En matemáticas , el principio de Laplace es un teorema básico en la teoría de grandes desviaciones que es similar al lema de Varadhan . Proporciona una expresión asintótica para la integral de Lebesgue de exp(− θφ ( x )) sobre un conjunto fijo A a medida que θ se hace grande. Tales expresiones se pueden utilizar, por ejemplo, en mecánica estadística para determinar el comportamiento límite de un sistema cuando la temperatura tiende al cero absoluto .
Declaración del resultado
Sea A un subconjunto medible de Lebesgue del espacio euclidiano d - dimensional R d y sea φ : R d → R una función medible con
Entonces
donde ess inf denota el ínfimo esencial . Heurísticamente, esto puede leerse como que para θ grande ,
Solicitud
El principio de Laplace se puede aplicar a la familia de medidas de probabilidad P θ dada por
para dar una expresión asintótica para la probabilidad de algún evento A cuando θ se hace grande. Por ejemplo, si X es una variable aleatoria distribuida normalmente en R , entonces
para cada conjunto medible A .
Véase también
Referencias
- Dembo, Amir; Zeitouni, Ofer (1998). Grandes desviaciones, técnicas y aplicaciones . Aplicaciones de las matemáticas (Nueva York) 38 (segunda edición). Nueva York: Springer-Verlag. pp. xvi+396. ISBN 0-387-98406-2. Señor 1619036