Fórmula matemática
En álgebra , la fórmula de Leibniz , llamada así en honor a Gottfried Leibniz , expresa el determinante de una matriz cuadrada en términos de permutaciones de los elementos de la matriz. Si es una matriz, donde es la entrada en la -ésima fila y -ésima columna de , la fórmula es
donde es la función de signo de las permutaciones en el grupo de permutaciones , que devuelve y para las permutaciones pares e impares , respectivamente.
Otra notación común utilizada para la fórmula es en términos del símbolo de Levi-Civita y hace uso de la notación de suma de Einstein , donde se convierte en
que puede ser más familiar para los físicos.
La evaluación directa de la fórmula de Leibniz a partir de la definición requiere operaciones en general (es decir, un número de operaciones asintóticamente proporcional a factorial ), porque es el número de permutaciones de orden. Esto es poco práctico incluso para . En cambio, el determinante se puede evaluar en operaciones formando la descomposición LU (normalmente mediante eliminación gaussiana o métodos similares), en cuyo caso y los determinantes de las matrices triangulares y son simplemente los productos de sus entradas diagonales. (Sin embargo, en aplicaciones prácticas de álgebra lineal numérica, rara vez se requiere el cálculo explícito del determinante). Véase, por ejemplo, Trefethen y Bau (1997). El determinante también se puede evaluar en menos de operaciones reduciendo el problema a la multiplicación de matrices , pero la mayoría de estos algoritmos no son prácticos.
Declaración formal y prueba
Teorema.
Existe exactamente una función que es multilineal alternada respecto de las columnas y tal que .
Prueba.
Unicidad: Sea una función tal y sea una matriz. Llamemos a la -ésima columna de , es decir , de modo que
Además, denotemos el -ésimo vector columna de la matriz identidad.
Ahora uno escribe cada uno de los 's en términos de , es decir
- .
Como es multilineal, uno tiene
De la alternancia se deduce que cualquier término con índices repetidos es cero. Por lo tanto, la suma se puede restringir a tuplas con índices no repetidos, es decir, permutaciones:
Como F es alternante, las columnas se pueden intercambiar hasta que se convierta en la identidad. La función de signo se define para contar la cantidad de intercambios necesarios y dar cuenta del cambio de signo resultante. Finalmente, se obtiene:
como se requiere que sea igual a .
Por lo tanto, ninguna función además de la función definida por la fórmula de Leibniz puede ser una función alterna multilineal con .
Existencia: Ahora demostramos que F, donde F es la función definida por la fórmula de Leibniz, tiene estas tres propiedades.
Multilineal :
Alternando :
Para cualquier sea la tupla igual a con los índices y intercambiados.
Así que si entonces .
Finalmente, :
Por lo tanto, las únicas funciones multilineales alternantes con están restringidas a la función definida por la fórmula de Leibniz, y de hecho también tiene estas tres propiedades. Por lo tanto, el determinante puede definirse como la única función con estas tres propiedades.
Véase también
Referencias