stringtranslate.com

Halcón MIM-23

El Raytheon MIM-23 HAWK ("Homing All the Way Killer") [2] es un misil tierra-aire estadounidense de mediano alcance . Fue diseñado para ser una contraparte mucho más móvil del MIM-14 Nike Hercules , sacrificando alcance y capacidad de altitud por un tamaño y peso mucho más pequeños. Su rendimiento a baja altura se mejoró en gran medida con respecto al Nike mediante la adopción de nuevos radares y un sistema de guía de radar semiactivo de onda continua . Entró en servicio en el Ejército de los EE. UU. en 1959.

En 1971 se sometió a un importante programa de mejoras, conocido como el Hawk mejorado o I-Hawk , que introdujo varias mejoras en el misil y reemplazó todos los sistemas de radar por nuevos modelos. Las mejoras continuaron durante los siguientes veinte años, añadiendo un ECCM mejorado , una función de apuntar hacia el objetivo en caso de interferencia y, en 1995, una nueva ojiva que lo hizo capaz de atacar misiles balísticos tácticos de corto alcance . Jane's informó que la probabilidad de muerte con un solo disparo del sistema original era de 0,56; el I-Hawk la mejoró a 0,85. [3]

El Hawk fue reemplazado por el MIM-104 Patriot en el servicio del Ejército de los EE. UU . en 1994. El último usuario estadounidense fue el Cuerpo de Marines de los EE. UU. , que utilizó el suyo hasta 2002, cuando fueron reemplazados por el FIM-92 Stinger de corto alcance portátil . El misil también se produjo fuera de los EE. UU. en Europa Occidental , Japón e Irán . [4] Estados Unidos nunca utilizó el Hawk en combate, pero ha sido empleado numerosas veces por otras naciones. Se produjeron aproximadamente 40.000 de los misiles.

Desarrollo

La iteración original del misil, MIM-23A, más tarde conocido como Basic Hawk .

El desarrollo del sistema de misiles Hawk comenzó en 1952, cuando el ejército de los Estados Unidos inició los estudios sobre un misil tierra-aire de alcance medio guiado por radar semiactivo . En julio de 1954, Northrop recibió contratos de desarrollo para el lanzador, los radares y los sistemas de control de tiro, mientras que Raytheon obtuvo el contrato para el misil. El primer lanzamiento de prueba del misil, entonces denominado XSAM-A-18, tuvo lugar en junio de 1956.

En julio de 1957 se completó el desarrollo, momento en el que la designación había cambiado a XM3 y XM3E1. Los primeros misiles utilizaban el motor Aerojet M22E7, que no era fiable. Los problemas se resolvieron con la adopción del motor M22E8.

El misil fue desplegado inicialmente por el Ejército de Estados Unidos en 1959 y por el Cuerpo de Marines de Estados Unidos en 1960.

La alta complejidad del sistema y la calidad de la electrónica basada en válvulas permitieron que los radares de los primeros sistemas Hawk tuvieran un tiempo medio entre fallos (MTBF) de tan solo 43 horas. El sistema Hawk mejorado aumentó este tiempo a entre 130 y 170 horas. Las versiones posteriores del Hawk mejoraron aún más este tiempo hasta alcanzar entre 300 y 400 horas.

Hawk mejorado o I-Hawk El sistema Hawk original tenía problemas para alcanzar objetivos a baja altitud: el misil tenía problemas para localizar el objetivo en medio de la interferencia del terreno. El ejército de los EE. UU. inició un programa para abordar estos problemas en 1964 a través del Programa de Mejora del Hawk (Hawk/HIP). Esto implicó numerosas mejoras al sistema Hawk:

El sistema entró en servicio en 1972 y la primera unidad alcanzó el estado operativo en octubre. Todas las unidades estadounidenses fueron modernizadas al estándar I-Hawk en 1978.

Plan de mejora de productos En 1973, el Ejército de los EE. UU. inició un extenso PIP (Plan de mejora de productos) Hawk de varias fases, destinado principalmente a mejorar y modernizar numerosos elementos del equipo terrestre.

Restauración de la confiabilidad del misil Hawk (MRR)

Este fue un programa que funcionó entre 1982 y 1984 destinado a mejorar la confiabilidad de los misiles.

Halcón ECCM

Este programa, que se ejecutó en paralelo con el MMR, produjo sistemas de control electrónico de amenazas específicas, probablemente los módulos de control electrónico soviéticos contemporáneos, como el SPS-141 instalado en el Su-22 , que resultó moderadamente eficaz durante la guerra entre Irán e Irak . Los misiles MIM-23C y E contienen estas correcciones.

Mejoras para reducir el desorden

Mejoras del misil que lo elevan a MIM-23G y que le permiten atacar objetivos que vuelan a baja altura en un entorno con mucho ruido. Estas mejoras se implementaron por primera vez en 1990.

Misil Hawk ILM (modificación de letalidad mejorada)

Para mejorar la letalidad de la ojiva del misil contra misiles balísticos , la ojiva fue rediseñada para producir menos fragmentos más grandes, típicamente de 35 gramos cada uno, comparables a un proyectil de 12,7 mm en masa.

Mejoras en la movilidad de Hawk y TMD

Tras la experiencia adquirida en la Guerra del Golfo de 1990, se ha desarrollado un programa de mejora de la capacidad de supervivencia de la movilidad del Hawk . El objetivo de este programa era reducir el número de vehículos de apoyo por batería y aumentar la capacidad de supervivencia. Las mejoras del lanzador permiten transportar misiles en el propio lanzador, así como sustituir los tubos de vacío por una computadora de placa única . Un sistema de búsqueda del norte acelera la orientación y la alineación del lanzador. Un cable de campo sustituye a los cables pesados ​​y permite una mayor dispersión entre los vehículos de la batería, desde 110 m (360 pies) hasta 2 km (1,2 mi). Las mejoras fueron desplegadas por el Cuerpo de Marines de los EE. UU. entre principios de 1995 y septiembre de 1996.

Fase IV

Como tanto el ejército como los marines abandonaron el Hawk, la fase IV nunca se completó. Estaba previsto que incluyera:
  • Radar de adquisición de onda continua de alta movilidad para mejorar la detección de pequeños UAV.
  • Un nuevo radar de combate CW.
  • Señuelos de misiles antirradiación.
  • Un motor de misil mejorado.
  • Un rastreador electroóptico mejorado.
  • Comando y control mejorados.
  • Actualizaciones de ATBM.

Halcón XXI (Halcón 21)

El Hawk XXI o Hawk-21 es una versión más avanzada y compacta de la actualización del Hawk PIP-3. El Hawk-XXI básicamente elimina los radares PAR y CWAR con la introducción de radares 3D MPQ-64 Sentinel . La compañía noruega Kongsberg proporciona un FDC (Fire Distribution Center) como el que se utiliza en el sistema NASAMS en Noruega. Los misiles son la versión mejorada del estándar MIM-23K con una ojiva de fragmentación de explosión mejorada que crea una zona letal más grande. El sistema también es eficaz contra misiles balísticos tácticos de corto alcance.
Un radar MPQ-61 HIPIR proporciona cobertura de radar de baja altitud y de área local, así como iluminación de radar de onda continua para los misiles MIM-23K Hawk.

Descripción

Un lanzamiento de un misil Hawk
Recarga de un lanzador Hawk con la ayuda del tractor de carga de misiles M501.

El sistema Hawk consta de una gran cantidad de componentes. Estos elementos se montaban normalmente en remolques con ruedas, lo que hacía que el sistema fuera semimóvil. Durante los 40 años de vida útil del sistema, estos componentes se actualizaron continuamente.

El misil Hawk se transporta y se lanza desde el lanzador triple de misiles remolcado M192. En 1969 se utilizó un lanzador autopropulsado Hawk, el SP-Hawk, que simplemente montaba el lanzador sobre un M727 con orugas ( M548 modificado ), pero el proyecto se abandonó y toda actividad terminó en agosto de 1971.

El misil está propulsado por un motor de doble empuje, con una fase de impulso y una fase de mantenimiento. Los misiles MIM-23A estaban equipados con un motor M22E8 que funciona durante 25 a 32 segundos. Los misiles MIM-23B y posteriores están equipados con un motor M112 con una fase de impulso de 5 segundos y una fase de mantenimiento de alrededor de 21 segundos. El motor M112 tiene un mayor empuje, lo que aumenta la envolvente de ataque.

Los misiles MIM-23A originales utilizaban un reflector parabólico, pero el enfoque direccional de la antena era insuficiente; al atacar objetivos que volaban a baja altura, el misil se lanzaba sobre ellos para perderlos entre las interferencias del suelo. Los misiles MIM-23B I-Hawk y posteriores utilizan una antena plana de alta ganancia y lóbulo lateral bajo para reducir la sensibilidad a las interferencias del suelo, además de un receptor invertido desarrollado a fines de la década de 1960 para brindar al misil una capacidad ECCM mejorada y aumentar la resolución de frecuencia Doppler.

La pantalla de radar contenida en la consola de control de participación y visualización táctica (TDECC).

Una batería Hawk básica típica consta de:

Una batería Hawk de fase III típica consta de:

Misiles

Una batería HAWK holandesa proporciona un paraguas de protección para una columna de tanques.

El misil Hawk tiene un cuerpo cilíndrico delgado y cuatro alas delta largas con cuerda recortada, que se extienden desde la mitad del cuerpo hasta la cola de barco ligeramente afilada. Cada ala tiene una superficie de control en el borde de salida.

En la década de 1970, la NASA utilizó misiles Hawk sobrantes para crear el cohete sonda Nike Hawk . [5]

Halcón básico: MIM-23A

Batería de misiles Hawk en exhibición en un museo

El misil original utilizado con el sistema. La ojiva de 54 kg (119 lb) produce aproximadamente 4000 fragmentos de 8 gramos (0,28 oz) que se mueven a aproximadamente 2000 m/s (4500 mph) en un arco de 18 grados. [6]

I-Hawk: MIM-23B

El MIM-23B tiene una ojiva de fragmentación de explosión más grande de 163 libras (74 kg), un paquete de guía más pequeño y mejorado y un nuevo motor de cohete M112. La nueva ojiva produce aproximadamente 14.000 fragmentos de 2 gramos (0,071 oz) que cubren un arco mucho más grande de 70 grados. El motor de cohete M112 del misil tiene una fase de impulso de 5 segundos y una fase de sostenimiento de 21 segundos.

El peso total del motor es de 395 kg (871 lb), incluidos 295 kg (650 lb) de combustible. Este nuevo motor mejora el alcance de ataque a una distancia de entre 1,5 y 40 km (0,93 y 24,85 mi) a gran altitud y de entre 2,5 y 20 km (1,6 y 12,4 mi) a baja altitud. La altitud mínima de ataque es de 60 m (200 pies). El misil estuvo operativo en 1971. Todas las unidades estadounidenses se habían adaptado a este estándar en 1978.

Componentes del sistema

La estructura del Hawk y del Hawk mejorado se integró en un solo sistema: el sistema de control y coordinación de misiles de defensa aérea AN/TSQ-73 , llamado Missile Minder o Hawk-MM . Consta de los siguientes componentes: radar de adquisición de pulsos MPQ-50, radar de adquisición de onda continua mejorado MPQ-48, central de control de batería TSW-8, central de coordinación de información ICC, puesto de mando de pelotón MSW-11, iluminador de alta potencia MPQ-46, radar de alcance únicamente MPQ-51 y el lanzador M192. [7]

ECCM mejorado

Introducido alrededor de 1982 con capacidades ECCM mejoradas.

Actualización desconocida del MIM-23C. Las familias de misiles C y D permanecieron separadas hasta que los misiles dejaron de estar en servicio. No está claro exactamente cuál es la diferencia entre los dos misiles, pero parece probable que los misiles de la familia D representen un sistema de guía alternativo, posiblemente basado en interferencias, desarrollado en respuesta a las técnicas de ECM soviéticas que se utilizaron en Irak durante la guerra entre Irán e Irak.

Bajo nivel/interferencia múltiple

Una versión mejorada de los misiles MIM-23C/D mejoró la guía para enfrentamientos a baja altura en un entorno de interferencias múltiples y ruidos fuertes. Introducido en 1990.

Nueva sección del cuerpo

Una actualización de 1995 consistente en un nuevo conjunto de secciones del cuerpo para los misiles MIM-23E/F.

Nueva ojiva + espoleta (anti-TBM)

Introducido alrededor de 1994. Ojiva con configuración de letalidad mejorada con fragmentos de 35 gramos (540 granos) en lugar de los fragmentos de 2 gramos (30 granos) de los I-Hawks. Los misiles MIM-23K Hawk son efectivos hasta 66.000 pies (20.000 m) de altitud y hasta 28 millas (45 km) de alcance. El misil también incluye una nueva espoleta para hacerlo efectivo contra misiles balísticos.

Nueva espoleta + ojiva vieja

Mantiene la ojiva I-Hawks de 30 granos, pero con la nueva espoleta.

Radares

El sistema Hawk original utilizaba 4 radares o, en algunos modelos, 6 : para detectar (PAR y CWAR), para rastrear (CWAR y HPIR) y para atacar objetivos (HPIR y ROR). A medida que se actualizaba el sistema, se fusionaban las funciones de algunos de los radares. La versión final del sistema consta de solo 2 radares, un radar de búsqueda de matriz en fase mejorado y un radar de ataque (HPIR).

Un radar Hawk PAR
Radar de adquisición de pulsos PAR

El radar de adquisición de pulsos es un radar de búsqueda de gran altitud y largo alcance.

El radar de búsqueda se utiliza con el sistema básico Hawk, con una potencia de pulso de radar de 450 kW y una longitud de pulso de 3 μs, una frecuencia de repetición de pulso de 800 y 667 Hz alternativamente. El radar opera en el rango de 1,25 a 1,35 GHz. La antena es un reflector elíptico de 22,0 pies × 4,6 pies (6,7 m × 1,4 m) de construcción de celosía abierta, montado en un pequeño remolque de dos ruedas. La velocidad de rotación es de 20 rpm, la BCC (Central de Control de Batería) y el CWAR están sincronizados por las revoluciones del PAR y el disparador del sistema PAR.

El PAR mejorado se introdujo con el sistema I-Hawk. El sistema incorpora un indicador de objetivo móvil (MTI) digital que ayuda a separar los objetivos de los ruidos del terreno. Funciona en el rango de frecuencia de 500 a 1000 MHz ( banda C ) con una potencia de pulso de radar de 450 kW.

Un radar Hawk CWAR
El radar de adquisición de CW mejorado

Un sistema de radar Doppler de banda X 3D con control de alcance utilizado con el sistema Hawk XXI. Reemplaza los componentes CWAR y PAR del sistema Hawk. El MPQ-64 Sentinel proporciona cobertura hasta un alcance de 47 mi (75 km), girando a 30 rpm. El sistema tiene un tiempo medio entre fallos de alrededor de 600 horas y puede rastrear al menos 60 objetivos a la vez. Puede elevarse hasta +55 grados y deprimirse hasta -10 grados. [8]

Radar de adquisición de onda continua CWAR

Este sistema de onda continua de banda X se utiliza para detectar objetivos. La unidad viene montada en su propio remolque móvil. La unidad adquiere objetivos a través de 360 ​​grados de acimut mientras proporciona datos de velocidad radial y alcance sin procesar del objetivo.

Radar de adquisición MPQ-34 Hawk CW con potencia nominal de 200 W y frecuencia de 10 GHz ( banda X ) Fabricado por Raytheon. Reemplazado por el MPQ-48.

La versión Hawk mejorada del radar de adquisición CW duplicó la potencia de salida y mejoró los rangos de detección:

Radar de adquisición de onda continua mejorado Hawk o ICWAR. La potencia de salida se duplica a 400 W, lo que aumenta el rango de detección a alrededor de 43 mi (70 km). El radar opera en la banda de 10 a 20 GHz ( banda J ). Otras características incluyen medición de distancia FM y BITE (equipo de prueba integrado). Se aplica modulación de frecuencia a la transmisión en exploraciones alternas del ICWAR para obtener información de alcance.

Algunos cambios en el procesamiento de señales permiten que el radar determine la distancia y la velocidad de los objetivos en un solo escaneo. Se agregó un sistema DSP digital que permite que gran parte del trabajo de procesamiento se realice directamente en el radar y se transmita directamente a través de un enlace digital en serie al PCP/BCP.

Un radar Hawk HPI
Panel de control del radar HPIR
Radar de iluminación de alta potencia HPIR

Los primeros radares de iluminación de alta potencia (HPIR) AN/MPQ-46 tenían solo dos grandes antenas de tipo plato una al lado de la otra, una para transmitir y otra para recibir. El HPIR adquiere y rastrea automáticamente los objetivos designados en acimut, elevación y alcance. También sirve como una unidad de interfaz que suministra ángulos de lanzamiento de acimut y elevación calculados por el Procesador Automático de Datos (ADP) en el Centro de Coordinación de Información (ICC) al IBCC o al Puesto de Mando de Pelotón Mejorado (IPCP) para hasta tres lanzadores. La energía de banda J del HPIR reflejada desde el objetivo también es recibida por el misil Hawk.

Estos datos se comparan con la señal de referencia del misil que el HPIR transmite directamente al misil. El seguimiento del objetivo continúa durante todo el vuelo del misil. Una vez que el misil intercepta el objetivo, los datos Doppler del HPIR se utilizan para evaluar la eliminación. El HPIR recibe las designaciones de objetivos de uno o ambos radares de vigilancia a través del Centro de Control de Batería (BCC) y busca automáticamente un sector determinado para fijar rápidamente el objetivo. El HPIR incorpora ECCM y BITE.

Este sistema CW de banda X se utiliza para iluminar objetivos en la batería de misiles Hawk. La unidad viene montada en su propio remolque móvil. La unidad adquiere y rastrea automáticamente los objetivos designados en acimut, elevación y rango de alcance. El sistema tiene una potencia de salida de alrededor de 125 W y opera en la banda de 10 a 10,25 GHz. El MPQ-39 era una versión mejorada del CWIR, radar de iluminación de onda continua, MPQ-33.

El radar opera en la región de 10 a 20 GHz ( banda J ). Muchos de los componentes de tubo electrónico de los radares anteriores se han reemplazado por tecnología de estado sólido.

La mayoría de la electrónica restante de las válvulas se ha actualizado a estado sólido. Además, se ha añadido un sistema de seguimiento electroóptico, el TAS (sistema adjunto de seguimiento) OD-179/TVY, exclusivo para el día, para funcionar en un entorno con un alto nivel de ECM. El TAS fue desarrollado a partir del TISEO ( sistema de identificación de objetivos electroóptico ) de las Fuerzas Aéreas de EE. UU. por Northrop. Consiste en una cámara de vídeo con un objetivo con zoom de 10x. El I-TAS, que se probó en el campo en 1992, añadió una capacidad infrarroja para el funcionamiento nocturno, así como la detección y el seguimiento automáticos de objetivos.

  • HEOS Alemania, Países Bajos y Noruega modificaron sus sistemas Hawk con un sistema alternativo de adquisición y seguimiento por infrarrojos, conocido como sensor electroóptico Hawk (HEOS), en lugar del TAS. HEOS opera en la banda de 8 a 11 μm y se utiliza para complementar el HPI para adquirir y rastrear objetivos antes del lanzamiento del misil.

Se actualizó con la incorporación del sistema LASHE (Low-Altitude Simultaneous Hawk Engagement), que permite al Hawk atacar múltiples objetivos a baja altura empleando una antena de haz en abanico para proporcionar un patrón de iluminación de baja altitud y gran angular que permite múltiples ataques contra ataques de saturación. Esta antena es rectangular, lo que permite atacar hasta 12 objetivos a la vez. También hay un sistema óptico de TV/IR para la guía pasiva de misiles.

El radar de respaldo de alcance exclusivo del sistema Hawk mejorado
Radar de rango único ROR

Radar de pulsos que entra en funcionamiento automáticamente si el radar HPIR no puede determinar el alcance, generalmente debido a interferencias. El ROR es difícil de interferir porque funciona solo brevemente durante el ataque y solo en presencia de interferencias.

Radar de pulsos de banda Ku (frecuencia: 15,5–17,5 GHz), con una potencia de salida de 120 kW. Longitud de pulso de 0,6 μs a una frecuencia de repetición de pulso de 1600 Hz. Antena: parabólica de 1,2 m (4 pies).

FDC (Hawk Phase III y Hawk XXI): Centro de distribución de fuego. Unidad C4I que permite un mando, control, comunicaciones y operación de fuerza modernos. Las pantallas a color con superposiciones de mapas en 3D mejoran el conocimiento de la situación. Introduce el intercambio en tiempo real de imágenes aéreas y comandos entre las unidades Hawk. Capacidad de preparación para los sistemas SL-AMRAAM y SHORAD/vSHORAD.

Modificaciones específicas de cada país

Un lanzador móvil israelí Hawk M727

Los israelíes han mejorado el estándar de la Fase 2 con la incorporación de un sistema de televisión electroóptico Super Eye para la detección de aeronaves a una distancia de entre 30 y 40 km y su identificación a una distancia de entre 17 y 25 km. También han modificado su sistema para que pueda operar a altitudes de hasta 24.000 m.

Un sistema compuesto que dispara misiles AIM-7 Sparrow desde un lanzador modificado de ocho proyectiles. El sistema se demostró en el sitio de pruebas de armas de China Lake en 1985. Actualmente no hay usuarios del sistema.

En "Safe Air 95" se demostró el lanzamiento de misiles AMRAAM desde un lanzamisiles M192 modificado. Para el ataque se utiliza el radar de batería normal, mientras que el radar propio del misil se utiliza para el guiado terminal. Raytheon y Kongsberg ofrecen este sistema como una actualización del sistema Hawk existente. Esta propuesta está dirigida especialmente a los países que operan Hawk y que también tienen en su inventario el AIM-120 AMRAAM. Noruega está utilizando actualmente este tipo de sistema como NASAMS .

Como parte de lo que se conoció como el caso Irán-Contra , los misiles Hawk fueron parte del armamento vendido a Irán, en violación de un embargo de armas, para financiar a los Contras .

La Fuerza Aérea de la República Islámica de Irán utilizó varios misiles MIM-23 Hawk para transportarlos en los cazas F-14 Tomcat en misiones aire-aire, en el marco de un programa conocido como Sedjil o Sky Hawk. Irán también modificó sus sistemas Hawk terrestres para transportarlos en un convoy de vehículos con ruedas 8x8 y adaptó los lanzadores para transportar misiles estándar RIM-66 o AGM-78 con dos misiles estándar por lanzador.

La Fuerza Aérea iraní también utilizó cantidades limitadas de una versión aire-tierra del Hawk llamada Yasser , que consistía en un cuerpo de misil Hawk con su sección delantera reemplazada por la ojiva de una bomba M117 . Las aletas de cola también fueron modificadas con carenados en las puntas de las alas. No está claro qué sistema de guía se utilizó, si es que se utilizó alguno, pero se han sugerido que incluía conducción de haz y comando manual a la línea de visión . [9]

La Fuerza Aérea iraní tiene su propia versión del MIM-23 Hawk. Su copia del sistema completo se llama Mersad . Irán produce dos misiles para su uso con el sistema Mersad, los misiles Shalamcheh y los misiles Shahin . Irán afirma que ambos misiles están en producción. [ cita requerida ]

En noviembre de 2018, Irán presentó un lanzador de botes para su sistema Mersad con los misiles Shahin y Shalamcheh modificados en el cuerpo de un Sayyad-2 . Apareció nuevamente en noviembre de 2019, pero con 3 botes en lugar de 2. El sistema se denominó Mersad-16.

Noruega ha desarrollado su propio sistema de actualización del Hawk, conocido como Norwegian Adapted Hawk (NOAH), que implica el arrendamiento de lanzadores I-Hawk, radares HPI y cargadores de misiles de los Estados Unidos y su integración con las estaciones de gestión de batalla del sistema de control y radar de adquisición (ARCS) de Kongsberg y los radares de vigilancia del espacio aéreo AN/TPQ-36A de Hughes (ahora Raytheon). El sistema NOAH entró en funcionamiento en 1988. Fue reemplazado por NASAMS en el período 1995-98, que conserva el ARCS pero reemplaza los misiles Hawk con lanzadores AIM-120 AMRAAM .

Se esperaba que los desarrollos futuros incluyeran la introducción de un radar de adquisición de CW ágil (ACWAR), una evolución de la tecnología de radar de CW Hawk. Realizaría una adquisición de objetivos tridimensional completa en un sector de acimut de 360° y grandes ángulos de elevación. El programa ACWAR se inició para satisfacer los requisitos cada vez más severos de la defensa aérea táctica y el equipo se está diseñando para el funcionamiento del Hawk a fines de la década de 1990 y más adelante. Sin embargo, el programa ACWAR finalizó en 1993.

Historial de combate

Batería de misiles Hawk remolcada por un camión militar de dos ejes

Operadores

Un SAM Hawk remolcado por un camión durante el desfile del Día Nacional de Rumania, en diciembre de 2008, en el Arco del Triunfo de Bucarest

Operadores actuales

Fase I

Fase II

Estos países han implementado mejoras de la Fase I y la Fase II.

Fase III

Halcón XXI

Antiguos operadores

Fase I

Fase II

Fase III

Véase también

Referencias

  1. ^ Como se indica en Jane's Land-Based Air Defence 1996–97 . El sitio web de designación-systems.net, archivado el 10 de diciembre de 2005 en Wayback Machine, indica que la capacidad operativa inicial fue en agosto de 1959 con el ejército de los EE. UU.
  2. ^ "MDA News". Agencia de Defensa de Misiles del Departamento de Defensa de Estados Unidos . Consultado el 13 de marzo de 2021 .
  3. ^ Tony Cullen y Christopher F. Foss (Eds), Jane's Land-Based Air Defence Ninth Edition 1996–97 , pág. 296, Coulsdon: Jane's Information Group, 1996.
  4. ^ "Irán produce en masa un misil guiado tierra-aire". www.payvand.com . Archivado desde el original el 24 de mayo de 2013. Consultado el 23 de noviembre de 2010 .
  5. ^ Orígenes de los nombres de la NASA . NASA. 1976. pág. 131.
  6. ^ "Desfile militar julio-agosto de 1998". milparade.udm.ru . Archivado desde el original el 13 de abril de 2009 . Consultado el 14 de enero de 2022 .
  7. ^ "MIM-23A Hawk/MIM-23B Improved Hawk – Archivado en febrero de 2003". Archivado desde el original el 11 de julio de 2011.
  8. ^ "Raytheon" (PDF) . Archivado desde el original (PDF) el 18 de marzo de 2006. Consultado el 15 de octubre de 2005 .
  9. ^ "Modificaciones del Hawk iraní". 13 de mayo de 2020.
  10. ^ "Hawk". Army . 24 de noviembre de 2009. Archivado desde el original el 24 de noviembre de 2009.
  11. ^ "Hawk". Armas israelíes . 25 de noviembre de 2005. Archivado desde el original el 25 de noviembre de 2005.
  12. ^ Acig, archivado desde el original el 10 de enero de 2005 , consultado el 15 de octubre de 2005.
  13. ^ En línea. [ enlace muerto permanente ]
  14. ^ "Victorias aire-aire iraníes 1976-1981". Archivado desde el original el 1 de julio de 2015. Consultado el 31 de enero de 2014 .
  15. ^ "Victorias aire-aire iraníes, 1982-actualidad". Archivado desde el original el 1 de julio de 2015. Consultado el 31 de enero de 2014 .
  16. ^ Acig, archivado desde el original el 3 de noviembre de 2014 , consultado el 3 de noviembre de 2014.
  17. ^ Arabian Knights: Artillería de defensa aérea en la Guerra del Golfo , Lisa B. Henry Ed., ADA Magazine 1991. p. 3
  18. ^ Caballeros árabes , pág. 3.
  19. ^ "Turquía despliega el HAWK en Idlib". Janes Group . 1 de abril de 2020.
  20. ^ "Los aviones del LNA destruyen la base aérea libia de Watiya, ocupada por el GNA respaldado por Turquía: Fuentes". Millichronicle . 5 de julio de 2020.
  21. ^ "Las fuerzas turcas se lamen las heridas después de que los ataques aéreos alcanzaran su base en Libia". Observatorio Sirio de Derechos Humanos . 8 de julio de 2021.
  22. ^ "LNA destruye los sistemas de defensa aérea y guerra electrónica turcos en el oeste de Libia". Egypt Today . 5 de julio de 2020.
  23. ^ "Aviones bombardean la base aérea de Watiya, controlada por el GNA de Libia, donde Turquía podría construir una base: fuentes". 5 de julio de 2020.
  24. ^ "Ataques aéreos alcanzaron una base en Libia controlada por fuerzas apoyadas por Turquía". The Washington Post . 5 de julio de 2020.
  25. ^ "Libia: Turquía promete 'retribución' por el ataque a sus posiciones en la base aérea de Al-Watiya". Middle East Eye . 6 de julio de 2020.
  26. ^ "Turquía reemplaza las defensas aéreas destruidas en la base libia con un sistema ucraniano: informe". 10 de julio de 2020. Archivado desde el original el 9 de septiembre de 2020. Consultado el 10 de julio de 2020 .
  27. ^ Турция разместила купленные у Украины С-125 на авиабазе Аль-Ватия - они могут не продержаться и неделю (en ruso).
  28. ^ "الدفاع التركية تهاجم حفتر بعد قصف قاعدة عقبة بن نافع" الوطية"". Periódico Libia Akhbar (en árabe). 6 de julio de 2020.
  29. ^ "¿Aviones franceses Rafale atacaron y destruyeron el sistema de defensa aérea turco en la base aérea de Al-Watiya?". 8 de julio de 2020.
  30. ^ ab Ukrainska Pravda (3 de diciembre de 2022). «España entrega a Ucrania los primeros sistemas de misiles antiaéreos Hawk».
  31. ^ ab "Conferencia de prensa del Secretario General de la OTAN, Jens Stoltenberg, tras las reuniones de los Ministros de Defensa de la OTAN", Sitio web de la OTAN , consultado el 13 de octubre de 2022.
  32. ^ ab «España enviará dos sistemas de defensa aérea más a Ucrania». The Defense Post . 2022-11-11 . Consultado el 2022-11-11 .
  33. ^ ab Lopez, Todd (10 de noviembre de 2022). "Paquete de seguridad de 400 millones de dólares dirigido a Ucrania". defense.gov . Consultado el 3 de febrero de 2023 .
  34. ^ "Anuario del SIPRI 1969-1970" (PDF) .
  35. ^ ab Binnie, Jeremy (26 de febrero de 2014). «Egipto y Jordania prolongarán la vida útil de los misiles Hawk». IHS Jane's 360. Archivado desde el original el 6 de marzo de 2014. Consultado el 3 de septiembre de 2014 .
  36. ^ "Reemplazo del Patriota israelí", página de Estrategia , 13 de diciembre de 2012, archivado desde el original el 10 de octubre de 2017 , consultado el 13 de diciembre de 2012.
  37. ^ 朝雲新聞社, ed. (2011). Jieitai Sōbi Nenkan Nisenjūichi-Nisenjūni 自衛隊装備年鑑 2011–2012[ Anuario de equipos de las fuerzas de autodefensa de Japón 2011-2012 ] (en japonés). 朝雲新聞社. pag. 32.ISBN​ 978-4750910321.
  38. ^ Post, Kyiv (7 de septiembre de 2024). «España entregará de inmediato sistemas de defensa aérea HAWK adicionales a Ucrania». Kyiv Post . Consultado el 12 de septiembre de 2024 .
  39. ^ ab "Hawk", inventario de misiles tierra-aire , Fuerza Aérea Rumana, archivado desde el original el 7 de octubre de 2007 , consultado el 18 de junio de 2007
  40. ^ Marc Romanych; Jacqueline Scott (2022). El sistema de misiles de defensa aérea HAWK. Bloomsbury Publishing . p. 19. ISBN 9781472852212.
  41. ^ Cristian Dumitrașcu (27 de enero de 2017). «Diario Militar din 21.01.2017». Radio România Actualități (en rumano).
  42. ^ "El Ejército español recibe los primeros misiles antiaéreos Hawk 21 actualizados". armyrecognition.com . 21 de junio de 2021.
  43. ^ "Türkiye'nin orta menzil hava savunma sistemi". Archivado desde el original el 18 de junio de 2014.
  44. ^ @obretix (23 de mayo de 2020). «Sistema de defensa aérea turco MIM-23 Hawk cerca de al-Mastumah» ( Tweet ) – vía Twitter .
  45. ^ "Una imagen satelital revela la ubicación del sistema de defensa aérea del ejército turco en Siria". 24 de mayo de 2020. Archivado desde el original el 7 de mayo de 2021. Consultado el 24 de mayo de 2020 .
  46. ^ "Hawk: le dernier cansado de l'Armée de terre", Actualités (en francés), Defensa, archivado desde el original el 22 de noviembre de 2016 , consultado el 22 de noviembre de 2016.
  47. ^ Centro Nacional de Entrenamiento (1991). El ejército iraquí: organización y tácticas . Paladin Press. pp. 130, 134. ISBN 978-0-87364-632-1.
  48. ^ ab "Taiwán retira los misiles Hawk", Defense news , 15 de septiembre de 2014, archivado desde el original el 20 de septiembre de 2014.
  49. ^ "Según se informa, los misiles Hawk de Taiwán se están enviando a Ucrania a través de Estados Unidos", Taiwan News , 14 de julio de 2023.

Enlaces externos