stringtranslate.com

PEDOT-TMA

Poly(3,4-ethylenedioxythiophene)-tetramethacrylate or PEDOT-TMA is a p-type conducting polymer based on 3,4-ethylenedioxylthiophene or the EDOT monomer. It is a modification of the PEDOT structure. Advantages of this polymer relative to PEDOT (or PEDOT:PSS) are that it is dispersible in organic solvents, and it is non-corrosive. PEDOT-TMA was developed under a contract with the National Science Foundation, and it was first announced publicly on April 12, 2004.[1] The trade name for PEDOT-TMA is Oligotron. PEDOT-TMA was featured in an article entitled "Next Stretch for Plastic Electronics" that appeared in Scientific American in 2004.[2][3]The U.S. Patent office issued a patent protecting PEDOT-TMA on April 22, 2008.[4]

PEDOT-TMA differs from the parent polymer PEDOT in that it is capped on both ends of the polymer. This limits the chain-length of the polymer, making it more soluble in organic solvents than PEDOT. The methacrylate groups on the two end-caps allow further chemistry to occur such as cross-linking to other polymers or materials.

Physical properties

The bulk conductivity of PEDOT-TMA is 0.1-.5 S/cm, the sheet resistance 1-10 M Ω/sq, and the methacrylate equivalent weight 1360-1600 g/mol. The chemical composition of a film of PEDOT-TMA was measured by energy-dispersive x-ray spectroscopy (EDS). The relative C, O, and S weight percentages were 51.28%, 35.37%, and 10.43%. There was also 2.92% Fe present in the film.[5]

Applications

Several devices and materials have been described in both journals and the patent literature that use PEDOT-TMA as a critical component. In this section, a brief overview of these inventions is given.

References

  1. ^ Chamot, J. (April 12, 2004). "New Molecule Heralds Breakthrough in Electronic Plastics". Retrieved October 3, 2012.
  2. ^ Collins, Graham P. (August 1, 2004). "Next Stretch for Plastic Electronics". Scientific American. 291 (2): 75–81. Bibcode:2004SciAm.291b..74C. doi:10.1038/scientificamerican0804-74. PMID 15298122.
  3. ^ "Light and Magic". The Economist. 2004-05-22. p. 74. Retrieved October 3, 2012.
  4. ^ US patent 7361728, Elliott; Brian J.; Luebben; Silvia D. & Sapp; Shawn A. et al., "Electrically conducting materials from branched end-capping intermediates", published 2008-04-22, assigned to TDA Research, Inc. 
  5. ^ He, Jiarong; Jing Su; Jinglun Wang; Lingzhi Zhang (2018). "Synthesis of water-free PEDOT with polyvinylpyrrolidone stabilizer in organic dispersant system". Organic Electronics. 53: 117–126. doi:10.1016/j.orgel.2017.11.035.
  6. ^ Liu, J.; L. N. Lewis; A. R. Dugal (2007). "Photoactivated and patternable charge transport materials and their use in organic light-emitting devices". Appl. Phys. Lett. 90 (23): 233503. Bibcode:2007ApPhL..90w3503L. doi:10.1063/1.2746404.
  7. ^ Liu, Jie; Larry Neil Lewis; Anil Raj Duggal; Rubinsztajn Slawomir (2005-10-04). US Patent Application US 2007/0077452, Organic light emitting devices having latent activated layers and methods of fabricating the same.
  8. ^ Vitukhnovskii, Alexey; Andrey Vashenko; Denis Bychkovskii (2014-12-31). WO Patent Application 2014/209154A1, Organic light-emitting element with the radiating layer containing quantum dots with modified surface.
  9. ^ Rzewuska, Anna; Marcin Wojciechowski; Ewa Bulska; Elizabeth A. H. Hall; Krzysztof Maksymiuk; Agata Michalska (2008). "Composite Polyacrylate-Poly(3,4- ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sensors". Anal. Chem. 80 (1): 321–327. doi:10.1021/ac070866o. PMID 18062675.
  10. ^ Ocana Tejada, Cristina; Natalia Abramova; Andrey Bratov; Tom Lindfors; Johan Bobacka (2018). "Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently attached to methacrylate functionalized poly(3,4-ethylenedioxythiophene) as a solid-contact". Talanta. 186: 279–285. doi:10.1016/j.talanta.2018.04.056. PMID 29784361. S2CID 29167779.
  11. ^ Ocana, C.; M. Munoz-Correas; N. Abramova; A. Bratov (2020). "Comparison of Different Commercial Conducting Materials as Ion-to-Electron Transducer Layers in Low-Cost Selective Solid-Contact Electrodes". Sensors. 20 (5): 1348–1360. Bibcode:2020Senso..20.1348O. doi:10.3390/s20051348. PMC 7085546. PMID 32121463.
  12. ^ Kim, Kyung Ho; Takashi Okubo; Naoyo Tanaka; Naoto Mimura; Masahiko Maekawa; Takayoshi Kuroda-Sowa (2010). "Dye-sensitized Solar Cells with Halide-bridged Mixed-valence Cu(I)-Cu(II) Coordination Polymers with Hexamethylenedithiocarbamate Ligand". Chem. Lett. 39 (7): 792–793. doi:10.1246/cl.2010.792.
  13. ^ Okubo, Takashi; Naoyo Tanaka; Haruho Anma Kyung; Ho Kim; Masahiko Maekawa; Takayoshi Kuroda-Sowa (2012). "Dye-sensitized Solar Cells with New One-Dimensional Halide-Bridged Cu(I)–Ni(II) Heterometal Coordination Polymers Containing Hexamethylene Dithiocarbamate Ligand". Polymers. 4 (3): 1613–1626. doi:10.3390/polym4031613.
  14. ^ Kim, Kyung Ho; Kazuomi Utashiro; Zhuguang Jin; Yoshio Abe; Midori Kawamura (2013). "Dye-Sensitized Solar Cells with Sol-Gel Solution Processed Ga-Doped ZnO Passivation Layer". Int. J. Electrochem. Sci. 8 (4): 5183–5190. doi:10.1016/S1452-3981(23)14672-4. S2CID 225060588.
  15. ^ Kim, Kyung Ho; Kazuomi Utashiro; Yoshio Abe; Midori Kawamura (2014). "Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells". Materials. 7 (4): 2522–2533. Bibcode:2014Mate....7.2522K. doi:10.3390/ma7042522. PMC 5453348. PMID 28788581.
  16. ^ Yoshimura, Nobutaka; Atsushi Kobayashi; Wataru Genno; Takashi Okubo; Masaki Yoshida; Masako Kato (2020). "Photosensitizing Ruthenium(II)-Dye Multilayers: Photoinduced Charge Separation and Back Electron Transfer Suppression". Sustainable Energy & Fuels. 4 (7): 3450–3457. doi:10.1039/D0SE00151A. S2CID 218997972.
  17. ^ Edwards, Lewin; Patricia McCrimmon; Richard Thomas Watson (2010-07-22). US Patent Application 2010/0182245, Tactile-Feedback Touch Screen.
  18. ^ Routkevitch, Dmitri; Rikard A. Wind (2010-12-02). US Patent Application 2010/0304204, Energy Conversion and Energy Storage Devices and Methods for Making Same.
  19. ^ Slaughter, Gymama (2010). "Fabrication of Nanoindented Electrodes for Glucose Detection". J. Diabetes Sci. Technol. 4 (2): 320–327. doi:10.1177/193229681000400212. PMC 2864167. PMID 20307392.
  20. ^ Peng, Huisheng; Xuemei Sun (2009). "Highly Aligned Carbon Nanotube/Polymer Composites with Much Improved Electrical Conductivities". Chemical Physics Letters. 471 (1–3): 103–105. Bibcode:2009CPL...471..103P. doi:10.1016/j.cplett.2009.02.008. S2CID 98836276.
  21. ^ Chuangchote, Surawut; Takashi Sagawaa; Susumu Yoshikawa (2011). "Design of metal wires-based organic photovoltaic cells" (PDF). Energy Procedia. 9: 553–558. Bibcode:2011EnPro...9..553C. doi:10.1016/j.egypro.2011.09.064.
  22. ^ Deshmukh, Kalim; Girish M. Joshi (2015). "Embedded capacitor applications of grapheme oxide reinforced poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) composites". Journal of Materials Science: Materials in Electronics. 26 (8): 5896–5909. doi:10.1007/s10854-015-3159-0. S2CID 137234524.
  23. ^ Joshi, Girish; Kalim Deshmukh (2015). "Conjugated Polymer/Graphene oxide Nanocomposite As Thermistor". AIP Conference Proceedings. 1665 (1): 050017. Bibcode:2015AIPC.1665e0017J. doi:10.1063/1.4917658.
  24. ^ Ashery, A.; G. Said; W.A. Arafa; A.E.H. Gaballah; A.A.M. Farag (2016). "Morphological and crystalline structural characteristics of PEDOT/TiO
    2
    nanocomposites for applications towards technology in electronic devices". Journal of Alloys and Compounds. 671: 291–298. doi:10.1016/j.jallcom.2016.02.088.
  25. ^ Ashery, A.; A.A.M. Farag; A.E.H. Gaballah; G. Said; W.A. Arafa (2017). "Nanostructural, optical and heterojunction characteristics of PEDOT/ZnO nanocomposite thin films". Journal of Alloys and Compounds. 723: 276–287. doi:10.1016/j.jallcom.2017.06.260.
  26. ^ Ashery, A.; G. Said; W.A. Arafa; A.E.H. Gaballah; A.A.M. Farag (2016). "Structural and optical characteristics of PEDOT/n-Si heterojunction diode". Synthetic Metals. 214: 92–99. doi:10.1016/j.synthmet.2016.01.008.
  27. ^ Okutani, Chihiro; Tomoyuki Yokota; Takeo Someya (2022). "Ultrathin Fiber-Mesh Polymer Thermistors". Advanced Science. 9 (30): e2202312. doi:10.1002/advs.202202312. PMC 9596841. PMID 36057993. S2CID 252070381.