables y seguros , de los cuales había dos para cada lente para mayor confiabilidad. [209] Utilizaron detonadores de puente explosivo , un nuevo invento desarrollado en Los Álamos por un grupo dirigido por Luis Álvarez . [210]

Para estudiar el comportamiento de las ondas de choque convergentes , Robert Serber ideó el Experimento RaLa , que utilizó el radioisótopo de vida corta lantano-140 , una potente fuente de radiación gamma . La fuente de rayos gamma se colocó en el centro de una esfera de metal rodeada por las lentes explosivas, que a su vez estaban dentro de una cámara de ionización . Esto permitió la toma de una película de rayos X de la implosión. Las lentes fueron diseñadas principalmente utilizando esta serie de pruebas. [211] En su historia del proyecto Los Álamos, David Hawkins escribió: "RaLa se convirtió en el experimento individual más importante que afectó al diseño final de la bomba". [212]

Dentro de los explosivos había un empujador de aluminio, que proporcionaba una transición suave desde el explosivo de densidad relativamente baja a la siguiente capa, el tamper de uranio natural. Su trabajo principal era mantener la masa crítica unida el mayor tiempo posible, pero también reflejaría neutrones hacia el núcleo y parte de su uranio se fisionaría. Para evitar la predetonación por un neutrón externo, el tamper estaba recubierto con una fina capa de boro que absorbe neutrones. [209] Se desarrolló un iniciador de neutrones modulado de polonio-berilio , conocido como "erizo", [213] para iniciar la reacción en cadena precisamente en el momento adecuado. [214] Este trabajo sobre la química y la metalurgia del polonio radiactivo fue dirigido por Charles Allen Thomas de la Compañía Monsanto y se conoció como el Proyecto Dayton . [215] Las pruebas requerían hasta 500 curios por mes de polonio, que Monsanto pudo entregar. [216] Todo el conjunto estaba encerrado en una carcasa de duraluminio para protegerlo de las balas y el fuego antiaéreo. [209]

Una choza rodeada de pinos. Hay nieve en el suelo. Un hombre y una mujer con batas blancas tiran de una cuerda atada a un pequeño carrito sobre una plataforma de madera. Encima del carrito hay un gran objeto cilíndrico.
Manejo remoto de una fuente de kilocurio de radiolantano para un experimento RaLa en Los Álamos

La tarea final de los metalúrgicos era determinar cómo fundir plutonio en una esfera. Las dificultades se hicieron evidentes cuando los intentos de medir la densidad del plutonio dieron resultados inconsistentes. Al principio se sospechó de contaminación, pero pronto se determinó que había múltiples alótropos de plutonio . [217] La ​​frágil fase α que existe a temperatura ambiente cambia a la fase β plástica a temperaturas más altas. Luego, la atención se desplazó a la fase δ aún más maleable que normalmente existe en el rango de 300 °C a 450 °C. Se descubrió que era estable a temperatura ambiente cuando se aleaba con aluminio, pero el aluminio emite neutrones cuando se bombardea con partículas alfa , lo que agravaría el problema de preignición. Los metalúrgicos luego dieron con el uso de una aleación de plutonio y galio , que estabilizaba la fase δ y podía prensarse en caliente en la forma esférica deseada. Como se descubrió que el plutonio se corroía fácilmente, la esfera se cubrió con níquel. [218]

El trabajo resultó peligroso. Al final de la guerra, la mitad de los químicos y metalúrgicos tuvieron que ser retirados del trabajo con plutonio cuando se detectaron niveles inaceptablemente altos del elemento en su orina. [219] Un pequeño incendio en Los Álamos en enero de 1945 generó temor de que un incendio en el laboratorio de plutonio pudiera contaminar toda la ciudad, y Groves autorizó la construcción de una nueva instalación para la química y metalurgia del plutonio, que se conoció como el sitio DP. [220] Los hemisferios para el primer pozo (o núcleo) de plutonio se produjeron y entregaron el 2 de julio de 1945. Tres hemisferios más siguieron el 23 de julio y se entregaron tres días después. [221]

A diferencia del arma de plutonio Fat Man, el arma Little Boy, del tipo cañón de uranio, fue sencilla, aunque no trivial, de diseñar. La responsabilidad general de su diseño fue asignada a la División de Artillería (O) de Parsons, y el diseño, desarrollo y trabajo técnico en Los Álamos se consolidó bajo el grupo del teniente comandante Francis Birch . El diseño del tipo cañón ahora tenía que funcionar solo con uranio enriquecido, y esto permitió simplificar enormemente el diseño. Ya no se requirió un cañón de alta velocidad, y se sustituyó por un arma más simple. [222] [223]

También se continuó con la investigación sobre la Super, aunque se consideró secundaria al desarrollo de una bomba de fisión. El esfuerzo fue dirigido por Teller, quien fue su defensor más entusiasta. [224] El grupo F-1 (Super) calculó que quemar un metro cúbico (35 pies cúbicos) de deuterio líquido liberaría la energía de 10 megatones de TNT (42 PJ), suficiente para devastar 1.000 millas cuadradas (2.600 km 2 ). [225] En un informe final sobre la Super en junio de 1946, Teller se mantuvo optimista sobre la perspectiva de que se desarrollara con éxito, aunque esa opinión no era universal. [226]

Trinidad

Debido a la complejidad de un arma de tipo implosión, se decidió que, a pesar del desperdicio de material fisionable, era necesaria una prueba nuclear a gran escala. Oppenheimer la bautizó con el nombre en código "Trinity". [227] En marzo de 1944, la planificación de la prueba fue asignada a Kenneth Bainbridge , quien seleccionó el Campo de Bombardeo de Alamogordo como el sitio de prueba. [228] Se construyó un campamento base con barracones, almacenes, talleres, un polvorín de explosivos y un economato. [229] Se realizó una explosión previa a la prueba el 7 de mayo de 1945 para calibrar los instrumentos. Se erigió una plataforma de prueba de madera a 800 yardas (730 m) de la futura Zona Cero de Trinity y se apiló con aproximadamente 100 toneladas cortas (91 t) de explosivos de alta potencia [i] mezclados con productos de fisión nuclear . [232] [233]

Unos hombres se encuentran de pie alrededor de una gran estructura parecida a una plataforma petrolífera. Se está elevando un gran objeto redondo.
Los explosivos del "gadget" fueron elevados a lo alto de la torre para su montaje final.

A Groves no le hacía ninguna gracia la perspectiva de tener que explicar a un comité del Senado la pérdida de mil millones de dólares en plutonio, por lo que se construyó un recipiente de contención cilíndrico con el nombre en código "Jumbo" para recuperar el material activo en caso de fallo. Se fabricó a un gran coste a partir de 214 toneladas cortas (194 t) de hierro y acero. [234] Sin embargo, cuando llegó, la confianza en el método de implosión era lo suficientemente alta y la disponibilidad de plutonio era suficiente, por lo que Oppenheimer decidió no usarlo. En su lugar, se colocó encima de una torre de acero a 800 yardas (730 m) del arma como una medida aproximada de la potencia de la explosión. Jumbo sobrevivió, aunque su torre no, lo que añadió credibilidad a la creencia de que Jumbo habría contenido con éxito una explosión fallida . [235] [232]

La prueba Trinity del Proyecto Manhattan fue la primera detonación de un arma nuclear .

For the actual test, the weapon, nicknamed "the gadget", was hoisted to the top of a 100-foot (30 m) steel tower, as detonation at that height would give a better indication of how the weapon would behave when dropped from a bomber. Detonation in the air maximized the energy applied directly to the target and generated less nuclear fallout. The gadget was assembled under the supervision of Norris Bradbury at the nearby McDonald Ranch House on 13 July, and precariously winched up the tower the following day.[236]

At 05:30 on 16 July 1945 the gadget exploded with an energy equivalent of around 20 kilotons of TNT, leaving a crater of trinitite (radioactive glass) in the desert 250 feet (76 m) wide. The shock wave was felt over 100 miles (160 km) away, and the mushroom cloud reached 7.5 miles (12.1 km) in height. It was heard as far away as El Paso, Texas, so Groves issued a cover story about an ammunition magazine explosion at Alamogordo Field involving gas shells.[237][238]

Oppenheimer later claimed that, while witnessing the explosion, he thought of a verse from the Hindu holy book, the Bhagavad Gita (XI,12):

together with verse (XI,32), which he translated as "Now I am become Death, destroyer of worlds".[241][242][j]

The test was significantly more successful than had been anticipated; this was immediately cabled to Stimson, who was then at the Potsdam Conference, and Groves hastily prepared a lengthier report sent via courier. Truman was powerfully and positively affected by the news. Stimson noted in his diary that when he shared it with Churchill, Churchill remarked: "Now I know what happened to Truman yesterday. I couldn't understand it. When he got to the meeting after having read this report, he was a changed man. He told the Russians just where they got on and off and generally bossed the whole meeting."[244]

Personnel

Manhattan Project contractors' employment, August 1942-December 1946.

At its peak in June 1944, the Manhattan Project employed about 129,000 workers, of whom 84,500 were construction workers, 40,500 were plant operators and 1,800 were military personnel. As construction activity declined, the workforce fell to 100,000 a year later, but the number of military personnel increased to 5,600. Procuring the required numbers of workers, especially highly skilled workers, in competition with other vital wartime programs proved very difficult.[245] Due to high turnover, over 500,000 people worked on the project.[246] Most African Americans were employed in low-level jobs, but there were a few African-American scientists and technicians.[247] The unique labor and security requirements also resulted in the Manhattan Project having a higher percentage of women in technical roles than later government projects.[248]

In 1943, Groves obtained a special temporary priority for labor from the War Manpower Commission. In March 1944, both the War Production Board and the War Manpower Commission gave the project their highest priority.[249] The Kansas commission director stated that from April to July 1944 every qualified applicant in the state who visited a United States Employment Service office was urged to work at the Hanford Site. No other job was offered until the applicant definitively rejected the offer.[250] Tolman and Conant, in their role as the project's scientific advisers, drew up a list of candidate scientists and had them rated by scientists already working on the project. Groves then sent a personal letter to the head of their university or company asking for them to be released for essential war work.[251]

Una gran multitud de hombres y mujeres uniformados escuchan a un hombre gordo uniformado que habla ante un micrófono. Llevan en la manga el emblema de las Fuerzas de Servicio del Ejército. Las mujeres van delante y los hombres detrás. A su lado está la bandera del Cuerpo de Ingenieros del Ejército. Detrás de ellos hay edificios de madera de dos pisos.
Major General Leslie R. Groves Jr., speaks to service personnel Oak Ridge Tennessee in August 1945.

One source of skilled personnel was the Army itself, particularly the Army Specialized Training Program. In 1943, the MED created the Special Engineer Detachment (SED), with an authorized strength of 675. Technicians and skilled workers drafted into the Army were assigned to the SED. Another source was the Women's Army Corps (WAC). Initially intended for clerical tasks handling classified material, the WACs were soon tapped for technical and scientific tasks as well.[252] On 1 February 1945, all military personnel assigned to the MED, including all SED detachments, were assigned to the 9812th Technical Service Unit, except at Los Alamos, where military personnel other than SED, including the WACs and Military Police, were assigned to the 4817th Service Command Unit.[253]

An associate professor of Radiology at the University of Rochester School of Medicine, Stafford L. Warren, was commissioned as a colonel in the United States Army Medical Corps, and appointed as chief of the MED's Medical Section and Groves' medical advisor. Warren's initial task was to staff hospitals at Oak Ridge, Richland and Los Alamos.[254] The Medical Section was responsible for medical research, but also for the MED's health and safety programs. This presented an enormous challenge, because workers were handling a variety of toxic chemicals, using hazardous liquids and gases under high pressures, working with high voltages, and performing experiments involving explosives, not to mention the largely unknown dangers presented by radioactivity and handling fissile materials.[255] Yet in December 1945, the National Safety Council presented the Manhattan Project with the Award of Honor for Distinguished Service to Safety in recognition of its safety record. Between January 1943 and June 1945, there were 62 fatalities and 3,879 disabling injuries—about 62 percent below the rate of private industry.[256]

Secrecy

El Tío Sam se ha quitado el sombrero y se está arremangando. En la pared que hay frente a él hay tres monos y el lema: Lo que ves aquí/ Lo que haces aquí/ Lo que oyes aquí/ Cuando te vayas de aquí/ Que se quede aquí.
A billboard encouraging secrecy among Oak Ridge workers

The Manhattan Project operated under a mandate of "absolute secrecy" from Roosevelt, meaning that the very existence of the project itself was to be kept secret. This proved a daunting task given the amount of knowledge and speculation about nuclear fission that existed prior to the Manhattan Project, the huge numbers of people involved, and the scale of the facilities.[257] Groves adopted an extreme version of compartmentalization (the need-to-know policy):

Compartmentalization of knowledge, to me, was the very heart of security. My rule was simple and not capable of misinterpretation—each man should know everything he needed to know to do his job and nothing else. Adherence to this rule not only provided an adequate measure of security, but it greatly improved over-all efficiency by making our people stick to their knitting. And it made quite clear to all concerned that the project existed to produce a specific end product—not to enable individuals to satisfy their curiosity and to increase their scientific knowledge.[258]

This clashed with the norms of many of the scientists involved, who claimed that science could not operate successfully under such requirements. The Manhattan Project officials also had difficulty with journalists, Congressmen, federal officials who were not "in the know", residents near local sites, judges adjudicating land claims, and other sources of speculation, prying, and leaks, along with concerns about espionage and sabotage. Groves relied on the FBI and his own autonomous G-2 intelligence unit to investigate potential security violations. Ultimately over 1,500 "loose talk" cases were investigated during the war. Even Harry Truman was not informed about the project while he was vice president, and only learned about it after Roosevelt's death.[257]

Because of its relative success at keeping the story out of newspapers, Byron Price, head of the Office of Censorship, ultimately designated the Manhattan Project "the best-kept secret of the war".[259] In 1945 Life estimated that before the Hiroshima and Nagasaki bombings "probably no more than a few dozen men in the entire country knew the full meaning of the Manhattan Project, and perhaps only a thousand others even were aware that work on atoms was involved." The magazine wrote that the more than 100,000 others employed with the project "worked like moles in the dark". Warned that disclosing the project's secrets was punishable by 10 years in prison or a fine of US$10,000 (equivalent to $169,000 in 2023), they monitored "dials and switches while behind thick concrete walls mysterious reactions took place" without knowing the purpose of their jobs.[260][261][262]

In December 1945 the US Army published a secret report assessing the security apparatus surrounding the Manhattan Project. The report states that the project was "more drastically guarded than any other highly secret war development." The surrounding security infrastructure was so vast and thorough that in the early days of the project in 1943, investigators vetted 400,000 potential employees and 600 companies for potential security risks.[263]

Censorship

Security poster, warning office workers to close drawers and put documents in safes when not being used

Voluntary censorship of atomic information began before the Manhattan Project. After the start of the European war in 1939 American scientists began avoiding publishing military-related research, and in 1940 scientific journals began asking the National Academy of Sciences to clear articles. William L. Laurence of The New York Times, who wrote an article on atomic fission in The Saturday Evening Post of 7 September 1940, later learned that government officials asked librarians nationwide in 1943 to withdraw the issue.[264] The Soviets noticed the silence, however. In April 1942 nuclear physicist Georgy Flyorov wrote to Joseph Stalin on the absence of articles on nuclear fission in American journals; this resulted in the Soviet Union establishing its own atomic bomb project.[265]

The Manhattan Project operated under tight security lest its discovery induce Axis powers, especially Germany, to accelerate their own nuclear projects or undertake covert operations against the project.[266] The Office of Censorship relied on the press to comply with a voluntary code of conduct it published, and the project at first avoided notifying the office. By early 1943 newspapers began publishing reports of large construction in Tennessee and Washington, and the office began discussing with the project how to maintain secrecy. In June it asked newspapers and broadcasters to avoid discussing "atom smashing, atomic energy, atomic fission, atomic splitting, or any of their equivalents. The use for military purposes of radium or radioactive materials, heavy water, high voltage discharge equipment, cyclotrons."[267][259]

Soviet spies

The prospect of sabotage was always present, and sometimes suspected when there were equipment failures. While there were some problems believed to be the result of careless or disgruntled employees, there were no confirmed instances of Axis-instigated sabotage.[268] However, on 10 March 1945, a Japanese fire balloon struck a power line, and the resulting power surge caused the three reactors at Hanford to be temporarily shut down.[269] With so many people involved, security was difficult. A special Counter Intelligence Corps detachment was formed to handle the project's security issues.[270] By 1943, it was clear that the Soviet Union was attempting to penetrate the project. Lieutenant Colonel Boris T. Pash, the head of the Counter Intelligence Branch of the Western Defense Command, investigated suspected Soviet espionage at the Radiation Laboratory in Berkeley. Oppenheimer informed Pash that he had been approached by a fellow professor at Berkeley, Haakon Chevalier, about passing information to the Soviet Union.[271]

The most successful Soviet spy was Klaus Fuchs, a physicist and member of the British Mission who was intimately involved in work at Los Alamos on the design of the implosion bomb.[272] His espionage activities were not identified until 1950, as a result of Venona project. The revelation of his espionage activities damaged the United States' nuclear cooperation with Britain and Canada,[273] and other instances of espionage were subsequently uncovered, leading to the arrest of Harry Gold, David Greenglass, and Julius and Ethel Rosenberg.[274] Other spies like George Koval and Theodore Hall remained unknown for decades.[275] The value of the espionage is difficult to quantify, as the principal constraint on the Soviet atomic bomb project was their short supply of uranium ore. It may have saved the Soviets at least one or two years in the development of their own bomb,[276] although some historians have argued the Soviets spent as much time vetting and reduplicating the information as they would have saved had they trusted it.[277]

Foreign intelligence

In addition to developing the atomic bomb, the Manhattan Project was charged with gathering intelligence on the German nuclear energy project. It was believed that the Japanese nuclear weapons program was not far advanced because Japan had little access to uranium ore, but it was initially feared that Germany was very close to developing its own weapons. At the instigation of the Manhattan Project, a bombing and sabotage campaign was carried out against heavy water plants in German-occupied Norway.[278] A small mission was created, jointly staffed by the Office of Naval Intelligence, OSRD, the Manhattan Project, and Army Intelligence (G-2), to investigate enemy scientific developments. It was not restricted to those involving nuclear weapons.[279] The Chief of Army Intelligence, Major General George V. Strong, appointed Boris Pash to command the unit,[280] which was codenamed "Alsos" (Greek for "grove").[281] Samuel Goudsmit was the scientific director of the Alsos mission.[282]

Soldiers and workmen, some wearing steel helmet, clamber over what looks like a giant manhole.
Allied soldiers dismantle the German experimental nuclear reactor at Haigerloch.

The Alsos Mission to Italy questioned physics laboratory staff at the University of Rome following the capture of the city in June 1944.[283] Meanwhile, Pash formed a combined British and American Alsos mission in London under the command of Captain Horace K. Calvert to participate in Operation Overlord.[284] Groves considered the risk that the Germans might attempt to disrupt the Normandy landings with radioactive poisons was sufficient to warn General Dwight D. Eisenhower and send an officer to brief his chief of staff, Lieutenant General Walter Bedell Smith.[285] Under the codename Operation Peppermint, special equipment was prepared and Chemical Warfare Service teams were trained in its use.[286]

Following in the wake of the advancing Allied armies, the Alsos team interrogated scientists and searched facilities in liberated areas of France and Germany to learn about the German work. Goudsmit concluded in November 1944 that the German nuclear program had never made it beyond the laboratory stage. As he put it later: "The evidence at hand proved definitely that Germany had no atom bomb and was not likely to have one in any reasonable time."[287]

Interrogation of German prisoners indicated that uranium and thorium were being processed in Oranienburg, so Groves arranged for it to be bombed on 15 March 1945 to deny its capture by the Soviet Union.[288] An Alsos team went to Stassfurt in the Soviet Occupation Zone and retrieved 11 tons of ore from WIFO.[289] In April 1945, Pash, in command of a composite force known as T-Force, conducted Operation Harborage, a sweep behind enemy lines of Hechingen, Bisingen, and Haigerloch—the heart of the German nuclear effort. T-Force captured nuclear laboratories, documents, equipment and supplies, including heavy water and 1.5 tons of metallic uranium.[290][291]

Alsos teams rounded up German scientists including Kurt Diebner, Otto Hahn, Walther Gerlach, Werner Heisenberg, and Carl Friedrich von Weizsäcker. They were taken to England and interned at Farm Hall, where they were surreptitiously surveilled.[292]

Atomic bombings of Hiroshima and Nagasaki

Preparations

A shiny metal four-engined aircraft stands on a runway. The crew pose in front of it.
Silverplate B-29 Straight Flush. The tail code of the 444th Bombardment Group is painted on for security reasons.

The only Allied aircraft capable of carrying the 17-foot (5.2 m) long Thin Man or the 59-inch (150 cm) wide Fat Man was the British Avro Lancaster, but using a British aircraft would have caused difficulties with maintenance. Groves hoped that the American Boeing B-29 Superfortress could be modified to carry a Thin Man by joining its two bomb bays together.[293] This became unnecessary after Thin Man was abandoned, as a Little Boy was short enough to fit into a B-29 bomb bay,[223] but modifications were still required. The Army Air Forces Materiel Command at Wright Field, Ohio, began Silverplate, the codename for the modification of the B-29, in November 1943. Test drops were carried out at Muroc Army Air Field and the Naval Ordnance Test Station in California with Thin Man and Fat Man pumpkin bombs to test their ballistic, fuzing and stability characteristics.[294]

The 509th Composite Group was activated on 17 December 1944 at Wendover Army Air Field, Utah, under the command of Colonel Paul W. Tibbets. Its 393rd Bombardment Squadron, equipped with Silverplate B-29s, practiced long-distance flights over water and dropped pumpkin bombs.[295] A special unit known as Project Alberta was formed at Los Alamos under Parsons's command to assist in preparing and delivering the bombs.[295] The 509th Composite Group deployed to North Field on Tinian in July 1945.[296] Most of the components for the Little Boy left San Francisco on the cruiser USS Indianapolis on 16 July and arrived on Tinian on 26 July. The remaining components, which included six highly enriched uranium rings, were delivered by three Douglas C-54 Skymasters of the 509th Group's 320th Troop Carrier Squadron.[297] Two Fat Man assemblies traveled to Tinian in specially modified 509th Composite Group B-29s, and the first plutonium core went in a special C-54.[298]

At the end of December 1944, worried by the heavy losses occurring in the Battle of the Bulge, Roosevelt instructed Groves and Stimson that if the atomic bombs were ready before the war with Germany ended, they should be ready to drop them on Germany, but Japan was regarded as more likely.[299] In late April 1945, a targeting committee was established to determine which cities should be targets, and it recommended Kokura, Hiroshima, Niigata, and Kyoto. Stimson intervened, announcing that he would be making the targeting decision, and that he would not authorize the bombing of Kyoto on the grounds of its historical and religious significance.[300] Nagasaki was ultimately substituted.[301] In May 1945, the Interim Committee was created to advise on wartime and postwar use of nuclear energy. The Interim Committee in turn established a scientific panel consisting of Arthur Compton, Fermi, Lawrence, and Oppenheimer; the scientific panel offered its opinion not just on the likely physical effects of an atomic bomb, but on its probable military and political impact. In a meeting on 1 June, the Interim Committee resolved that "the bomb should be used against Japan as soon as possible; that it be used on a war plant surrounded by workers' homes; and that it be used without prior warning".[302][303]

At the Potsdam Conference in Germany, President Harry S. Truman told Stalin that the US had "a new weapon of unusual destructive force", without giving any details. As he showed "no special interest," Truman erroneously assumed that Stalin did not understand. In reality, Soviet spies had kept Stalin informed of the work and the planned test.[304][305][306]

A strike order from General Thomas T. Handy to General Carl Spaatz was approved by Marshall and Stimson on 25 July which specified that the "first special bomb" be used "after about 3 August 1945," and that "additional bombs" would be used "as soon as made ready by the project staff".[307] The operational plan was to drop the first bomb on 2 August, the second bomb on 10 August, and a third bomb around 24 August. However, due to weather conditions over Japan and the desire for visual bombing, the date of the first bombing mission was pushed back to 6 August, and the second was moved forward to 9 August.[308]

Bombings

On 6 August 1945, the Enola Gay, a Boeing B-29 Superfortress of the 393d Bombardment Squadron, piloted by Tibbets, lifted off from North Field with a Little Boy in its bomb bay. Hiroshima, the headquarters of the 2nd General Army and Fifth Division and a port of embarkation, was the primary target, with Kokura and Nagasaki as alternatives. Parsons, the weaponeer in charge of the mission, completed the bomb assembly in the air to minimize the risks of a nuclear explosion in the event of a crash during takeoff.[309] The bomb detonated at an altitude of 1,750 feet (530 m) with a blast that was later estimated to be the equivalent of 13 kilotons of TNT.[310] An area of approximately 4.7 square miles (12 km2) was destroyed. Japanese officials determined that 69% of Hiroshima's buildings were destroyed and another 6–7% damaged. Early estimates were that 66,000 people were killed and 69,000 injured; later re-estimations that included people ignored by previous methods, like Korean slave laborers and additional soldiers, concluded there might have been 140,000 dead from the attack by December 1945.[311][312][313][314]

Two mushroom clouds rise vertically.
Little Boy explodes over Hiroshima, Japan, 6 August 1945 (left);
Fat Man explodes over Nagasaki, Japan, 9 August 1945 (right).

On the morning of 9 August 1945, the Bockscar, a second B-29 piloted by the 393d Bombardment Squadron's commander, Major Charles W. Sweeney, lifted off with a Fat Man on board. This time, Ashworth served as weaponeer and Kokura was the primary target. When they reached Kokura, they found cloud cover had obscured the city, prohibiting the visual attack required by orders. After three runs and with fuel running low, they headed for the secondary target, Nagasaki. Ashworth decided that a radar approach would be used if the target was obscured, but a last-minute break in the clouds over Nagasaki allowed a visual approach as ordered. The Fat Man was dropped over the city's industrial valley midway between the Mitsubishi Steel and Arms Works in the south and the Mitsubishi-Urakami Ordnance Works in the north. The resulting explosion had a blast yield equivalent to 21 kilotons of TNT, roughly the same as the Trinity blast, but was confined to the Urakami Valley, and a major portion of the city, including the city center, was protected by the intervening hills. About 44% of the city was destroyed, and estimates of casualties range from 40,000 to 80,000 people killed and at least 60,000 injured.[315] Overall, an estimated 35,000–40,000 people were killed and 60,000 injured.[316][317][311]

Groves expected to have another atomic bomb ready for use on 19 August, with three more in September and a further three in October.[318] Two more Fat Man assemblies were readied, and scheduled to leave Kirtland Field for Tinian on 11 and 14 August.[317] At Los Alamos, technicians worked 24 hours straight to cast another plutonium core.[319] Although cast, it still needed to be pressed and coated, which would take until 16 August.[320] It could therefore have been ready for use on 19 August.

On 10 August, Truman was informed that another bomb was being prepared. He ordered that no additional atomic bombs could be used without his express authority. According to Henry A. Wallace, Truman told his cabinet that "the thought of wiping out another 100,000 people was too horrible. He didn't like the idea of killing, as he said, 'all those kids.'"[321] Groves suspended the third core's shipment on 13 August.[322]

On 11 August, Groves phoned Warren with orders to organize a survey team to report on the damage and radioactivity at Hiroshima and Nagasaki as soon as the war ended. A party equipped with portable Geiger counters arrived in Hiroshima on 8 September headed by Farrell and Warren, with Japanese Rear Admiral Masao Tsuzuki, who acted as a translator. They remained in Hiroshima until 14 September and then surveyed Nagasaki from 19 September to 8 October.[323] This and other scientific missions to Japan provided valuable data on the effects of the atomic bomb, and led to the creation of the Atomic Bomb Casualty Commission.[324]

In anticipation of the bombings, Groves had commissioned physicist Henry DeWolf Smyth to prepare a sanitized technical history of the project for public consumption. The idea of releasing such information freely was controversial; the decision to do so was made by Truman personally. The "Smyth Report" was released to the public on 12 August 1945.[325]

Japan announced its surrender on 15 August.[326] The necessity of the bombings became a subject of controversy among historians. Some questioned whether "atomic diplomacy" would have attained the same goals, and the relative weight that the bombs and the Soviet declaration of war had on the Japanese willingness to surrender.[327] The Franck Report was the most notable effort pushing for a demonstration but was turned down by the Interim Committee's scientific panel.[328] The Szilárd petition, drafted in July 1945 and signed by dozens of scientists working on the Manhattan Project, was a late attempt at warning Truman about his responsibility in using such weapons.[329][330]

After the war

Men in suits and uniforms stand on a dais decorated with bunting and salute.
Presentation of the Army–Navy "E" Award at Los Alamos on 16 October 1945. Standing, left to right: J. Robert Oppenheimer, unidentified, unidentified, Kenneth Nichols, Leslie Groves, Robert Gordon Sproul, William Sterling Parsons.

The Manhattan Project became instantly famous after the bombing of Hiroshima and the partial lifting of its secrecy. It was widely credited with ending the war, and Groves worked to credit its contractors, whose work had hitherto been secret. Groves and Nichols presented them with Army–Navy "E" Awards, and over 20 Presidential Medals for Merit were awarded to key contractors and scientists, including Bush and Oppenheimer. Military personnel received the Legion of Merit.[331]

The Manhattan Project persisted until 31 December 1946, and the Manhattan District to 15 August 1947.[332] During this time, it suffered from numerous difficulties caused by technical problems, the effects of rapid demobilization, and a lack of clarity on its long-term mission.

At Hanford, plutonium production declined as Reactors B, D and F wore out, poisoned by fission products and swelling of the graphite moderator known as the Wigner effect. The swelling damaged the charging tubes where the uranium was irradiated to produce plutonium, rendering them unusable. Production was curtailed and the oldest unit, B pile, was closed down so at least one reactor would remain available. Research continued, with DuPont and the Metallurgical Laboratory developing a redox solvent extraction process as an alternative plutonium extraction technique to the bismuth phosphate process, which left unspent uranium in a state from which it could not easily be recovered.[333]

Bomb engineering was carried out by the Z Division,[334] initially located at Wendover Field but moved to Oxnard Field, New Mexico, in September 1945 to be closer to Los Alamos. This marked the beginning of the Sandia Base. Nearby Kirtland Field was used as a B-29 base for aircraft compatibility and drop tests.[335] As reservist officers were demobilized, they were replaced by about fifty hand-picked regular officers.[336]

Nichols recommended that S-50 and the Alpha tracks at Y-12 be closed down. This was done in September.[337] Although performing better than ever,[338] the Alpha tracks could not compete with K-25 and the new K-27, which had commenced operation in January 1946. In December, the Y-12 plant was closed, cutting the Tennessee Eastman payroll from 8,600 to 1,500 and saving $2 million a month.[339]

A man in a suit is seated at a desk, signing a document. Seven men in suits gather around him.
President Harry S. Truman signs the Atomic Energy Act of 1946, establishing the United States Atomic Energy Commission.

Nowhere was demobilization more of a problem than at Los Alamos, where there was an exodus of talent. Much remained to be done. The bombs used on Hiroshima and Nagasaki needed work to make them simpler, safer and more reliable. Implosion methods needed to be developed for uranium in place of the wasteful gun method, and composite uranium-plutonium cores were needed now that plutonium was in short supply. However, uncertainty about the future of the laboratory made it hard to induce people to stay. Oppenheimer returned to his job at the University of California and Groves appointed Norris Bradbury as an interim replacement; Bradbury remained in the post for the next 25 years.[340] Groves attempted to combat the dissatisfaction caused by the lack of amenities with a construction program that included an improved water supply, three hundred houses, and recreation facilities.[333]

Manhattan Project personnel participated in the first postwar nuclear tests, Operation Crossroads, conducted at Bikini Atoll in July 1946. Two Fat Man-type bombs were detonated — one as an airburst, one as an underwater burst — to investigate the effect of nuclear weapons on warships.[341][342] Press and international observers were allowed to attend, making the tests an international spectacle.[343]

Following a domestic debate over the peacetime management of the nuclear program, the Atomic Energy Act of 1946 created the United States Atomic Energy Commission to take over the project's functions and assets. It established civilian control over atomic development. Military aspects were taken over by the Armed Forces Special Weapons Project (AFSWP).[344]

After the bombings at Hiroshima and Nagasaki, a number of Manhattan Project physicists founded the Bulletin of the Atomic Scientists (1945) and Emergency Committee of Atomic Scientists (1946), which began as an emergency action undertaken by scientists who saw urgent need for an educational program about atomic weapons.[345] In the face of the destructiveness of the bombs and in anticipation of the nuclear arms race several project members including Bohr, Bush and Conant expressed the view that it was necessary to reach agreement on international control of nuclear research and atomic weapons. The Baruch Plan, unveiled in a speech to the newly formed United Nations Atomic Energy Commission (UNAEC) in June 1946, proposed the establishment of an international atomic development authority, but was not adopted.[346]

Cost

The project expenditure through 1 October 1945 was $1.845 billion, equivalent to less than nine days of wartime spending, and was $2.191 billion when the AEC assumed control on 1 January 1947. The total allocation was $2.4 billion. 84% of the costs through the end of 1945 were spent on the plants at Oak Ridge and Hanford, producing the enriched uranium and plutonium needed to fuel the bombs. At both sites, the majority of the costs were for construction (74% at Oak Ridge, 87% at Hanford), with the rest being for operations.[348][349][350]

Manhattan Project monthly expenditures from January 1943 through the end of December 1946. In its peak month, August 1944, US$111.4 million was spent on the project.

Initial funding for the project was through the general budget of the Office of Scientific Research and Development. As plans were made to turn the work over to the Army Corps of Engineers, Bush wrote to Roosevelt in late 1942 that "it would be ruinous to the essential secrecy to have to defend before an appropriations committee any request for funds for this project." Instead, initial funding was done through discretionary funds to which Roosevelt had access.[351]

As it grew in size and cost, Congress was deliberately kept ignorant of the project, because of concerns that Congressmen were prone to leaking information, and because it was feared that the project would appear to be a boondoggle. Appropriations requests were quietly slipped into other bills, but the project's mounting costs and large facilities (which appeared to many to produce nothing) attracted scrutiny from several Congressional auditors. The Truman Committee that investigated wartime waste and fraud attempted to audit the project several times, but each time their inquiries were rejected.[352]

These Congressional inquiries, along with the need for smooth budgetary approval, led to Bush, Groves, and Stimson agreeing in the spring of 1944 that a few high-ranking Congressmen should be told of the project's purpose. By March 1945, exactly seven Congressmen were officially informed.[352] The funds were hidden into appropriation requests with the inconspicuous headings, frequently "Engineer Service Army" and "Expediting Production." In late May 1945, to further expedite budget issues and assure the cooperation of Albert J. Engel, who had threatened to reveal the existence of the project if he was not told more about it, five additional Congressmen were permitted to visit the Oak Ridge site to assure themselves of "the reasonableness of the various living accommodations which had been provided, [and] that they actually observe the size and scope of the installations and that some of the complexities of the project be demonstrated to them."[k]

During the war, the Manhattan Project ultimately produced the three bombs used (the Trinity gadget, Little Boy, and Fat Man), as well as an additional unused Fat Man bomb, making the average wartime cost per bomb around $500 million in 1945 dollars. By comparison, the project's total cost by the end of 1945 was about 90% of the total spent on the production of US small arms (not including ammunition) and 34% of the total spent on US tanks during the same period.[347] It was the second most expensive weapons project undertaken by the United States during the war, behind only the Boeing B-29 Superfortress.[354]

Legacy

The Lake Ontario Ordnance Works (LOOW) near Niagara Falls became a principal repository for Manhattan Project waste for the Eastern United States.[355] All of the radioactive materials stored at the LOOW site—including thorium, uranium, and the world's largest concentration of radium-226—were buried in an "Interim Waste Containment Structure" (in the foreground) in 1991.[356][357][358]

The political and cultural impacts of the development of nuclear weapons were profound. William Laurence of The New York Times, the first to use the phrase "Atomic Age",[359] became the official correspondent for the Manhattan Project in spring 1945. He witnessed both the Trinity test[360] and the bombing of Nagasaki and wrote the official press releases on them. He went on to write a series of articles extolling the virtues of the new weapon. His reporting helped to spur public awareness of the potential of nuclear technology and motivated its development in the United States and Soviet Union.[361]

The Manhattan Project left a legacy of a network of national laboratories: the Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Argonne National Laboratory, and Ames Laboratory. Two more were established by Groves soon after the war, the Brookhaven National Laboratory at Upton, New York, and the Sandia National Laboratories at Albuquerque, New Mexico. Groves allocated $72 million to them for research activities in fiscal year 1946–1947.[362] They would be in the vanguard of the kind of large-scale research that Alvin Weinberg, the director of the Oak Ridge National Laboratory, would call Big Science.[363]

The Naval Research Laboratory had long been interested in the prospect of using nuclear power for warship propulsion, and sought to create its own nuclear project. In May 1946, Nimitz, now Chief of Naval Operations, decided that the Navy should instead work with the Manhattan Project. A group of naval officers were assigned to Oak Ridge, the most senior of whom was Captain Hyman G. Rickover, who became assistant director there. They immersed themselves in the study of nuclear energy, laying the foundations for a nuclear-powered navy.[364] A similar group of Air Force personnel arrived at Oak Ridge in September 1946 with the aim of developing nuclear aircraft.[365] Their Nuclear Energy for the Propulsion of Aircraft project ran into formidable technical difficulties and was ultimately canceled.[366]

The ability of the new reactors to create radioactive isotopes in previously unheard-of quantities sparked a revolution in nuclear medicine. Starting in mid-1946, Oak Ridge began distributing radioisotopes to hospitals and universities, primarily iodine-131 and phosphorus-32 for cancer diagnosis and treatment. Isotopes were also used in biological, industrial and agricultural research.[367]

Its production sites, operating with new technologies, exotic substances, and under conditions of secrecy and haste, also left a vast legacy of waste and environmental damage. At Hanford, for example, corrosive and radioactive wastes were stored in "hastily fabricated, single-shell, steel-lined, underground storage tanks" that were intended to be temporary, awaiting a more permanent solution.[368] Instead, they were neglected and eventually leaked. Issues of this kind resulted in Hanford becoming "one of the most contaminated nuclear waste sites in North America", and the subject of significant cleanup efforts after it was deactivated in the late Cold War.[369]

On handing over control to the Atomic Energy Commission, Groves bid farewell to the people who had worked on the Manhattan Project:

Five years ago, the idea of Atomic Power was only a dream. You have made that dream a reality. You have seized upon the most nebulous of ideas and translated them into actualities. You have built cities where none were known before. You have constructed industrial plants of a magnitude and to a precision heretofore deemed impossible. You built the weapon which ended the War and thereby saved countless American lives. With regard to peacetime applications, you have raised the curtain on vistas of a new world.[370]

The Manhattan Project National Historical Park was established on 10 November 2015.[371]

See also

Notes

  1. ^ Specifically at its Berkeley campus; however, as of 1940, the University of California had not yet established a formal distinction between the university as a whole and its flagship campus at Berkeley. The process of transforming the University into a multi-campus university system began in March 1951 and was not complete until 1960.[12]
  2. ^ The reaction Teller was most concerned with was: 14
    7
    N
    + 14
    7
    N
    24
    12
    Mg
    + 4
    2
    He
    (alpha particle) + 17.7 MeV.[34]
  3. ^ In Bethe's account, the possibility of this ultimate catastrophe came up again in 1975 when it appeared in a magazine article by H.C. Dudley, who got the idea from a report by Pearl Buck of an interview she had with Arthur Compton in 1959. The worry was not entirely extinguished in some people's minds until the Trinity test.[37]
  4. ^ Natural self-sustaining nuclear reactions have occurred in the very distant past.[106]
  5. ^ The allusion here is to the Italian navigator Christopher Columbus, who reached the Caribbean in 1492.
  6. ^ The original project goal in 1942 was to acquire approximately 1,700 short tons (1,500 t) of uranium ore. By the time of the dissolution of the Manhattan District, it had acquired about 10,000 short tons (9,100 t) tons of uranium oxides, 72% of which came from the Congolese ores, 14% from the Colorado plateau, and 9% from Canadian ores.[129]
  7. ^ Much of the mined ore from the Shinkolobwe mine had a uranium oxide content as high as 65% to 75%, which was many times higher than any other global sources.[132] By comparison, the Canadian ores could be as high as 30%, and American sources, many of them byproducts of the mining of other minerals (especially vanadium), contained less than 1% uranium.[133]
  8. ^ It is necessary to distinguish between the K-25 gaseous diffusion plant and the K-25 power plant. The latter provided energy to both the K-25 gaseous diffusion plant and the S-50 thermal diffusion plant.
  9. ^ The charge consisted of 89.75 short tons (81.42 t) tons of TNT and 14.91 short tons (13.53 t) tons of Composition B (with the total explosive power of approximately 108 tons of TNT), actually a few tons more than the stated "100-tons".[230][231]
  10. ^ The first instance in print of Oppenheimer's Gita story is apparently from 1948. Oppenheimer at times translated it to "shatterer of worlds" as well. The quote with "destroyer of worlds" comes from a taped interview of Oppenheimer did with NBC in 1965. Oppenheimer's translation is not considered a standard or literal one, and was likely influenced by the style of his Sanskrit teacher, Arthur Ryder, who translated the line as: "Death am I, and my present task / Destruction." A more common translation has the identification not as "Death," but as "Time." In the passage, the Hindu god Krishna is revealing himself and his true form to Prince Arjuna, imploring Arjuna to fulfill his duty and take part in a war, and assuring him that the fate of those killed is really up to Krishna, not mortal men.[243]
  11. ^ The seven Congressmen officially informed were: Alben W. Barkley (Senate Majority Leader), Styles Bridges (Ranking minority member of the Sub-Committee on Military Appropriations), Joseph W. Martin Jr. (House Minority Leader), John W. McCormack (House Majority Leader), Sam Rayburn (Speaker of the House), Elmer Thomas (Chair of the Sub-Committee on Military Appropriations), and Wallace H. White (Senate Minority Leader). The five allowed to tour Oak Ridge were: Clarence Cannon, Albert J. Engel, George H. Mahon, J. Buell Snyder, and John Taber.[353]

Citations

  1. ^ Johnston, Louis; Williamson, Samuel H. (2023). "What Was the U.S. GDP Then?". MeasuringWorth. Retrieved 30 November 2023. United States Gross Domestic Product deflator figures follow the MeasuringWorth series.
  2. ^ Jones 1985, p. 12.
  3. ^ a b Hewlett & Anderson 1962, pp. 16–20.
  4. ^ Hewlett & Anderson 1962, p. 20.
  5. ^ Hewlett & Anderson 1962, p. 21.
  6. ^ "Fermi at Columbia". physics.columbia.edu. Archived from the original on 21 June 2019. Retrieved 29 July 2019.
  7. ^ Rhodes 1986, pp. 337–338.
  8. ^ "Executive Order 8807 Establishing the Office of Scientific Research and Development". 28 June 1941. Retrieved 28 June 2011.
  9. ^ a b Hewlett & Anderson 1962, pp. 40–41.
  10. ^ Jones 1985, p. 33.
  11. ^ a b Hewlett & Anderson 1962, pp. 33–35, 183.
  12. ^ "Past Chancellors". Berkeley Office of the Chancellor. Retrieved 16 April 2018.
  13. ^ Rhodes 1986, pp. 322–325.
  14. ^ a b Hewlett & Anderson 1962, p. 42.
  15. ^ Hewlett & Anderson 1962, pp. 39–40.
  16. ^ Phelps 2010, pp. 126–128.
  17. ^ a b Phelps 2010, pp. 282–283.
  18. ^ Rhodes 1986, pp. 372–374.
  19. ^ Hewlett & Anderson 1962, pp. 43–44.
  20. ^ Jones 1985, pp. 30–32.
  21. ^ Jones 1985, p. 35.
  22. ^ Williams 1960, pp. 3–4.
  23. ^ a b c Jones 1985, pp. 37–39.
  24. ^ Nichols 1987, pp. 32.
  25. ^ Jones 1985, pp. 35–36.
  26. ^ Rhodes 1986, p. 416.
  27. ^ Hewlett & Anderson 1962, p. 103.
  28. ^ a b Hoddeson et al. 1993, pp. 42–44
  29. ^ Groves 1962, p. 41.
  30. ^ Serber & Rhodes 1992, p. 21.
  31. ^ Hoddeson et al. 1993, pp. 54–56
  32. ^ Rhodes 1986, p. 417.
  33. ^ Hoddeson et al. 1993, pp. 44–45
  34. ^ Bethe 1991, p. 30.
  35. ^ Rhodes 1986, p. 419.
  36. ^ Konopinski, E. J; Marvin, C.; Teller, Edward (1946). "Ignition of the Atmosphere with Nuclear Bombs" (PDF). Los Alamos National Laboratory. Retrieved 23 November 2008.
  37. ^ Bethe 1991, pp. xi, 30.
  38. ^ Broad, William J. (30 October 2007). "Why They Called It the Manhattan Project". The New York Times. Retrieved 27 October 2010.
  39. ^ a b Jones 1985, pp. 41–44.
  40. ^ Sullivan 2016, pp. 86–87.
  41. ^ Fine & Remington 1972, p. 652.
  42. ^ Nichols 1987, p. 174.
  43. ^ Groves 1962, p. 40.
  44. ^ Hewlett & Anderson 1962, pp. 76–78.
  45. ^ Fine & Remington 1972, p. 654.
  46. ^ Jones 1985, pp. 57–61.
  47. ^ a b Fine & Remington 1972, p. 657.
  48. ^ "Science:Atomic Footprint". Time. 17 September 1945. Retrieved 19 January 2022.
  49. ^ Hewlett & Anderson 1962, p. 81.
  50. ^ a b Jones 1985, pp. 74–77.
  51. ^ Groves 1962, pp. 4–5.
  52. ^ Fine & Remington 1972, pp. 659–661.
  53. ^ Groves 1962, pp. 27–28.
  54. ^ Groves 1962, pp. 44–45.
  55. ^ Groves 1962, pp. 22–23.
  56. ^ Jones 1985, pp. 80–82.
  57. ^ Ermenc 1989, p. 238.
  58. ^ Groves 1962, pp. 61–63.
  59. ^ Nichols 1987, pp. 72–73.
  60. ^ Bernstein 1976, pp. 206–208.
  61. ^ Villa 1981, pp. 144–145.
  62. ^ Stacey 1970, p. 517.
  63. ^ Bernstein 1976, p. 211.
  64. ^ a b c d Fakley, Dennis C. (Winter–Spring 1983). "The British Mission". Los Alamos Science (7): 186–189.
  65. ^ Bernstein 1976, pp. 213.
  66. ^ Gowing 1964, pp. 168–173.
  67. ^ Bernstein 1976, pp. 216–217.
  68. ^ Jones 1985, p. 296.
  69. ^ "Hyde Park Aide-Mémoire (18 September 1944)". Atomic Heritage Foundation. 2022.
  70. ^ Gowing (1964), pp. 340–342.
  71. ^ Gowing 1964, pp. 242–244.
  72. ^ Hunner 2004, p. 26.
  73. ^ Gowing 1964, p. 372.
  74. ^ Bernstein 1976, pp. 223–224.
  75. ^ Jones 1985, pp. 90, 299–306.
  76. ^ Groves 1962, p. 408.
  77. ^ a b Johnson & Jackson 1981, pp. 168–169.
  78. ^ Hewlett & Anderson 1962, pp. 116–117.
  79. ^ Groves 1962, pp. 25–26.
  80. ^ Jones 1985, p. 78.
  81. ^ Johnson & Jackson 1981, pp. 39–43.
  82. ^ Fine & Remington 1972, pp. 663–664.
  83. ^ "Oak Ridge National Laboratory Review, Vol. 25, Nos. 3 and 4, 2002". ornl.gov. Archived from the original on 25 August 2009. Retrieved 9 March 2010.
  84. ^ Jones 1985, pp. 327–328.
  85. ^ Johnson & Jackson 1981, p. 49.
  86. ^ Johnson & Jackson 1981, p. 8.
  87. ^ Johnson & Jackson 1981, pp. 14–17.
  88. ^ Jones 1985, p. 88.
  89. ^ a b Jones 1985, pp. 443–446.
  90. ^ William J. (Bill) Wilcox Jr., Oak Ridge City Historian, Retired Technical Director for the Oak Ridge Y-12 & K-25 Plants, 11 November 2007, Early Days of Oak Ridge and Wartime Y-12, Retrieved 22 November 2014
  91. ^ Jones 1985, pp. 83–84.
  92. ^ Fine & Remington 1972, pp. 664–665.
  93. ^ "50th Anniversary Article: Oppenheimer's Better Idea: Ranch School Becomes Arsenal of Democracy". Los Alamos National Laboratory. Retrieved 6 April 2011.
  94. ^ Groves 1962, pp. 66–67.
  95. ^ Jones 1985, pp. 328–331.
  96. ^ "Secretary of Agriculture granting use of land for Demolition Range" (PDF). Los Alamos National Laboratory. 8 April 1943. Retrieved 6 April 2011.
  97. ^ "Civilian Displacement: Los Alamos, NM". Atomic Heritage Foundation. 26 July 2017. Retrieved 1 August 2024.
  98. ^ Hunner 2004, pp. 31–32.
  99. ^ Hunner 2004, p. 29.
  100. ^ Hewlett & Anderson 1962, pp. 230–232.
  101. ^ Conant 2005, pp. 58–61.
  102. ^ Jones 1985, pp. 67–71.
  103. ^ a b "Site A/Plot M, Illinois, Decommissioned Reactor Site Fact Sheet" (PDF). Archived from the original (PDF) on 26 October 2014. Retrieved 3 December 2012.
  104. ^ "FRONTIERS Research Highlights 1946–1996" (PDF). Office of Public Affairs, Argonne National Laboratory. 1996. p. 11. doi:10.2172/770687. OSTI 770687.
  105. ^ Walsh, John (19 June 1981). "A Manhattan Project Postscript" (PDF). Science. 212 (4501): 1369–1371. Bibcode:1981Sci...212.1369W. doi:10.1126/science.212.4501.1369. ISSN 0036-8075. PMID 17746246. Retrieved 23 March 2013.
  106. ^ Libby 1979, pp. 214–216.
  107. ^ "CP-1 (Chicago Pile 1 Reactor)". Argonne National Laboratory; U.S. Department of Energy. Retrieved 12 April 2013.
  108. ^ Compton 1956, p. 144.
  109. ^ Jones 1985, pp. 195–196.
  110. ^ Holl, Hewlett & Harris 1997, p. 428.
  111. ^ Fermi, Enrico (1946). "The Development of the first chain reaction pile". Proceedings of the American Philosophical Society. 90 (1): 20–24. JSTOR 3301034.
  112. ^ Groves 1962, pp. 58–59.
  113. ^ Groves 1962, pp. 68–69.
  114. ^ a b Jones 1985, pp. 108–111.
  115. ^ Jones 1985, p. 342.
  116. ^ Jones 1985, pp. 452–457.
  117. ^ Thayer 1996, p. 16.
  118. ^ Jones 1985, p. 401.
  119. ^ Jones 1985, pp. 463–464.
  120. ^ Commission, Canadian Nuclear Safety. "Canada's historical role in developing nuclear weapons". www.cnsc-ccsn.gc.ca. Retrieved 23 May 2024.
  121. ^ Dawson, Tyler (24 July 2023). "Canada's contributions to the atomic bomb developed by Oppenheimer". National Post. Retrieved 25 May 2024.
  122. ^ a b Waltham 2002, pp. 8–9.
  123. ^ "ZEEP – Canada's First Nuclear Reactor". Canada Science and Technology Museum. Archived from the original on 6 March 2014.
  124. ^ Jones 1985, pp. 8, 62.
  125. ^ Jones 1985, pp. 107–108.
  126. ^ Hewlett & Anderson 1962, pp. 201–202.
  127. ^ Smyth 1945, p. 39.
  128. ^ Smyth 1945, p. 92.
  129. ^ Manhattan District History, Book 7, Volume 1 (Feed Materials and Special Procurement). Vol. Book 7, Volume 1. 1947. pp. 2.14, 5.1, Appendix D.3.. An additional 5% came from "miscellaneous sources", which included some ores recovered by the Alsos Mission from Europe.
  130. ^ Hewlett & Anderson 1962, pp. 85–86.
  131. ^ Nichols 1987, p. 47
  132. ^ Nichols 1987, p. 47
  133. ^ Manhattan District History, Book 7, Volume 1 (Feed Materials and Special Procurement). Vol. Book 7, Volume 1. 1947. pp. Appendix C1..
  134. ^ Jones 1985, p. 295.
  135. ^ Hewlett & Anderson 1962, pp. 285–288.
  136. ^ Hewlett & Anderson 1962, pp. 291–292.
  137. ^ Ruhoff & Fain 1962, pp. 3–9.
  138. ^ Hoddeson et al. 1993, p. 31
  139. ^ Hewlett & Anderson 1962, pp. 87–88.
  140. ^ Smyth 1945, pp. 154–156.
  141. ^ Jones 1985, p. 157.
  142. ^ Hewlett & Anderson 1962, pp. 22–23.
  143. ^ Hewlett & Anderson 1962, p. 30.
  144. ^ Hewlett & Anderson 1962, p. 64.
  145. ^ Hewlett & Anderson 1962, pp. 96–97.
  146. ^ Nichols 1987, p. 64.
  147. ^ Kemp 2012, pp. 281–287, 291–297.
  148. ^ a b Jones 1985, pp. 117–119.
  149. ^ Smyth 1945, pp. 164–165.
  150. ^ Fine & Remington 1972, p. 684.
  151. ^ Nichols 1987, p. 42.
  152. ^ a b Jones 1985, p. 133.
  153. ^ Hewlett & Anderson 1962, p. 153.
  154. ^ "The Calutron Girls". SmithDRay. Retrieved 22 June 2011.
  155. ^ Jones 1985, pp. 126–132.
  156. ^ Jones 1985, pp. 138–139.
  157. ^ Jones 1985, p. 140.
  158. ^ Nichols 1987, p. 131.
  159. ^ Jones 1985, pp. 143–148.
  160. ^ Hewlett & Anderson 1962, pp. 30–32, 96–98
  161. ^ Hewlett & Anderson 1962, p. 108.
  162. ^ Jones 1985, pp. 150–151.
  163. ^ Jones 1985, pp. 154–157.
  164. ^ Hewlett & Anderson 1962, pp. 126–127.
  165. ^ Jones 1985, pp. 158–165.
  166. ^ Jones 1985, pp. 167–171.
  167. ^ Smyth 1945, pp. 161–162.
  168. ^ Jones 1985, p. 172.
  169. ^ Jones 1985, pp. 175–177.
  170. ^ Hewlett & Anderson 1962, pp. 170–172.
  171. ^ Jones 1985, pp. 178–179.
  172. ^ Jones 1985, pp. 180–183.
  173. ^ Hewlett & Anderson 1962, pp. 300–302.
  174. ^ Hansen 1995b, p. V-112.
  175. ^ a b Smyth 1945, pp. 130–132.
  176. ^ a b Jones 1985, pp. 204–206.
  177. ^ Hewlett & Anderson 1962, pp. 208–210.
  178. ^ Hewlett & Anderson 1962, p. 211.
  179. ^ a b Jones 1985, p. 209.
  180. ^ Groves 1962, pp. 78–82.
  181. ^ Jones 1985, p. 210.
  182. ^ Hewlett & Anderson 1962, pp. 222–226.
  183. ^ Thayer 1996, p. 139.
  184. ^ Hanford Cultural and Historic Resources Program 2002, p. 1.16
  185. ^ Hewlett & Anderson 1962, pp. 216–217.
  186. ^ Hewlett & Anderson 1962, pp. 304–307.
  187. ^ Jones 1985, pp. 220–223.
  188. ^ Howes & Herzenberg 1999, p. 45.
  189. ^ Libby 1979, pp. 182–183.
  190. ^ Thayer 1996, p. 10.
  191. ^ a b Thayer 1996, p. 141.
  192. ^ Hewlett & Anderson 1962, pp. 184–185.
  193. ^ Hewlett & Anderson 1962, pp. 204–205.
  194. ^ Jones 1985, pp. 214–216.
  195. ^ Jones 1985, p. 212.
  196. ^ Thayer 1996, p. 11.
  197. ^ Hewlett & Anderson 1962, pp. 219–222.
  198. ^ Hoddeson et al. 1993, pp. 226–229, 237
  199. ^ Hoddeson et al. 1993, pp. 242–244
  200. ^ Hewlett & Anderson 1962, pp. 312–313.
  201. ^ Hewlett & Anderson 1962, p. 246.
  202. ^ Hoddeson et al. 1993, pp. 129–130
  203. ^ Hoddeson et al. 1993, pp. 130–131
  204. ^ Hoddeson et al. 1993, pp. 245–248
  205. ^ Hewlett & Anderson 1962, p. 311.
  206. ^ Hoddeson et al. 1993, p. 245
  207. ^ a b Hoddeson et al. 1993, pp. 294–296
  208. ^ Hoddeson et al. 1993, p. 299
  209. ^ a b c Hansen 1995b, p. V-123.
  210. ^ Hoddeson et al. 1993, pp. 301–307
  211. ^ Hoddeson et al. 1993, pp. 148–154
  212. ^ Hawkins, Truslow & Smith 1961, p. 203.
  213. ^ Hansen 1995a, p. I-298.
  214. ^ Hewlett & Anderson 1962, p. 235.
  215. ^ Gilbert 1969, pp. 3–4.
  216. ^ Hoddeson et al. 1993, pp. 308–310
  217. ^ Hewlett & Anderson 1962, pp. 244–245.
  218. ^ Baker, Hecker & Harbur 1983, pp. 144–145
  219. ^ Hoddeson et al. 1993, p. 288
  220. ^ Hoddeson et al. 1993, p. 290
  221. ^ Hoddeson et al. 1993, pp. 330–331
  222. ^ Hoddeson et al. 1993, pp. 245–249.
  223. ^ a b Rhodes 1986, p. 541.
  224. ^ Hawkins, Truslow & Smith 1961, pp. 95–98.
  225. ^ Hawkins, Truslow & Smith 1961, pp. 214–216.
  226. ^ "American Experience . Race for the Superbomb . Super Conference". PBS. Archived from the original on 28 August 2016. Retrieved 28 August 2016.
  227. ^ Jones 1985, p. 465.
  228. ^ Hewlett & Anderson 1962, pp. 318–319.
  229. ^ Jones 1985, pp. 478–481.
  230. ^ Walker, Raymond L. (1950). 100-ton Test: Piezo Gauge Measurements. U.S. Atomic Energy Commission, Technical Information Division. p. 1.
  231. ^ Loring, William S. (2019). Birthplace of the Atomic Bomb: A Complete History of the Trinity Test Site. Jefferson, North Carolina: McFarland & Company, Inc., Publishers. p. 133. ISBN 978-1-4766-3381-7.
  232. ^ a b Jones 1985, p. 512.
  233. ^ Hoddeson et al. 1993, pp. 360–362
  234. ^ Hoddeson et al. 1993, pp. 174–175
  235. ^ Hoddeson et al. 1993, pp. 365–367
  236. ^ Hoddeson et al. 1993, pp. 367–370
  237. ^ Hoddeson et al. 1993, pp. 372–374
  238. ^ Jones 1985, pp. 514–517.
  239. ^ Jungk 1958, p. 201.
  240. ^ "Bhagavad Gita As It Is, 11: The Universal Form, Text 12". A.C. Bhaktivedanta Swami Prabhupada. Retrieved 19 July 2013.
  241. ^ Barnett, Lincoln. "J. Robert Oppenheimer". Life. p. 133. ISSN 0024-3019. Retrieved 29 August 2023.
  242. ^ "The Eternal Apprentice". Time. 8 November 1948. Retrieved 29 August 2023.
  243. ^ Hijiya, James A. (June 2000). "The 'Gita' of J. Robert Oppenheimer". Proceedings of the American Philosophical Society. 144 (2): 123–167.
  244. ^ Groves 1962, pp. 303–304.
  245. ^ Jones 1985, p. 344.
  246. ^ Wellerstein, Alex (1 November 2013). "How many people worked on the Manhattan Project?". Restricted Data. Retrieved 28 March 2023.
  247. ^ "African Americans and the Manhattan Project". Nuclear Museum. Retrieved 12 April 2024.
  248. ^ Howes & Herzenberg 1999, pp. 14–15: "On the basis of numbers alone, women were important at all the project sites. They accounted for 9 percent of the 51,000 employees at Hanford in 1944, when the site's staff was at its largest. At Los Alamos, when tight security made it difficult to hire people who did not already live on the site, opportunities for women may have been even greater. In September 1943, some sixty women worked in the Technical Area at Los Alamos. By October 1944, about 30 percent, or 200 members of the labor for in the Tech Area, the hospital, and the schools were women. Of these, twenty could be described as scientists and fifty as technicians. ... The number of women working on the Manhattan Project contrasts sharply with the Apollo Project of the 1960s, which was comparable in size and scope. At its peak in 1965, when Apollo engaged 5.4 percent of the national supply of scientists and engineers, women accounted for only 3 percent of NASA's scientific and engineering staff."
  249. ^ Jones 1985, p. 353.
  250. ^ "1,000 were at Pasco". Lawrence Journal-World. Associated Press. 8 August 1945. p. 1. Retrieved 24 October 2022.
  251. ^ Jones 1985, pp. 349–350.
  252. ^ Jones 1985, p. 358.
  253. ^ Jones 1985, p. 361.
  254. ^ Nichols 1987, p. 123.
  255. ^ Jones 1985, p. 410.
  256. ^ Jones 1985, p. 430.
  257. ^ a b Wellerstein 2021, pp. 43, 52–96
  258. ^ Groves 1962, p. 140.
  259. ^ a b "No News Leaked Out About Bomb". Lawrence Journal-World. Associated Press. 8 August 1945. p. 5. Retrieved 15 April 2012.
  260. ^ Wickware, Francis Sill (20 August 1945). "Manhattan Project: Its Scientists Have Harnessed Nature's Basic Force". Life. pp. 2, 91. Retrieved 25 November 2011.
  261. ^ "The Secret City/ Calutron operators at their panels, in the Y-12 plant at Oak Ridge, Tennessee, during World War II". The Atlantic. 25 June 2012. Retrieved 25 June 2012.
  262. ^ Wellerstein, Alex (16 April 2012). "Oak Ridge Confidential, or Baseball for Bombs". Restricted Data. Archived from the original on 17 January 2013. Retrieved 7 April 2013.
  263. ^ Roberts, Sam (29 September 2014). "The Difficulties of Nuclear Containment". The New York Times. ISSN 0362-4331. Retrieved 6 May 2020.
  264. ^ Sweeney 2001, pp. 196–198.
  265. ^ Holloway 1994, pp. 76–79.
  266. ^ Jones 1985, pp. 253–255.
  267. ^ Sweeney 2001, pp. 198–200.
  268. ^ Jones 1985, pp. 263–264.
  269. ^ Jones 1985, p. 267.
  270. ^ Jones 1985, pp. 258–260.
  271. ^ Jones 1985, pp. 261–265.
  272. ^ Groves 1962, pp. 142–145.
  273. ^ Hewlett & Duncan 1969, pp. 312–314.
  274. ^ Hewlett & Duncan 1969, p. 472.
  275. ^ Broad, William J. (12 November 2007). "A Spy's Path: Iowa to A-Bomb to Kremlin Honor". The New York Times. pp. 1–2. Retrieved 2 July 2011.
  276. ^ Holloway 1994, pp. 222–223.
  277. ^ Gordin, Michael D. (2009). Red Cloud at Dawn: Truman, Stalin, and the End of the Atomic Monopoly. Farrar, Straus, and Giroux. pp. 153–156.
  278. ^ Groves 1962, pp. 191–192.
  279. ^ Groves 1962, pp. 187–190.
  280. ^ Jones 1985, p. 281.
  281. ^ Groves 1962, p. 191.
  282. ^ Jones 1985, p. 285.
  283. ^ Jones 1985, p. 282.
  284. ^ Groves 1962, pp. 194–196.
  285. ^ Groves 1962, pp. 200–206.
  286. ^ Jones 1985, pp. 283–285.
  287. ^ Goudsmit 1947, pp. 70–71.
  288. ^ Jones 1985, pp. 286–288.
  289. ^ Groves 1962, p. 237.
  290. ^ Jones 1985, pp. 289–290.
  291. ^ Goudsmit 1947, pp. 174–176.
  292. ^ Groves 1962, pp. 333–340.
  293. ^ Hoddeson et al. 1993, pp. 379–380.
  294. ^ Hoddeson et al. 1993, pp. 380–381.
  295. ^ a b Groves 1962, pp. 259–262.
  296. ^ Hoddeson et al. 1993, pp. 386–388.
  297. ^ Campbell 2005, pp. 39–40.
  298. ^ Groves 1962, p. 341.
  299. ^ Groves 1962, p. 184.
  300. ^ Groves 1962, pp. 268–276.
  301. ^ Groves 1962, p. 308.
  302. ^ Jones 1985, pp. 530–532.
  303. ^ "Notes of Meeting of the Interim Committee, June 1, 1945". The Harry S Truman Library and Museum. pp. 8–9. Archived from the original on 14 May 2011. Retrieved 2 March 2011.
  304. ^ Holloway 1994, pp. 116–117.
  305. ^ "Foreign Relations of the United States: Diplomatic Papers, The Conference of Berlin (The Potsdam Conference), 1945, Volume II". Office of the Historian. Retrieved 24 January 2024.
  306. ^ Gordin, Michael (2009). Red Cloud at Dawn: Truman, Stalin, and the End of the Atomic Monopoly. Farrar, Straus and Giroux. pp. 7–10.
  307. ^ "Order to Drop the Atomic Bomb, Handy to Spaatz, July 25, 1945". Office of History and Heritage Resources, US Department of Energy. Retrieved 24 January 2024.
  308. ^ Gordin, Michael (2007). Five Days in August: How World War II Became a Nuclear War. Princeton University Press. pp. 80, 90, 99.
  309. ^ Groves 1962, pp. 315–319.
  310. ^ Hoddeson et al. 1993, pp. 392–393
  311. ^ a b Wellerstein, Alex (4 August 2020). "Counting the dead at Hiroshima and Nagasaki". Bulletin of the Atomic Scientists. Retrieved 23 January 2024.
  312. ^ "U.S. Strategic Bombing Survey: The Effects of the Atomic Bombings of Hiroshima and Nagasaki" (PDF). Harry S. Truman Presidential Library and Museum. 19 June 1946. pp. 9, 36. Archived from the original (PDF) on 31 January 2012. Retrieved 15 March 2009.
  313. ^ Buttry, Daniel. "Life Arises from Hiroshima: Legacy of slavery still haunts Japan". Our Values. Retrieved 15 June 2016.
  314. ^ "Hiroshima and Nagasaki Bombing – Facts about the Atomic Bomb". Hiroshimacommittee.org. Retrieved 11 August 2013.
  315. ^ Sklar 1984, pp. 22–29
  316. ^ Groves 1962, pp. 343–346.
  317. ^ a b Hoddeson et al. 1993, pp. 396–397
  318. ^ "Telephone conversation transcript, General Hull and Colonel Seeman (13 August 45)" (PDF). National Security Archive Electronic Briefing Book No. 162. George Washington University. 13 August 1945. Retrieved 23 January 2024.
  319. ^ "Lawrence Litz's Interview (2012)". Manhattan Project Voices. Retrieved 27 February 2015.
  320. ^ Wellerstein, Alex (16 August 2013). "The Third Core's Revenge". Restricted Data. Retrieved 27 February 2015.
  321. ^ Wallace 1973, p. 474
  322. ^ Bernstein, Barton J. (Spring 1991). "Eclipsed by Hiroshima and Nagasaki: Early Thinking about Tactical Nuclear Weapons". International Security. 15 (4): 149–173. ISSN 0162-2889. JSTOR 2539014.
  323. ^ Ahnfeldt 1966, pp. 886–889.
  324. ^ Home & Low 1993, p. 537.
  325. ^ Groves 1962, pp. 348–362.
  326. ^ "Hirohito's "Jewel Voice Broadcast"". Air Force Magazine. August 2012. Archived from the original on 10 September 2013.
  327. ^ Burr, William (13 August 1945). "The Atomic Bomb and the End of World War II, A Collection of Primary Sources". National Security Archive Electronic Briefing Book No. 162. George Washington University. Retrieved 23 January 2024.
  328. ^ Frisch 1970, pp. 107–115.
  329. ^ Hewlett & Anderson 1962, pp. 399–400.
  330. ^ "Petition to the President of the United States, 17 July 1945. Miscellaneous Historical Documents Collection". Harry S. Truman Presidential Library and Museum. Archived from the original on 18 May 2015. Retrieved 20 October 2012.
  331. ^ Nichols 1987, p. 226.
  332. ^ Jones 1985, p. 600.
  333. ^ a b Jones 1985, pp. 592–593.
  334. ^ Sandia 1967, p. 11.
  335. ^ Hansen 1995b, p. V-152.
  336. ^ Nichols 1987, pp. 225–226.
  337. ^ Nichols 1987, pp. 216–217.
  338. ^ Hewlett & Anderson 1962, p. 624.
  339. ^ Hewlett & Anderson 1962, pp. 630, 646
  340. ^ Hewlett & Anderson 1962, p. 625.
  341. ^ Nichols 1987, p. 234.
  342. ^ Jones 1985, p. 594.
  343. ^ Weisgall, Jonathan (1994), Operation Crossroads: The Atomic Tests at Bikini Atoll, Annapolis, Maryland: Naval Institute Press, ISBN 978-1-55750-919-2
  344. ^ Groves 1962, pp. 394–398.
  345. ^ Grodzins & Rabinowitch 1963, p. vii.
  346. ^ Gosling 1994, pp. 55–57.
  347. ^ a b Hewlett & Anderson 1962, pp. 723–724.
  348. ^ Nichols 1987, pp. 34–35.
  349. ^ "Atomic Bomb Seen as Cheap at Price". Edmonton Journal. 7 August 1945. p. 1. Retrieved 1 January 2012.
  350. ^ Hewlett & Anderson 1962, pp. 723
  351. ^ Wellerstein, Alex (5 December 2011). "Origins of the Nuclear Blcak Budget". Restricted Data. Retrieved 7 April 2013.
  352. ^ a b Wellerstein 2021, pp. 77–82
  353. ^ Manhattan District History, Book 1, Volume 4, Chapter 1 (Legislative Contacts of the Manhattan Project). Vol. Book 1, Volume 4. 1947. pp. 2.4–2.13.
  354. ^ O'Brien 2015, pp. 47–48.
  355. ^ "The Community LOOW Project: A Review of Environmental Investigations and Remediation at the Former Lake Ontario Ordnance Works" (PDF). King Groundwater Science, Inc. September 2008.
  356. ^ "Niagara Falls Storage Site, New York" (PDF). U.S. Army Corps of Engineers. 31 August 2011. Archived from the original (PDF) on 23 February 2017.
  357. ^ Jenks, Andrew (July 2002). "Model City USA: The Environmental Cost of Victory in World War II and the Cold War". Environmental History. 12 (77): 552. doi:10.1093/envhis/12.3.552.
  358. ^ DePalma, Anthony (10 March 2004). "A Toxic Waste Capital Looks to Spread it Around; Upstate Dump is the Last in the Northeast". The New York Times.
  359. ^ Laurence, William L. (26 September 1945). "Drama of the Atomic Bomb Found Climax in July 16 Test". The New York Times. Retrieved 1 October 2012.
  360. ^ Sweeney 2001, pp. 204–205.
  361. ^ Holloway 1994, pp. 59–60.
  362. ^ Hewlett & Anderson 1962, pp. 633–637.
  363. ^ Weinberg 1961, p. 161.
  364. ^ Hewlett & Duncan 1969, pp. 74–76.
  365. ^ Hewlett & Duncan 1969, pp. 72–74.
  366. ^ Hewlett & Duncan 1969, pp. 490–493, 514–515
  367. ^ Hewlett & Duncan 1969, pp. 252–253.
  368. ^ Walker 2009, pp. 2–3
  369. ^ General Accounting Office (2006). "Nuclear Waste: DOE's Efforts to Protect the Columbia River from Contamination Could Be Further Strengthened". Retrieved 23 January 2024.
  370. ^ Hewlett & Anderson 1962, p. 655.
  371. ^ "Manhattan Project National Historical Park". Department of Energy. Retrieved 10 November 2015.

References

Technical histories

Participant accounts

External links