stringtranslate.com

AMD PowerPlay

AMD PowerPlay is the brand name for a set of technologies for the reduction of the energy consumption implemented in several of AMD's graphics processing units and APUs supported by their proprietary graphics device driver "Catalyst". AMD PowerPlay is also implemented into ATI/AMD chipsets which integrated graphics and into AMD's Imageon handheld chipset, that was sold to Qualcomm in 2008.

Besides the desirable goal to reduce energy consumption, AMD PowerPlay helps to lower the noise levels created by the cooling in desktop computers and extend battery life in mobile devices. AMD PowerPlay has been succeeded by AMD PowerTune.[1]

History

The technology was first implemented in Mobility Radeon products for notebooks, to provide a set of features to lower the power consumption of the laptop computer. The technology consists of several technologies; examples include dynamic clock adjustments when the notebook is not plugged into a power socket and allowing different backlight brightness levels of the notebook LCD monitor. The technology was updated with the release of each generation of mobile GPUs. The latest release is ATI PowerPlay 7.0.[2]

Since the release of Radeon HD 3000 Series, PowerPlay was implemented to further reduce the power consumption of desktop GPUs.

Currently supported products

The official ATI support list[3] lists only the ATI Radeon 3800 series desktop cards, but PowerPlay is also a listed feature of all Radeon HD 3000/4000/5000 series products. Independent reviews indicated that the latter was already lower power compared to other 3D cards, so the addition of PowerPlay to that line was clearly intended to address an increasingly power, heat and noise conscious market. The ATI Radeon HD 2600 line – which does not support PowerPlay – was being phased out in favour of the 3000 series at the same price points that also support PCI Express 2.0, DirectX 10.1 and faster GDDR3 memory.

The entire ATI Radeon Xpress line is also supported for single board computers which tend to be power sensitive and used in large installations where configuration and boot image control are major concerns.

Support for "PowerPlay" was added to the Linux kernel driver "amdgpu" on November 11, 2015.[4]

Desktop versus laptop

The main difference between the desktop and laptop versions is that the desktop version cuts the features which are aimed at notebook usage, including variable LCD backlight brightness. The PowerPlay technology for Radeon desktop graphics features three usage scenarios: normal mode (2D mode), light gaming mode and intensive gaming mode (3D mode), replacing notebook scenarios (running on AC power or battery power). Tests indicated that the lowest core clock frequency of an RV670 GPU core can reach as low as 300 MHz with PowerPlay technology enabled.[5]

Feature overview for AMD APUs

The following table shows features of AMD's processors with 3D graphics, including APUs (see also: List of AMD processors with 3D graphics).

  1. ^ For FM2+ Excavator models: A8-7680, A6-7480 & Athlon X4 845.
  2. ^ A PC would be one node.
  3. ^ An APU combines a CPU and a GPU. Both have cores.
  4. ^ Requires firmware support.
  5. ^ a b Requires firmware support.
  6. ^ No SSE4. No SSSE3.
  7. ^ Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  8. ^ Unified shaders : texture mapping units : render output units
  9. ^ a b To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  10. ^ To feed more than two displays, the additional panels must have native DisplayPort support.[15] Alternatively active DisplayPort-to-DVI/HDMI/VGA adapters can be employed.
  11. ^ a b DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

Feature overview for AMD graphics cards

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

  1. ^ The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. ^ R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. ^ OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. ^ a b c The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. ^ Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. ^ a b To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. ^ More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. ^ a b DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

See also

References

  1. ^ "AMD PowerTune vs PowerPlay" (PDF). AMD. December 1, 2010.
  2. ^ Marco Chiappetta (September 10, 2009). "ATI Radeon HD 4670, Redefining The Mainstream". Retrieved December 10, 2018.
  3. ^ "AMD PowerPlay Technology". Archived from the original on January 30, 2014. Retrieved August 23, 2017.
  4. ^ "Add amdgpu powerplay support". November 11, 2015.
  5. ^ PC Watch image. Retrieved December 3, 2007. Notice the core speed in current clock settings section in gray.
  6. ^ "AMD Announces the 7th Generation APU: Excavator mk2 in Bristol Ridge and Stoney Ridge for Notebooks". May 31, 2016. Retrieved January 3, 2020.
  7. ^ "AMD Mobile "Carrizo" Family of APUs Designed to Deliver Significant Leap in Performance, Energy Efficiency in 2015" (Press release). November 20, 2014. Retrieved February 16, 2015.
  8. ^ "The Mobile CPU Comparison Guide Rev. 13.0 Page 5 : AMD Mobile CPU Full List". TechARP.com. Retrieved December 13, 2017.
  9. ^ a b "AMD VEGA10 and VEGA11 GPUs spotted in OpenCL driver". VideoCardz.com. Retrieved June 6, 2017.
  10. ^ Cutress, Ian (February 1, 2018). "Zen Cores and Vega: Ryzen APUs for AM4 – AMD Tech Day at CES: 2018 Roadmap Revealed, with Ryzen APUs, Zen+ on 12nm, Vega on 7nm". Anandtech. Retrieved February 7, 2018.
  11. ^ Larabel, Michael (November 17, 2017). "Radeon VCN Encode Support Lands in Mesa 17.4 Git". Phoronix. Retrieved November 20, 2017.
  12. ^ a b "AMD Ryzen 5000G 'Cezanne' APU Gets First High-Res Die Shots, 10.7 Billion Transistors In A 180mm2 Package". wccftech. August 12, 2021. Retrieved August 25, 2021.
  13. ^ Tony Chen; Jason Greaves, "AMD's Graphics Core Next (GCN) Architecture" (PDF), AMD, retrieved August 13, 2016
  14. ^ "A technical look at AMD's Kaveri architecture". Semi Accurate. Retrieved July 6, 2014.
  15. ^ "How do I connect three or More Monitors to an AMD Radeon™ HD 5000, HD 6000, and HD 7000 Series Graphics Card?". AMD. Retrieved December 8, 2014.
  16. ^ Airlie, David (November 26, 2009). "DisplayPort supported by KMS driver mainlined into Linux kernel 2.6.33". Retrieved January 16, 2016.
  17. ^ "Radeon feature matrix". freedesktop.org. Retrieved January 10, 2016.
  18. ^ Deucher, Alexander (September 16, 2015). "XDC2015: AMDGPU" (PDF). Retrieved January 16, 2016.
  19. ^ a b Michel Dänzer (November 17, 2016). "[ANNOUNCE] xf86-video-amdgpu 1.2.0". lists.x.org.
  20. ^ "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  21. ^ "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  22. ^ "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  23. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved April 20, 2018.
  24. ^ "Mesamatrix". mesamatrix.net. Retrieved April 22, 2018.
  25. ^ "RadeonFeature". X.Org Foundation. Retrieved April 20, 2018.
  26. ^ "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  27. ^ "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. August 3, 2023. Retrieved September 4, 2023.
  28. ^ "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved September 4, 2023.
  29. ^ a b c Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  30. ^ Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  31. ^ Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  32. ^ "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  33. ^ Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved December 7, 2016.
  34. ^ "AMDGPU". Retrieved December 29, 2023.

External links