stringtranslate.com

Metal

Consulte el título
El hierro , que se muestra aquí en forma de fragmentos y un cubo de 1 cm3 , es un ejemplo de un elemento químico que es un metal.
Una salsera de metal
Metal en forma de salsera fabricado a partir de acero inoxidable, una aleación compuesta en gran parte por hierro, cromo y níquel.

Un metal (del griego antiguo μέταλλον ( métallon )  'mina, cantera, metal') es un material que, cuando se pule o fractura, muestra una apariencia brillante y conduce la electricidad y el calor relativamente bien. Todas estas propiedades están asociadas con la disponibilidad de electrones en el nivel de Fermi , a diferencia de los materiales no metálicos que no los tienen. [1] : Cap. 8 y 19  [2] : Cap. 7 y 8  Los metales suelen ser dúctiles (se pueden estirar para formar alambres) y maleables (se pueden martillar para formar láminas delgadas). [3]

Un metal puede ser un elemento químico como el hierro ; una aleación como el acero inoxidable ; o un compuesto molecular como el nitruro de azufre polimérico . [4] La ciencia general de los metales se llama metalurgia , un subtema de la ciencia de los materiales ; los aspectos de las propiedades electrónicas y térmicas también están dentro del alcance de la física de la materia condensada y la química del estado sólido , es un tema multidisciplinario . En el uso coloquial, los materiales como las aleaciones de acero se denominan metales, mientras que otros como los polímeros, la madera o la cerámica son materiales no metálicos .

Un metal conduce electricidad a una temperatura de cero absoluto , [5] lo cual es una consecuencia de estados deslocalizados en la energía de Fermi. [1] [2] Muchos elementos y compuestos se vuelven metálicos bajo altas presiones, por ejemplo, el yodo se convierte gradualmente en un metal a una presión de entre 40 y 170 mil veces la presión atmosférica . El sodio se convierte en un no metal a una presión de poco menos de dos millones de veces la presión atmosférica, y a presiones aún más altas se espera que se convierta nuevamente en un metal.

Cuando se habla de la tabla periódica y de algunas propiedades químicas, el término metal se utiliza a menudo para designar aquellos elementos que, en estado puro y en condiciones estándar, son metales en el sentido de conducción eléctrica mencionado anteriormente. El término relacionado metálico también puede utilizarse para los tipos de átomos dopantes o elementos de aleación.

En astronomía, el término metal hace referencia a todos los elementos químicos de una estrella que son más pesados ​​que el helio . En este sentido, los primeros cuatro "metales" que se acumulan en los núcleos estelares a través de la nucleosíntesis son el carbono , el nitrógeno , el oxígeno y el neón . Una estrella fusiona átomos más ligeros, principalmente hidrógeno y helio, en átomos más pesados ​​a lo largo de su vida. La metalicidad de un objeto astronómico es la proporción de su materia formada por los elementos químicos más pesados. [6] [7]

La fuerza y ​​resiliencia de algunos metales ha llevado a su uso frecuente en, por ejemplo, la construcción de edificios de gran altura y puentes , así como en la mayoría de los vehículos, muchos electrodomésticos , herramientas, tuberías y vías ferroviarias. Los metales preciosos se usaban históricamente como moneda , pero en la era moderna, los metales de acuñación se han extendido a al menos 23 de los elementos químicos. [8] También hay un uso extensivo de metales multielementos como el nitruro de titanio [9] o semiconductores degenerados en la industria de los semiconductores.

Se cree que la historia de los metales refinados comienza con el uso del cobre hace unos 11.000 años. El oro, la plata, el hierro (como hierro meteórico), el plomo y el latón también se utilizaban antes de la primera aparición conocida del bronce en el quinto milenio a. C. Los desarrollos posteriores incluyen la producción de formas primitivas de acero; el descubrimiento del sodio (el primer metal ligero ) en 1809; el surgimiento de los aceros aleados modernos ; y, desde el final de la Segunda Guerra Mundial, el desarrollo de aleaciones más sofisticadas.

Propiedades

Forma y estructura

Cristales de galio sobre una mesa.
Cristales de galio

La mayoría de los metales son brillantes y lustrosos , al menos cuando están pulidos o fracturados. Las láminas de metal con un grosor superior a unos pocos micrómetros parecen opacas, pero la hoja de oro transmite luz verde. Esto se debe a los electrones que se mueven libremente y reflejan la luz. [1] [2]

Aunque la mayoría de los metales elementales tienen densidades más altas que los no metales , [10] existe una amplia variación en sus densidades, siendo el litio el menos denso (0,534 g/cm 3 ) y el osmio (22,59 g/cm 3 ) el más denso. Se espera que algunos de los metales de transición 6d sean más densos que el osmio, pero sus isótopos conocidos son demasiado inestables para que sea posible la producción en masa [11] El magnesio, el aluminio y el titanio son metales ligeros de gran importancia comercial. Sus densidades respectivas de 1,7, 2,7 y 4,5 g/cm 3 pueden compararse con las de los metales estructurales más antiguos, como el hierro con 7,9 y el cobre con 8,9 g/cm 3 . Los metales ligeros más comunes son las aleaciones de aluminio [12] [13] y magnesio [14] [15] .

Aspecto esquemático de barras metálicas redondas después de la prueba de tracción.
(a) Fractura frágil
(b) Fractura dúctil
(c) Fractura completamente dúctil

Los metales son típicamente maleables y dúctiles, deformándose bajo tensión sin escindirse . [10] La naturaleza no direccional del enlace metálico contribuye a la ductilidad de la mayoría de los sólidos metálicos, donde la tensión de Peierls es relativamente baja, lo que permite el movimiento de dislocación , y también hay muchas combinaciones de planos y direcciones para la deformación plástica . [16] Debido a que tienen arreglos de átomos muy empaquetados, el vector de Burgers de las dislocaciones es bastante pequeño, lo que también significa que la energía necesaria para producir una es pequeña. [3] [16] Por el contrario, en un compuesto iónico como la sal de mesa, los vectores de Burgers son mucho más grandes y la energía para mover una dislocación es mucho mayor. [3] La deformación elástica reversible en metales se puede describir bien mediante la Ley de Hooke para las fuerzas de restauración, donde la tensión es linealmente proporcional a la deformación . [17]

Un cambio de temperatura puede provocar el movimiento de defectos estructurales en el metal, como límites de grano , vacantes puntuales , dislocaciones lineales y helicoidales , fallas de apilamiento y maclas , tanto en metales cristalinos como no cristalinos . También pueden producirse deslizamiento interno , fluencia y fatiga del metal . [3] [16]

Los átomos de sustancias metálicas simples suelen tener una de las tres estructuras cristalinas más comunes : cúbica centrada en el cuerpo (bcc), cúbica centrada en las caras (fcc) y compactada hexagonal (hcp). En la bcc, cada átomo está situado en el centro de un cubo formado por otros ocho átomos. En la fcc y la hcp, cada átomo está rodeado por otros doce, pero el apilamiento de las capas difiere. Algunos metales adoptan estructuras diferentes según la temperatura. [18]

Muchos otros metales con elementos diferentes tienen estructuras más complicadas, como la estructura de sal de roca en el nitruro de titanio o la perovskita (estructura) en algunos niquelatos. [19]

Eléctrica y térmica

Los estados de energía disponibles para los electrones en diferentes tipos de sólidos en equilibrio termodinámico .
 
Aquí, la altura es la energía, mientras que el ancho es la densidad de estados disponibles para una determinada energía en el material indicado. El sombreado sigue la distribución de Fermi-Dirac ( negro = todos los estados llenos, blanco = ningún estado lleno).
 
El nivel de Fermi E F es el nivel de energía en el que los electrones están en condiciones de interactuar con niveles de energía superiores. En metales y semimetales, el nivel de Fermi E F se encuentra dentro de al menos una banda de estados de energía.
 
En los aislantes y semiconductores, el nivel de Fermi está dentro de un intervalo de banda ; sin embargo, en los semiconductores las bandas están lo suficientemente cerca del nivel de Fermi como para estar pobladas térmicamente con electrones o huecos .

La estructura electrónica de los metales significa que son relativamente buenos conductores de electricidad . Todos los electrones tienen diferentes momentos , que en promedio son cero cuando no hay voltaje externo . Cuando se aplica un voltaje, algunos se mueven un poco más rápido en una dirección dada, algunos un poco más lento, por lo que hay una velocidad de deriva neta que conduce a una corriente eléctrica. [1] [2] Esto implica pequeños cambios en las funciones de onda en las que se encuentran los electrones, cambiando a aquellos con los momentos más altos. La mecánica cuántica dicta que solo se puede tener un electrón en un estado dado, el principio de exclusión de Pauli . [20] Por lo tanto, tiene que haber estados de electrones deslocalizados vacíos (con los momentos más altos) disponibles en las energías ocupadas más altas, como se esboza en la Figura. En un semiconductor como el silicio o un no metal como el titanato de estroncio, hay una brecha de energía entre los estados llenos más altos de los electrones y los vacíos más bajos, por lo que no hay estados accesibles con momentos ligeramente más altos. En consecuencia, los semiconductores y los no metales son malos conductores, aunque pueden transportar algo de corriente cuando se dopan con elementos que introducen estados de energía parcialmente ocupados adicionales a temperaturas más altas. [21]

Los metales elementales tienen valores de conductividad eléctrica de 6,9 ​​× 10 3 S /cm para el manganeso a 6,3 × 10 5 S/cm para la plata . En contraste, un metaloide semiconductor como el boro tiene una conductividad eléctrica de 1,5 × 10 −6 S/cm. Con una excepción, los elementos metálicos reducen su conductividad eléctrica cuando se calientan. El plutonio aumenta su conductividad eléctrica cuando se calienta en el rango de temperatura de alrededor de −175 a +125 °C, con un coeficiente de expansión térmica anómalamente grande y un cambio de fase de monoclínico a cúbico centrado en las caras cerca de 100 °C. [22] Hay evidencia de que este y un comportamiento comparable en elementos transuránicos se debe a interacciones relativistas y de espín más complejas que no se capturan en modelos simples. [23]

Densidad de estados de TiN, con los estados ocupados sombreados en azul y el nivel de Fermi en el origen x. Se muestran todos los estados, así como los asociados a los átomos de Ti y N.

Todas las aleaciones metálicas, así como los polímeros y cerámicas conductores, son metales según la misma definición; por ejemplo, el nitruro de titanio tiene estados deslocalizados en el nivel de Fermi. Tienen conductividades eléctricas similares a las de los metales elementales. Las formas líquidas también son conductores metálicos de electricidad, por ejemplo, el mercurio . En condiciones normales, ningún gas es conductor metálico. Sin embargo, un plasma (física) es un conductor metálico y las partículas cargadas en un plasma tienen muchas propiedades en común con las de los electrones en los metales elementales, en particular en el caso de las estrellas enanas blancas. [24]

Los metales son relativamente buenos conductores de calor , que en los metales es transportado principalmente por los electrones de conducción. [25] A temperaturas más altas, los electrones pueden ocupar niveles de energía ligeramente más altos dados por las estadísticas de Fermi-Dirac . [2] [21] Estos tienen momentos ligeramente más altos ( energía cinética ) y pueden transmitir energía térmica. La ley empírica de Wiedemann-Franz establece que en muchos metales la relación entre las conductividades térmica y eléctrica es proporcional a la temperatura, con una constante de proporcionalidad que es aproximadamente la misma para todos los metales. [2]

Unidad de demostración de baterías para polímeros conductores construida por el premio Nobel Alan MacDiarmid
Unidad de demostración de baterías para polímeros conductores construida por el premio Nobel Alan MacDiarmid [26]

La contribución de los electrones de un metal a su capacidad calorífica y conductividad térmica, y la conductividad eléctrica del propio metal se pueden calcular aproximadamente a partir del modelo de electrones libres . [2] Sin embargo, esto no tiene en cuenta la estructura detallada de la red iónica del metal. Tener en cuenta el potencial positivo causado por la disposición de los núcleos iónicos permite considerar la estructura de la banda electrónica y la energía de enlace de un metal. Se pueden aplicar varios modelos, siendo el más simple el modelo de electrones casi libres . [2] Normalmente se utilizan métodos modernos como la teoría funcional de la densidad . [27] [28]

Químico

Los elementos que forman metales suelen formar cationes a través de la pérdida de electrones. [10] La mayoría reaccionará con el oxígeno del aire para formar óxidos en varias escalas de tiempo ( el potasio se quema en segundos, mientras que el hierro se oxida en años), que dependen de si el óxido nativo forma una capa de pasivación que actúa como barrera de difusión . [29] [30] Algunos otros, como el paladio , el platino y el oro , no reaccionan en absoluto con la atmósfera; el oro puede formar compuestos donde gana un electrón (auros, por ejemplo, el aururo de cesio ). Los óxidos de los metales elementales suelen ser básicos . Sin embargo, los óxidos con estados de oxidación muy altos , como CrO 3 , Mn 2 O 7 y OsO 4 , a menudo tienen reacciones estrictamente ácidas; y los óxidos de los metales menos electropositivos, como BeO, Al 2 O 3 y PbO, pueden mostrar propiedades tanto básicas como ácidas. Estos últimos se denominan óxidos anfóteros .

Distribución de la tabla periódica

Los elementos que forman estructuras exclusivamente metálicas en condiciones normales se muestran en amarillo en la tabla periódica que aparece a continuación. Los elementos restantes forman estructuras de red covalente (azul claro), estructuras covalentes moleculares (azul oscuro) o permanecen como átomos individuales (violeta). [31] El astato (At), el francio (Fr) y los elementos a partir del fermio (Fm) se muestran en gris porque son extremadamente radiactivos y nunca se han producido en masa. La evidencia teórica y experimental sugiere que estos elementos no investigados deberían ser metales, [32] excepto el oganesón (Og) que, según los cálculos de DFT, sería un semiconductor. [33]

La situación cambia con la presión: a presiones extremadamente altas, se espera que todos los elementos (y, de hecho, todas las sustancias) se metalicen. [32] El arsénico (As) tiene un alótropo metálico estable y un alótropo semiconductor metaestable en condiciones estándar. Una situación similar afecta al carbono (C): el grafito es metálico, pero el diamante no.

Aleaciones

Tres barras de metal babbitt
Muestras de metal babbitt , una aleación de estaño , antimonio y cobre , utilizada en cojinetes para reducir la fricción.

En el contexto de los metales, una aleación es una sustancia que tiene propiedades metálicas y que está compuesta por dos o más elementos . A menudo, al menos uno de ellos es un elemento metálico; el término "aleación" se utiliza a veces de forma más general, como en las aleaciones de silicio-germanio . Una aleación puede tener una composición variable o fija. Por ejemplo, el oro y la plata forman una aleación en la que se pueden variar las proporciones de oro o plata; el titanio y el silicio forman una aleación TiSi 2 en la que la proporción de los dos componentes es fija (también conocida como compuesto intermetálico [34] [35] ).

Una escultura de metal
Una escultura fundida en alpaca , una aleación de cobre, níquel y zinc que parece plata.

La mayoría de los metales puros son demasiado blandos, quebradizos o químicamente reactivos para su uso práctico. La combinación de diferentes proporciones de metales y otros elementos en aleaciones modifica las propiedades para producir características deseables, por ejemplo, más dúctil, más duro, resistente a la corrosión o tener un color y brillo más deseables. De todas las aleaciones metálicas en uso hoy en día, las aleaciones de hierro ( acero , acero inoxidable , hierro fundido , acero para herramientas , acero de aleación ) constituyen la mayor proporción tanto por cantidad como por valor comercial. [36] El hierro aleado con diversas proporciones de carbono da aceros de bajo, medio y alto contenido de carbono, y el aumento de los niveles de carbono reduce la ductilidad y la tenacidad. La adición de silicio producirá hierros fundidos, mientras que la adición de cromo , níquel y molibdeno a los aceros al carbono (más del 10%) da como resultado aceros inoxidables con mayor resistencia a la corrosión.

Otras aleaciones metálicas importantes son las de aluminio , titanio , cobre y magnesio . Las aleaciones de cobre se conocen desde la prehistoria ( el bronce dio nombre a la Edad del Bronce ) y tienen muchas aplicaciones en la actualidad, la más importante en el cableado eléctrico. Las aleaciones de los otros tres metales se han desarrollado hace relativamente poco tiempo; debido a su reactividad química, necesitan procesos de extracción electrolítica . Las aleaciones de aluminio, titanio y magnesio son valoradas por sus altas relaciones resistencia-peso; el magnesio también puede proporcionar blindaje electromagnético . [37] [38] Estos materiales son ideales para situaciones en las que una alta relación resistencia-peso es más importante que el coste del material, como en la industria aeroespacial y algunas aplicaciones automotrices. [39]

Las aleaciones especialmente diseñadas para aplicaciones muy exigentes, como los motores a reacción , pueden contener más de diez elementos.

Categorías

Los metales se pueden clasificar por su composición y sus propiedades físicas o químicas. Las categorías descritas en las subsecciones siguientes incluyen metales ferrosos y no ferrosos ; metales frágiles y refractarios ; metales blancos; metales pesados ​​y ligeros ; metales básicos , nobles y preciosos , así como cerámicas metálicas y polímeros.

Metales ferrosos y no ferrosos

El término "ferroso" se deriva de la palabra latina que significa "que contiene hierro". Esto puede incluir hierro puro, como el hierro forjado , o una aleación como el acero . Los metales ferrosos suelen ser magnéticos , pero no exclusivamente. Los metales no ferrosos y las aleaciones carecen de cantidades apreciables de hierro.

Metal elemental frágil

Si bien casi todos los metales elementales son maleables o dúctiles, unos pocos (berilio, cromo, manganeso, galio y bismuto) son frágiles. [40] El arsénico y el antimonio, si se admiten como metales, son frágiles. Los valores bajos de la relación entre el módulo elástico volumétrico y el módulo de corte (criterio de Pugh) son indicativos de fragilidad intrínseca. [41] Un material es frágil si es difícil que las dislocaciones se muevan, lo que a menudo se asocia con grandes vectores de Burgers y solo un número limitado de planos de deslizamiento. [42]

Metal refractario

Un metal refractario es un metal muy resistente al calor y al desgaste. Los metales que pertenecen a esta categoría varían; la definición más común incluye niobio, molibdeno, tantalio, tungsteno y renio, así como sus aleaciones. Todos ellos tienen puntos de fusión superiores a 2000 °C y una alta dureza a temperatura ambiente. Varios compuestos, como el nitruro de titanio, también se describen como metales refractarios.

Metal blanco

Un metal blanco es cualquiera de una gama de aleaciones de color blanco con puntos de fusión relativamente bajos utilizados principalmente con fines decorativos. [43] [44] En Gran Bretaña, el comercio de bellas artes utiliza el término "metal blanco" en los catálogos de subastas para describir artículos de plata extranjeros que no llevan marcas de la Oficina de Ensayos Británica, [45] pero que, no obstante, se entienden como plata y tienen un precio acorde.

Metales pesados ​​y ligeros

Un metal pesado es cualquier metal relativamente denso. [46] Las aleaciones de magnesio , aluminio y titanio son metales ligeros de gran importancia comercial. [47] Sus densidades de 1,7, 2,7 y 4,5 g/cm 3 varían entre el 19 y el 56% de las densidades de otros metales estructurales, [48] como el hierro (7,9) y el cobre (8,9).

Metales básicos, nobles y preciosos

El término metal base se refiere a un metal que se oxida o corroe fácilmente , como por ejemplo, que reacciona fácilmente con ácido clorhídrico diluido (HCl) para formar un cloruro metálico e hidrógeno . Algunos ejemplos son el hierro, el níquel , el plomo y el zinc. El cobre se considera un metal base, ya que se oxida con relativa facilidad, aunque no reacciona con el HCl.

Polvo de rodio, cilindro de rodio y perdigón de rodio en fila
Rodio , un metal noble , que se muestra aquí como 1 g de polvo, un cilindro prensado de 1 g y una pastilla de 1 g.

El término metal noble se utiliza comúnmente en oposición a metal base . Los metales nobles son menos reactivos, resistentes a la corrosión o la oxidación , [49] a diferencia de la mayoría de los metales base . Suelen ser metales preciosos, a menudo debido a su rareza percibida. Algunos ejemplos incluyen oro, platino, plata, rodio , iridio y paladio.

En alquimia y numismática , el término metal base se contrasta con metal precioso , es decir, aquellos de alto valor económico. [50] La mayoría de las monedas actuales están hechas de metales base con bajo valor intrínseco ; en el pasado, las monedas frecuentemente derivaban su valor principalmente de su contenido de metal precioso ; el oro , la plata , el platino y el paladio tienen cada uno un código de moneda ISO 4217. Actualmente tienen usos industriales como el platino y el paladio en convertidores catalíticos , se utilizan en joyería y también un papel como inversiones y reserva de valor . [51] El paladio y el platino, a partir del verano de 2024, estaban valorados en un poco menos de la mitad del precio del oro, mientras que la plata es sustancialmente menos costosa.

Metales para válvulas

En electroquímica, un metal de válvula es un metal que pasa corriente en una sola dirección debido a la formación posterior de cualquier óxido aislante. [52]

Cerámica metálica

Broca recubierta de TiN

Existen muchos compuestos cerámicos que tienen conducción eléctrica metálica, pero no son combinaciones simples de elementos metálicos. (No son lo mismo que los cermets , que son compuestos de una cerámica no conductora y un metal conductor). Un grupo, los nitruros de metales de transición, tienen un carácter iónico significativo en la unión, por lo que pueden clasificarse como cerámicas y metales. [9] Tienen estados parcialmente llenos en el nivel de Fermi [9], por lo que son buenos conductores térmicos y eléctricos, y a menudo hay una transferencia de carga significativa de los átomos de metales de transición al nitrógeno. [9] Sin embargo, a diferencia de la mayoría de los metales elementales, los metales cerámicos a menudo no son particularmente dúctiles. Sus usos están muy extendidos, por ejemplo, el nitruro de titanio se utiliza en dispositivos ortopédicos [53] y como revestimiento resistente al desgaste. [54] En muchos casos, su utilidad depende de que existan métodos de deposición efectivos para que puedan usarse como revestimientos de película delgada. [55]

Polímeros metálicos

Varios de los polímeros conductores [56]

Existen muchos polímeros que tienen conducción eléctrica metálica, [57] [58] típicamente asociada con componentes aromáticos extendidos como en los polímeros indicados en la Figura. La conducción de las regiones aromáticas es similar a la del grafito, por lo que es altamente direccional. [59]

Medio metal

Un semimetal es cualquier sustancia que actúa como conductor para los electrones de una orientación de espín , pero como aislante o semiconductor para los de espín opuesto. Fueron descritos por primera vez en 1983, como una explicación de las propiedades eléctricas de las aleaciones de Heusler basadas en manganeso . [60] Aunque todos los semimetales son ferromagnéticos (o ferrimagnéticos ), la mayoría de los ferroimanes no son semimetales. Muchos de los ejemplos conocidos de semimetales son óxidos , sulfuros o aleaciones de Heusler . [61]

Semimetal

Un semimetal es un material con una pequeña superposición de energía entre la parte inferior de la banda de conducción y la parte superior de la banda de valencia , pero no se superponen en el espacio de momento . [62] A diferencia de un metal regular, los semimetales tienen portadores de carga de ambos tipos (huecos y electrones), aunque los portadores de carga suelen aparecer en cantidades mucho menores que en un metal real. En este sentido, se parecen a los semiconductores degenerados . Esto explica por qué las propiedades eléctricas de los semimetales están a medio camino entre las de los metales y los semiconductores . Hay tipos adicionales, en particular los semimetales de Weyl y Dirac . [63]

Los elementos semimetálicos elementales clásicos son el arsénico , el antimonio , el bismuto , el α- estaño (estaño gris) y el grafito . También existen compuestos químicos , como el telururo de mercurio (HgTe), [64] y algunos polímeros conductores . [65]

Ciclo vital

Formación

Los elementos metálicos hasta la proximidad del hierro (en la tabla periódica) se forman en gran parte mediante nucleosíntesis estelar . En este proceso, los elementos más ligeros, desde el hidrógeno hasta el silicio, experimentan reacciones de fusión sucesivas dentro de las estrellas, liberando luz y calor y formando elementos más pesados ​​con números atómicos más altos. [66]

Los elementos más pesados ​​no suelen formarse de esta manera, ya que las reacciones de fusión que involucran tales núcleos consumirían energía en lugar de liberarla. [67] Más bien, se sintetizan en gran medida (a partir de elementos con un número atómico más bajo) por captura de neutrones , siendo los dos modos principales de esta captura repetitiva el proceso s y el proceso r . En el proceso s ("s" significa "lento"), las capturas singulares están separadas por años o décadas, lo que permite que los núcleos menos estables se desintegren beta , [68] mientras que en el proceso r ("rápido"), las capturas ocurren más rápido de lo que los núcleos pueden desintegrarse. Por lo tanto, el proceso s toma un camino más o menos claro: por ejemplo, los núcleos estables de cadmio-110 son bombardeados sucesivamente por neutrones libres dentro de una estrella hasta que forman núcleos de cadmio-115 que son inestables y se desintegran para formar indio-115 (que es casi estable, con una vida media30 000 veces la edad del universo). Estos núcleos capturan neutrones y forman indio-116, que es inestable, y se desintegra para formar estaño-116, y así sucesivamente. [66] [69] [n 2] Por el contrario, no existe tal camino en el proceso r. El proceso s se detiene en el bismuto debido a las cortas vidas medias de los siguientes dos elementos, polonio y astato, que se desintegran en bismuto o plomo. El proceso r es tan rápido que puede saltarse esta zona de inestabilidad y continuar creando elementos más pesados ​​como el torio y el uranio. [71]

Los metales se condensan en los planetas como resultado de los procesos de evolución y destrucción estelar. Las estrellas pierden gran parte de su masa cuando esta es expulsada al final de su vida, y a veces después como resultado de una fusión de estrellas de neutrones , [72] [n 3] aumentando así la abundancia de elementos más pesados ​​que el helio en el medio interestelar . Cuando la atracción gravitatoria hace que esta materia se fusione y colapse, se forman nuevas estrellas y planetas . [74]

Abundancia y ocurrencia

Una muestra de diáspora
Una muestra de diásporo , un mineral de hidróxido de óxido de aluminio, α-AlO(OH)

La corteza terrestre está compuesta por aproximadamente un 25% de elementos metálicos en peso, de los cuales un 80% son metales ligeros como el sodio, el magnesio y el aluminio. A pesar de la escasez general de algunos metales más pesados ​​como el cobre, estos pueden llegar a concentrarse en cantidades económicamente extraíbles como resultado de la formación de montañas, la erosión u otros procesos geológicos.

Los elementos metálicos se encuentran principalmente como litófilos (amantes de las rocas) o calcófilos (amantes de los minerales). Los elementos litófilos son principalmente los elementos del bloque s, los más reactivos de los elementos del bloque d y los elementos del bloque f. Tienen una fuerte afinidad por el oxígeno y existen principalmente como minerales de silicato de densidad relativamente baja. Los elementos calcófilos son principalmente los elementos del bloque d menos reactivos y los metales del bloque p del período 4-6. Por lo general, se encuentran en minerales de sulfuro (insolubles). Al ser más densos que los litófilos, por lo tanto se hunden más en la corteza en el momento de su solidificación, los calcófilos tienden a ser menos abundantes que los litófilos.

Por otra parte, el oro es un siderófilo, o elemento que ama el hierro. No forma fácilmente compuestos ni con el oxígeno ni con el azufre. En el momento de la formación de la Tierra, y como el más noble (inerte) de los elementos metálicos, el oro se hundió en el núcleo debido a su tendencia a formar aleaciones metálicas de alta densidad. En consecuencia, es relativamente raro. Algunos otros (menos) nobles —molibdeno, renio, los metales del grupo del platino (rutenio, rodio, paladio, osmio, iridio y platino), germanio y estaño— pueden contarse como siderófilos, pero solo en términos de su presencia primaria en la Tierra (núcleo, manto y corteza), más que en la corteza. Estos otros se encuentran en la corteza, en pequeñas cantidades, principalmente como calcófilos (menos en su forma nativa). [n 4]

Se cree que el núcleo externo fluido giratorio del interior de la Tierra, que está compuesto principalmente de hierro, es la fuente del campo magnético protector de la Tierra. [n 5] El núcleo se encuentra por encima del núcleo interno sólido de la Tierra y debajo de su manto. Si pudiera reorganizarse en una columna con una superficie de 5 m2 ( 54 pies cuadrados), tendría una altura de casi 700 años luz. El campo magnético protege a la Tierra de las partículas cargadas del viento solar y de los rayos cósmicos que de otro modo destruirían la atmósfera superior (incluida la capa de ozono que limita la transmisión de la radiación ultravioleta).

Extracción

Los elementos metálicos se extraen a menudo de la Tierra mediante la extracción de minerales que son fuentes ricas de los elementos necesarios, como la bauxita . Los minerales se localizan mediante técnicas de prospección , seguidas de la exploración y el examen de los depósitos. Las fuentes minerales se dividen generalmente en minas de superficie , que se extraen mediante excavación con equipo pesado, y minas subterráneas . En algunos casos, el precio de venta del metal o los metales involucrados hace que sea económicamente viable extraer fuentes de menor concentración.

Una vez extraído el mineral, es necesario extraer los elementos , generalmente mediante reducción química o electrolítica. La pirometalurgia utiliza altas temperaturas para convertir el mineral en metales en bruto, mientras que la hidrometalurgia emplea la química acuosa con el mismo fin.

Cuando un mineral metálico es un compuesto iónico, generalmente debe fundirse (calentarse con un agente reductor) para extraer el metal puro. Muchos metales comunes, como el hierro, se funden utilizando carbono como agente reductor. Algunos metales, como el aluminio y el sodio , no tienen un agente reductor comercialmente práctico y se extraen mediante electrólisis . [75] [76]

Los minerales de sulfuro no se reducen directamente al metal, sino que se tuestan al aire para convertirlos en óxidos.

Reciclaje

Un montón de chatarra de acero compactada
Una pila de chatarra de acero compactada, lista para reciclar.

La demanda de metales está estrechamente vinculada al crecimiento económico, dado su uso en infraestructura, construcción, manufactura y bienes de consumo. Durante el siglo XX, la variedad de metales utilizados en la sociedad creció rápidamente. Hoy, el desarrollo de grandes naciones, como China e India, y los avances tecnológicos, están impulsando una demanda cada vez mayor. El resultado es que las actividades mineras se están expandiendo y cada vez más existencias de metales del mundo están en la superficie en uso, en lugar de debajo de la tierra como reservas no utilizadas. Un ejemplo es el stock en uso de cobre . Entre 1932 y 1999, el cobre en uso en los EE. UU. aumentó de 73 g a 238 g por persona. [77]

Los metales son reciclables por naturaleza, por lo que, en principio, se pueden utilizar una y otra vez, lo que minimiza los impactos ambientales negativos y ahorra energía. Por ejemplo, el 95% de la energía utilizada para fabricar aluminio a partir de mineral de bauxita se ahorra utilizando material reciclado. [78]

En general, el reciclaje de metales es bajo a nivel mundial. En 2010, el Panel Internacional de Recursos , auspiciado por el Programa de las Naciones Unidas para el Medio Ambiente, publicó informes sobre las reservas de metales que existen en la sociedad [79] y sus tasas de reciclaje. [77] Los autores del informe observaron que las reservas de metales en la sociedad pueden servir como enormes minas sobre la tierra. Advirtieron que las tasas de reciclaje de algunos metales raros utilizados en aplicaciones como teléfonos móviles, baterías para automóviles híbridos y celdas de combustible son tan bajas que, a menos que se incrementen drásticamente las tasas de reciclaje al final de la vida útil en el futuro, estos metales críticos dejarán de estar disponibles para su uso en la tecnología moderna.

Historia

Prehistoria

El cobre, que se presenta en forma nativa, puede haber sido el primer metal descubierto debido a su apariencia distintiva, su peso y su maleabilidad. El oro, la plata, el hierro (como hierro meteórico) y el plomo también se descubrieron en la prehistoria. Las formas de latón , una aleación de cobre y zinc hecha mediante la fundición simultánea de los minerales de estos metales, se originaron en este período (aunque el zinc puro no se aisló hasta el siglo XIII). La maleabilidad de los metales sólidos condujo a los primeros intentos de fabricar adornos, herramientas y armas de metal. El hierro meteórico que contenía níquel se descubrió de vez en cuando y, en algunos aspectos, fue superior a cualquier acero industrial fabricado hasta la década de 1880, cuando los aceros aleados se volvieron prominentes. [80]

Antigüedad

Consulte el título
El bronce de Artemisia [n.° 6] que representa a Poseidón o a Zeus , c. 460 a. C., Museo Arqueológico Nacional , Atenas . La figura mide más de 2 m de altura.

El descubrimiento del bronce (una aleación de cobre con arsénico o estaño) permitió a las personas crear objetos metálicos que eran más duros y duraderos de lo que era posible hasta entonces. Las herramientas, armas, armaduras y materiales de construcción de bronce , como los azulejos decorativos, eran más duros y duraderos que sus predecesores de piedra y cobre (" Calcolítico "). Inicialmente, el bronce se fabricaba con cobre y arsénico (formando bronce arsénico ) fundiendo minerales mezclados de forma natural o artificial de cobre y arsénico. [81] Los primeros artefactos conocidos hasta ahora provienen de la meseta iraní en el quinto milenio a. C. [82] Fue más tarde que se utilizó el estaño , que se convirtió en el principal ingrediente no cobre del bronce a fines del tercer milenio a. C. [83] El estaño puro en sí fue aislado por primera vez en 1800 a. C. por trabajadores metalúrgicos chinos y japoneses.

El mercurio era conocido por los antiguos chinos e indios antes del año 2000 a. C. y se encontró en tumbas egipcias que datan del año 1500 a. C.

La producción más antigua conocida de acero, una aleación de hierro y carbono, se ve en piezas de hierro excavadas en un sitio arqueológico en Anatolia ( Kaman-Kalehöyük ) que tienen casi 4.000 años de antigüedad y datan del 1800 a. C. [84] [85]

Desde aproximadamente el año 500 a. C., los fabricantes de espadas de Toledo, España , fabricaban formas tempranas de acero aleado añadiendo un mineral llamado wolframita , que contenía tungsteno y manganeso, al mineral de hierro (y carbono). El acero de Toledo resultante llamó la atención de Roma cuando Aníbal lo utilizó en las Guerras Púnicas . Pronto se convirtió en la base del armamento de las legiones romanas; estas espadas eran "más fuertes en composición que cualquier espada existente y, debido a que... [no se rompían], proporcionaban una ventaja psicológica al soldado romano". [86]

En la América precolombina , entre los años 300 y 500 d. C., se empezaron a producir en Panamá y Costa Rica objetos hechos de tumbaga , una aleación de cobre y oro. Eran comunes las pequeñas esculturas de metal y una amplia gama de adornos de tumbaga (y oro) formaban parte de las vestimentas habituales de las personas de alto estatus.

Casi al mismo tiempo, los indígenas ecuatorianos combinaban oro con una aleación de platino natural que contenía pequeñas cantidades de paladio, rodio e iridio para producir miniaturas y máscaras de una aleación de oro blanco y platino. Los trabajadores del metal calentaban el oro con granos de la aleación de platino hasta que el oro se derretía. Después de enfriarse, el conglomerado resultante se martillaba y se recalentaba repetidamente hasta que se volvía homogéneo, equivalente a fundir todos los metales (alcanzar los puntos de fusión de los metales del grupo del platino en cuestión estaba más allá de la tecnología de la época). [87] [n 7]

Edad media

El oro es para la señora, la plata para la doncella,
el cobre para el artesano hábil en su oficio.
"¡Bien!", dijo el barón, sentado en su salón,
"pero el hierro, el hierro frío, es el amo de todos ellos".

De Hierro frío de Rudyard Kipling [88]

Los alquimistas árabes y medievales creían que todos los metales y la materia estaban compuestos por el principio del azufre, el padre de todos los metales y portador de la propiedad combustible, y el principio del mercurio, la madre de todos los metales [n 8] y portador de las propiedades de liquidez, fusibilidad y volatilidad. Estos principios no eran necesariamente las sustancias comunes azufre y mercurio que se encuentran en la mayoría de los laboratorios. Esta teoría reforzaba la creencia de que todos los metales estaban destinados a convertirse en oro en las entrañas de la tierra mediante las combinaciones adecuadas de calor, digestión, tiempo y eliminación de contaminantes, todo lo cual podía desarrollarse y acelerarse mediante el conocimiento y los métodos de la alquimia. [n 9]

Se empezaron a conocer el arsénico, el cinc, el antimonio y el bismuto, aunque al principio se los llamaba semimetales o metales bastardos debido a su inmaleabilidad. Se cree que Alberto Magno fue el primero en aislar el arsénico de un compuesto en 1250, calentando jabón junto con trisulfuro de arsénico . El cinc metálico, que es frágil si es impuro, se aisló en la India en 1300 d. C. La primera descripción de un procedimiento para aislar el antimonio se encuentra en el libro De la pirotechnia de Vannoccio Biringuccio de 1540. El bismuto fue descrito por Agricola en De Natura Fossilium (c. 1546); en los primeros tiempos se había confundido con el estaño y el plomo debido a su parecido con esos elementos.

El renacimiento

La página de título de De re metallica, que está escrita en latín
De re metallica , 1555
Consulte el título
Cristales de platino
Un disco de uranio sostenido por manos enguantadas
Un disco de uranio altamente enriquecido que se recuperó de la chatarra procesada en el Complejo de Seguridad Nacional Y-12 , en Oak Ridge, Tennessee
Cerio ultrapuro bajo argón
Cerio ultrapuro bajo argón, 1,5 g

El primer texto sistemático sobre las artes de la minería y la metalurgia fue De la Pirotechnia (1540) de Vannoccio Biringuccio , que trata del examen, la fusión y el trabajo de los metales.

Dieciséis años después, Georgius Agricola publicó De Re Metallica en 1556, un relato de la profesión de la minería, la metalurgia y las artes y ciencias accesorias, un extenso tratado sobre la industria química hasta el siglo XVI.

Dio la siguiente descripción de un metal en su De Natura Fossilium (1546):

El metal es un cuerpo mineral, por naturaleza líquido o algo duro. Este último puede fundirse con el calor del fuego, pero cuando se ha enfriado de nuevo y ha perdido todo calor, se vuelve duro de nuevo y recupera su forma original. En este aspecto se diferencia de la piedra que se funde en el fuego, pues aunque esta última recupera su dureza, pierde su forma y propiedades originales.

Tradicionalmente, hay seis clases diferentes de metales: oro, plata, cobre, hierro, estaño y plomo. En realidad, hay otros, ya que el mercurio es un metal, aunque los alquimistas no están de acuerdo con nosotros en este tema, y ​​el bismuto también lo es. Los escritores griegos antiguos parecen haber ignorado el bismuto, por lo que Amonio afirma con razón que hay muchas especies de metales, animales y plantas que nos son desconocidas. El estibio , cuando se funde en el crisol y se refina, tiene tanto derecho a ser considerado un metal propio como lo que los escritores conceden al plomo. Si, cuando se funde, se añade una cierta porción al estaño, se produce una aleación de librería a partir de la cual se fabrican los tipos que utilizan quienes imprimen libros en papel.

Cada metal tiene su propia forma, que conserva cuando se separa de los metales con los que se ha mezclado. Por lo tanto, ni el electrum ni el estaño son en sí mismos un metal real, sino más bien una aleación de dos metales. El electrum es una aleación de oro y plata, el estaño de plomo y plata. Y, sin embargo, si se separa la plata del electrum, queda oro y no electrum; si se quita la plata del estaño, queda plomo y no el estaño.

Sin embargo, no se puede determinar con certeza si el latón se encuentra como metal nativo o no. Solo conocemos el latón artificial, que consiste en cobre teñido con el color del mineral calamina . Y, sin embargo, si se desenterrara alguno, sería un metal auténtico. El cobre negro y blanco parece ser diferente del tipo rojo.

El metal, por tanto, es por naturaleza sólido, como he dicho, o fluido, como en el caso único del mercurio.

Pero ya basta de hablar de los tipos simples. [89]

El platino, el tercer metal precioso después del oro y la plata, fue descubierto en Ecuador durante el período de 1736 a 1744 por el astrónomo español Antonio de Ulloa y su colega el matemático Jorge Juan y Santacilia. Ulloa fue la primera persona en escribir una descripción científica del metal, en 1748.

En 1789, el químico alemán Martin Heinrich Klaproth aisló un óxido de uranio, que él creía que era el metal en sí. Posteriormente, a Klaproth se le atribuyó el descubrimiento del uranio. No fue hasta 1841 cuando el químico francés Eugène-Melchior Péligot preparó la primera muestra de uranio metálico. Posteriormente, Henri Becquerel descubrió la radiactividad en 1896 utilizando uranio.

En la década de 1790, Joseph Priestley y el químico holandés Martinus van Marum observaron el efecto de las superficies metálicas en la deshidrogenación del alcohol, un desarrollo que posteriormente condujo, en 1831, a la síntesis a escala industrial de ácido sulfúrico utilizando un catalizador de platino.

En 1803, el cerio fue el primer metal lantánido que se descubrió, en Bastnäs (Suecia) por Jöns Jakob Berzelius y Wilhelm Hisinger, y de forma independiente por Martin Heinrich Klaproth en Alemania. Los metales lantánidos se consideraban rarezas hasta la década de 1960, cuando se desarrollaron métodos para separarlos entre sí de forma más eficiente. Posteriormente se han utilizado en teléfonos móviles, imanes, láseres, iluminación, baterías, convertidores catalíticos y en otras aplicaciones que hacen posible las tecnologías modernas.

Otros metales descubiertos y preparados durante este tiempo fueron el cobalto, el níquel, el manganeso, el molibdeno, el tungsteno y el cromo; y algunos de los metales del grupo del platino , el paladio, el osmio, el iridio y el rodio.

Elementos metálicos ligeros

Todos los metales elementales descubiertos antes de 1809 tenían densidades relativamente altas; su peso se consideraba un criterio distintivo. A partir de 1809, se aislaron metales ligeros como el sodio, el potasio y el estroncio. Sus bajas densidades desafiaron la creencia convencional sobre la naturaleza de los metales. Sin embargo, se comportaron químicamente como metales y posteriormente se los reconoció como tales.

El aluminio se descubrió en 1824, pero no fue hasta 1886 cuando se desarrolló un método de producción industrial a gran escala. Los precios del aluminio cayeron y su uso se generalizó en joyería, artículos de uso diario, monturas de gafas, instrumentos ópticos, vajillas y láminas en la década de 1890 y principios del siglo XX. La capacidad del aluminio para formar aleaciones duras pero ligeras con otros metales le proporcionó muchos usos en esa época. Durante la Primera Guerra Mundial, los principales gobiernos exigieron grandes envíos de aluminio para fuselajes ligeros y resistentes.

Aunque el titanio metálico puro (99,9 %) se preparó por primera vez en 1910, no se utilizó fuera del laboratorio hasta 1932. En las décadas de 1950 y 1960, la Unión Soviética fue pionera en el uso del titanio en aplicaciones militares y submarinas como parte de programas relacionados con la Guerra Fría. A principios de la década de 1950, el titanio comenzó a utilizarse en la aviación militar, en particular en aviones a reacción de alto rendimiento, empezando por aviones como el F-100 Super Sabre y los Lockheed A-12 y SR-71 .

El escandio metálico se produjo por primera vez en 1937. El primer kilo de escandio metálico con una pureza del 99% se produjo en 1960. La producción de aleaciones de aluminio y escandio comenzó en 1971, tras una patente estadounidense. Las aleaciones de aluminio y escandio también se desarrollaron en la URSS.

La era del acero

El acero al rojo vivo fluye como agua desde un horno eléctrico de 35 toneladas en Allegheny Ludlum Steel Corporation, en Brackenridge , Pensilvania .

The modern era in steelmaking began with the introduction of Henry Bessemer's Bessemer process in 1855, the raw material for which was pig iron. His method let him produce steel in large quantities cheaply, thus mild steel came to be used for most purposes for which wrought iron was formerly used. The Gilchrist-Thomas process (or basic Bessemer process) was an improvement to the Bessemer process, made by lining the converter with a basic material to remove phosphorus.

Due to its high tensile strength and low cost, steel came to be a major component used in buildings, infrastructure, tools, ships, automobiles, machines, appliances, and weapons.

In 1872, the Englishmen Clark and Woods patented an alloy that would today be considered a stainless steel. The corrosion resistance of iron-chromium alloys had been recognized in 1821 by French metallurgist Pierre Berthier. He noted their resistance against attack by some acids and suggested their use in cutlery. Metallurgists of the 19th century were unable to produce the combination of low carbon and high chromium found in most modern stainless steels, and the high-chromium alloys they could produce were too brittle to be practical. It was not until 1912 that the industrialization of stainless steel alloys occurred in England, Germany, and the United States.

The last stable metallic elements

By 1900 three metals with atomic numbers less than lead (#82), the heaviest stable metal, remained to be discovered: elements 71, 72, 75.

Von Welsbach, in 1906, proved that the old ytterbium also contained a new element (#71), which he named cassiopeium. Urbain proved this simultaneously, but his samples were very impure and only contained trace quantities of the new element. Despite this, his chosen name lutetium was adopted.

In 1908, Ogawa found element 75 in thorianite but assigned it as element 43 instead of 75 and named it nipponium. In 1925 Walter Noddack, Ida Eva Tacke, and Otto Berg announced its separation from gadolinite and gave it the present name, rhenium.

Georges Urbain claimed to have found element 72 in rare-earth residues, while Vladimir Vernadsky independently found it in orthite. Neither claim was confirmed due to World War I, and neither could be confirmed later, as the chemistry they reported does not match that now known for hafnium. After the war, in 1922, Coster and Hevesy found it by X-ray spectroscopic analysis in Norwegian zircon. Hafnium was thus the last stable element to be discovered, though rhenium was the last to be correctly recognized.

By the end of World War II scientists had synthesized four post-uranium elements, all of which are radioactive (unstable) metals: neptunium (in 1940), plutonium (1940–41), and curium and americium (1944), representing elements 93 to 96. The first two of these were eventually found in nature as well. Curium and americium were by-products of the Manhattan project, which produced the world's first atomic bomb in 1945. The bomb was based on the nuclear fission of uranium, a metal first thought to have been discovered nearly 150 years earlier.

Post-World War II developments

Superalloys

Heat treating superalloy turbine blades

Superalloys composed of combinations of Fe, Ni, Co, and Cr, and lesser amounts of W, Mo, Ta, Nb, Ti, and Al were developed shortly after World War II for use in high performance engines, operating at elevated temperatures (above 650 °C (1,200 °F)). They retain most of their strength under these conditions, for prolonged periods, and combine good low-temperature ductility with resistance to corrosion or oxidation. Superalloys can now be found in a wide range of applications including land, maritime, and aerospace turbines, and chemical and petroleum plants.

Transcurium metals

The successful development of the atomic bomb at the end of World War II sparked further efforts to synthesize new elements, nearly all of which are, or are expected to be, metals, and all of which are radioactive. It was not until 1949 that element 97 (Berkelium), next after element 96 (Curium), was synthesized by firing alpha particles at an americium target. In 1952, element 100 (Fermium) was found in the debris of the first hydrogen bomb explosion; hydrogen, a nonmetal, had been identified as an element nearly 200 years earlier. Since 1952, elements 101 (Mendelevium) to 118 (Oganesson) have been synthesized.

Bulk metallic glasses

Metallic Glass Vitreloy4

A metallic glass (also known as an amorphous or glassy metal) is a solid metallic material, usually an alloy, with a disordered atomic-scale structure. Most pure and alloyed metals, in their solid state, have atoms arranged in a highly ordered crystalline structure. In contrast these have a non-crystalline glass-like structure. But unlike common glasses, such as window glass, which are typically electrical insulators, amorphous metals have good electrical conductivity. Amorphous metals are produced in several ways, including extremely rapid cooling, physical vapor deposition, solid-state reaction, ion irradiation, and mechanical alloying. The first reported metallic glass was an alloy (Au75Si25) produced at Caltech in 1960. More recently, batches of amorphous steel with three times the strength of conventional steel alloys have been produced. Currently, the most important applications rely on the special magnetic properties of some ferromagnetic metallic glasses. The low magnetization loss is used in high-efficiency transformers. Theft control ID tags and other article surveillance schemes often use metallic glasses because of these magnetic properties.

Shape-memory alloys

A shape-memory alloy (SMA) is an alloy that "remembers" its original shape and when deformed returns to its pre-deformed shape when heated. While the shape memory effect had been first observed in 1932, in an Au-Cd alloy, it was not until 1962, with the accidental discovery of the effect in a Ni-Ti alloy that research began in earnest, and another ten years before commercial applications emerged. SMA's have applications in robotics and automotive, aerospace, and biomedical industries. There is another type of SMA, called a ferromagnetic shape-memory alloy (FSMA), that changes shape under strong magnetic fields. These materials are of interest as the magnetic response tends to be faster and more efficient than temperature-induced responses.

Quasicrystalline alloys

Un dodecaedro regular metálico
A Ho-Mg-Zn icosahedral quasicrystal formed as a pentagonal dodecahedron, the dual of the icosahedron

In 1984, Israeli metallurgist Dan Shechtman found an aluminum-manganese alloy having five-fold symmetry, in breach of crystallographic convention at the time which said that crystalline structures could only have two-, three-, four-, or six-fold symmetry. Due to reservation about the scientific community's reaction, it took him two years to publish the results  for which he was awarded the Nobel Prize in Chemistry in 2011. Since this time, hundreds of quasicrystals have been reported and confirmed. They exist in many metallic alloys (and some polymers). Quasicrystals are found most often in aluminum alloys (Al-Li-Cu, Al-Mn-Si, Al-Ni-Co, Al-Pd-Mn, Al-Cu-Fe, Al-Cu-V, etc.), but numerous other compositions are also known (Cd-Yb, Ti-Zr-Ni, Zn-Mg-Ho, Zn-Mg-Sc, In-Ag-Yb, Pd-U-Si, etc.). Quasicrystals effectively have infinitely large unit cells. Icosahedrite Al63Cu24Fe13, the first quasicrystal found in nature, was discovered in 2009. Most quasicrystals have ceramic-like properties including low electrical conductivity (approaching values seen in insulators) and low thermal conductivity, high hardness, brittleness, and resistance to corrosion, and non-stick properties. Quasicrystals have been used to develop heat insulation, LEDs, diesel engines, and new materials that convert heat to electricity. New applications may take advantage of the low coefficient of friction and the hardness of some quasicrystalline materials, for example embedding particles in plastic to make strong, hard-wearing, low-friction plastic gears. Other potential applications include selective solar absorbers for power conversion, broad-wavelength reflectors, and bone repair and prostheses applications where biocompatibility, low friction, and corrosion resistance are required.

Complex metallic alloys

Complex metallic alloys (CMAs) are intermetallic compounds characterized by large unit cells comprising some tens up to thousands of atoms; the presence of well-defined clusters of atoms (frequently with icosahedral symmetry); and partial disorder within their crystalline lattices. They are composed of two or more metallic elements, sometimes with metalloids or chalcogenides added. They include, for example, NaCd2, with 348 sodium atoms and 768 cadmium atoms in the unit cell. Linus Pauling attempted to describe the structure of NaCd2 in 1923, but did not succeed until 1955. At first called "giant unit cell crystals", interest in CMAs, as they came to be called, did not pick up until 2002, with the publication of a paper called "Structurally Complex Alloy Phases", given at the 8th International Conference on Quasicrystals. Potential applications of CMAs include as heat insulation; solar heating; magnetic refrigerators; using waste heat to generate electricity; and coatings for turbine blades in military engines.

High-entropy alloys

High entropy alloys (HEAs) such as AlLiMgScTi are composed of equal or nearly equal quantities of five or more metals. Compared to conventional alloys with only one or two base metals, HEAs have considerably better strength-to-weight ratios, higher tensile strength, and greater resistance to fracturing, corrosion, and oxidation. Although HEAs were described as early as 1981, significant interest did not develop until the 2010s; they continue to be a focus of research in materials science and engineering because of their desirable properties.

MAX phase

In a Max phase, M is an early transition metal, A is an A group element (mostly group IIIA and IVA, or groups 13 and 14), and X is either carbon or nitrogen. Examples are Hf2SnC and Ti4AlN3. Such alloys have high electrical and thermal conductivity, thermal shock resistance, damage tolerance, machinability, high elastic stiffness, and low thermal expansion coefficients.[90] They can be polished to a metallic luster because of their excellent electrical conductivities. During mechanical testing, it has been found that polycrystalline Ti3SiC2 cylinders can be repeatedly compressed at room temperature, up to stresses of 1 GPa, and fully recover upon the removal of the load. Some MAX phases are also highly resistant to chemical attack (e.g. Ti3SiC2) and high-temperature oxidation in air (Ti2AlC, Cr2AlC2, and Ti3AlC2). Potential applications for MAX phase alloys include: as tough, machinable, thermal shock-resistant refractories; high-temperature heating elements; coatings for electrical contacts; and neutron irradiation resistant parts for nuclear applications.

See also

Note

  1. ^ Trace elements having an abundance equalling or much less than one part per trillion (namely Tc, Pm, Po, At, Ra, Ac, Pa, Np, and Pu) are not shown.
  2. ^ In some cases, for example in the presence of high energy gamma rays or in a very high temperature hydrogen rich environment, the subject nuclei may experience neutron loss or proton gain resulting in the production of (comparatively rare) neutron deficient isotopes.[70]
  3. ^ The ejection of matter when two neutron stars collide is attributed to the interaction of their tidal forces, possible crustal disruption, and shock heating (which is what happens if you floor the accelerator in car when the engine is cold).[73]
  4. ^ Iron, cobalt, nickel, and tin are also siderophiles from a whole of Earth perspective.
  5. ^ Another life-enabling role for iron is as a key constituent of hemoglobin, which enables the transportation of oxygen from the lungs to the rest of the body.
  6. ^ Bronze is an alloy consisting primarily of copper, commonly with about 12% tin and often with the addition of other metals (such as aluminum, manganese, nickel, or zinc) and sometimes non-metals or metalloids such as arsenic, phosphorus, or silicon.
  7. ^ In Damascus, Syria, blade-smiths forged knives and swords with a distinctive surface pattern composed of swirling patterns of light-etched regions on a nearly black background. These blades had legendary cutting abilities. The iron the smiths were using was sourced from India, and contained one or more carbide-forming elements, such as V, Mo, Cr, Mn, and Nb. Modern analysis of these weapons has shown that these elements supported the catalytic formation of carbon nanotubes, which in turn promoted the formation of cementite (Fe3C) nanowires. The malleability of the carbon nanotubes offset the brittle nature of the cementite, and endowed the resulting steel with a unique combination of strength and flexibility. Knowledge of how to make what came to called Damascus steel died out in the eighteenth century possibly due to exhausting ore sources with the right combination of impurities. The techniques involved were not rediscovered until 2009.
  8. ^ In ancient times, lead was regarded as the father of all metals.
  9. ^ Paracelsus, a later German Renaissance writer, added the third principle of salt, carrying the nonvolatile and incombustible properties, in his tria prima doctrine. These theories retained the four classical elements as underlying the composition of sulfur, mercury, and salt.

References

  1. ^ a b c d Kittel, Charles (2018). Introduction to solid state physics. Paul McEuen (Global edition, [9th edition] ed.). Hoboken, NJ: Wiley. ISBN 978-1-119-45416-8.
  2. ^ a b c d e f g h Ashcroft, Neil W.; Mermin, N. David (1976). Solid state physics. New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1.
  3. ^ a b c d Callister, William D. (1997). Materials science and engineering: an introduction (4th ed.). New York: John Wiley & Sons. ISBN 978-0-471-13459-6.
  4. ^ Chiang, CK (1977). "Transport and optical properties of polythiazyl bromides: (SNBr0.4)x". Solid State Communications. 23 (9): 607–612. Bibcode:1977SSCom..23..607C. doi:10.1016/0038-1098(77)90530-0.; Greenwood, NN; Earnshaw, A (1998). Chemistry of the Elements. Oxford: Butterworth-Heinemann. p. 727. ISBN 978-0-7506-3365-9.; Mutlu, H; Theato, P (2021). "Polymers with sulfur-nitrogen bonds". In Zhang, X; Theato, P (eds.). Sulfur-Containing Polymers: From Synthesis to Functional Materials. Weinheim: Wiley-VCH. pp. 191–234 (191). ISBN 978-3-527-34670-7.
  5. ^ Yonezawa, F. (2017). Physics of Metal-Nonmetal Transitions. Amsterdam: IOS Press. p. 257. ISBN 978-1-61499-786-3. Sir Nevill Mott (1905–1996) wrote a letter to a fellow physicist, Prof. Peter P. Edwards, in which he notes... I've thought a lot about 'What is a metal?' and I think one can only answer the question at T = 0 (the absolute zero of temperature). There a metal conducts and a nonmetal doesn't.
  6. ^ Martin, John C. "What we learn from a star's metal content". John C. Martin's Homepage. Retrieved March 25, 2021.
  7. ^ Martin, John C.; Morrison, Heather L. (May 18, 1998) [1998]. "A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood". The Astronomical Journal. 116 (4) (published October 1, 1998): 1724–1735. arXiv:astro-ph/9806258. Bibcode:1998AJ....116.1724M. doi:10.1086/300568. S2CID 18530430 – via IOPscience.
  8. ^ Roe, J.; Roe, M. (1992). "World's coinage uses 24 chemical elements". World Coinage News. 19 (4, 5): 24–25, 18–19.
  9. ^ a b c d Stampfl, C.; Mannstadt, W.; Asahi, R.; Freeman, A. J. (2001). "Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations". Physical Review B. 63 (15): 155106. Bibcode:2001PhRvB..63o5106S. doi:10.1103/PhysRevB.63.155106.
  10. ^ a b c Mortimer, Charles E. (1975). Chemistry: A Conceptual Approach (3rd ed.). New York: D. Van Nostrad Company.
  11. ^ Moller, P.; Nix, J. R. (1994). Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. Retrieved 2020-02-16.
  12. ^ Benedyk, J. C. (2010-01-01), Mallick, P. K. (ed.), "3 - Aluminum alloys for lightweight automotive structures", Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, pp. 79–113, doi:10.1533/9781845697822.1.79, ISBN 978-1-84569-463-0, retrieved 2024-07-23
  13. ^ Li, Shuang–Shuang; Yue, Xin; Li, Qing–Yuan; Peng, He–Li; Dong, Bai–Xin; Liu, Tian–Shu; Yang, Hong–Yu; Fan, Jun; Shu, Shi–Li; Qiu, Feng; Jiang, Qi–Chuan (2023-11-01). "Development and applications of aluminum alloys for aerospace industry". Journal of Materials Research and Technology. 27: 944–983. doi:10.1016/j.jmrt.2023.09.274. ISSN 2238-7854.
  14. ^ Gupta, M.; Wong, W. L. E. (2015-07-01). "Magnesium-based nanocomposites: Lightweight materials of the future". Materials Characterization. 105: 30–46. doi:10.1016/j.matchar.2015.04.015. ISSN 1044-5803.
  15. ^ Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi (2016-07-22). "A lightweight shape-memory magnesium alloy". Science. 353 (6297): 368–370. Bibcode:2016Sci...353..368O. doi:10.1126/science.aaf6524. ISSN 0036-8075. PMID 27463668.
  16. ^ a b c Weertman, Johannes; Weertman, Julia R. (1992). Elementary dislocation theory. New York: Oxford University Press. ISBN 978-0-19-506900-6.
  17. ^ Timoshenko, Stephen (1983-01-01). History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures. Courier Corporation. ISBN 978-0-486-61187-7.
  18. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  19. ^ Koster, G. (2015). Epitaxial growth of complex metal oxides. Boston, MA: Elsevier. ISBN 978-1-78242-245-7.
  20. ^ Schiff, Leonard (1959). Quantum Mechanics (PDF). McGraw-Hill.
  21. ^ a b Solymar, L.; Walsh, D. (2004). Electrical properties of materials (7th ed.). Oxford ; New York: Oxford University Press. ISBN 978-0-19-926793-4.
  22. ^ Hecker, Siegfried S. (2000). "Plutonium and its alloys: from atoms to microstructure" (PDF). Los Alamos Science. 26: 290–335. Archived (PDF) from the original on February 24, 2009. Retrieved February 15, 2009.
  23. ^ Tsiovkin, Yu. Yu.; Lukoyanov, A. V.; Shorikov, A. O.; Tsiovkina, L. Yu.; Dyachenko, A. A.; Bystrushkin, V. B.; Korotin, M. A.; Anisimov, V. I.; Dremov, V. V. (2011). "Electrical resistivity of pure transuranium metals under pressure". Journal of Nuclear Materials. 413 (1): 41–46. doi:10.1016/j.jnucmat.2011.03.053. ISSN 0022-3115.
  24. ^ Koester, D; Chanmugam, G (1990). "Physics of white dwarf stars". Reports on Progress in Physics. 53 (7): 837–915. doi:10.1088/0034-4885/53/7/001. ISSN 0034-4885.
  25. ^ Skośkiewicz, T. (2005). "Thermal Conductivity at Low Temperatures". Encyclopedia of Condensed Matter Physics. Elsevier. pp. 159–164. doi:10.1016/b0-12-369401-9/01168-2. ISBN 978-0-12-369401-0.
  26. ^ "The Nobel Prize in Chemistry 2000". NobelPrize.org. Retrieved 2024-07-23.
  27. ^ Burke, Kieron (2007). "The ABC of DFT" (PDF).
  28. ^ Gross, Eberhard K. U.; Dreizler, Reiner M. (2013). Density Functional Theory. Springer Science & Business Media. ISBN 978-1-4757-9975-0.
  29. ^ Bockris, J. O'M; Reddy, Amulya K. N. (1977). Modern electrochemistry. 2 (3. print ed.). New York: Plenum Pr. ISBN 978-0-306-25002-6.
  30. ^ Kelly, Robert G.; Scully, John R.; Shoesmith, David; Buchheit, Rudolph G. (2002-09-13). Electrochemical Techniques in Corrosion Science and Engineering (0 ed.). CRC Press. doi:10.1201/9780203909133. ISBN 978-0-203-90913-3.
  31. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  32. ^ a b Siekierski, S.; Burgess, J. (2002). Concise Chemistry of the Elements. Horwood. pp. 60–66. ISBN 978-1-898563-71-6.
  33. ^ Mewes, Jan-Michael; Smits, Odile Rosette; Jerabek, Paul; Schwerdtfeger, Peter (25 July 2019). "Oganesson is a Semiconductor: On the Relativistic Band-Gap Narrowing in the Heaviest Noble-Gas Solids". Angewandte Chemie. 58 (40): 14260–14264. doi:10.1002/anie.201908327. PMC 6790653. PMID 31343819.
  34. ^ Liu, C. T.; Stiegler, J. O. (1984-11-09). "Ductile Ordered Intermetallic Alloys". Science. 226 (4675): 636–642. Bibcode:1984Sci...226..636L. doi:10.1126/science.226.4675.636. ISSN 0036-8075. PMID 17774926.
  35. ^ Cinca, Nuria; Lima, Carlos Roberto Camello; Guilemany, Jose Maria (2013). "An overview of intermetallics research and application: Status of thermal spray coatings". Journal of Materials Research and Technology. 2 (1): 75–86. doi:10.1016/j.jmrt.2013.03.013. ISSN 2238-7854.
  36. ^ "Steel use by sector". worldsteel.org. Retrieved 2024-09-18.
  37. ^ Jang, J. M.; Lee, H. S.; Singh, J. K. (December 17, 2020). "Electromagnetic Shielding Performance of Different Metallic Coatings Deposited by Arc Thermal Spray Process". Materials. 13 (24): 5776. Bibcode:2020Mate...13.5776J. doi:10.3390/ma13245776. PMC 7767199. PMID 33348891.
  38. ^ "Metals Program Overview" (PDF). arpa-e.energy.gov. Retrieved June 4, 2024.
  39. ^ Gialanella, Stefano; Malandruccolo, Alessio (2020). Aerospace Alloys. Topics in Mining, Metallurgy and Materials Engineering. Cham: Springer International Publishing. doi:10.1007/978-3-030-24440-8. ISBN 978-3-030-24439-2.
  40. ^ Russell, A. M.; Lee, K. L. (2005). Structure–Property Relations in Nonferrous Metals. Hoboken, NJ: John Wiley & Sons. pp. passim. Bibcode:2005srnm.book.....R. ISBN 978-0-471-64952-6.
  41. ^ Senkov, O. N.; Miracle, D. B. (2021-02-25). "Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure". Scientific Reports. 11 (1). doi:10.1038/s41598-021-83953-z. ISSN 2045-2322. PMC 7907099. PMID 33633140.
  42. ^ Introduction to Dislocations. Elsevier. 2001. doi:10.1016/b978-0-7506-4681-9.x5000-7. ISBN 978-0-7506-4681-9.
  43. ^ "Belmont Metals - White Metals". Belmont Metals. 2019-04-17. Retrieved 2024-07-08.
  44. ^ Roden, Arabella (2019-11-04). "A closer look at the world of white metals". jewellermagazine.com. Retrieved 2024-07-08.
  45. ^ Prsctical guidance in relation to the hallmarking act 1973 (PDF). Assay offices of Great Britain.
  46. ^ Metal contamination. Editions Quae. 2006. ISBN 978-2-7592-0011-5.
  47. ^ Brandes EA & Brook GB (eds) 1998, Light Metals Handbook, Butterworth Heinemann, Oxford, ISBN 0-7506-3625-4, p. viii
  48. ^ Polmear I 2006, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Butterworth Heinemann, Oxford, ISBN 0-7506-6371-5, p. 1
  49. ^ Tunay, Olcay; Kabdasli, Isik; Arslan-Alaton, Idil; Olmez-Hanci, Tugba (2010). Chemical Oxidation Applications for Industrial Wastewaters. IWA Publishing. ISBN 978-1-84339-307-8.
  50. ^ Walther, John V. (2013). Earth's Natural Resources. Jones & Bartlett Publishers. ISBN 978-1-4496-3234-2.
  51. ^ Abdul-Rahman, Yahia (2014). The Art of RF (Riba-Free) Islamic Banking and Finance: Tools and Techniques for Community-Based Banking. John Wiley & Sons. ISBN 978-1-118-77096-2.
  52. ^ Yasuda, Kouji; Macak, Jan M.; Berger, Steffen; Ghicov, Andrei; Schmuki, Patrik (2007). "Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals". Journal of the Electrochemical Society. 154 (9): C472. Bibcode:2007JElS..154C.472Y. doi:10.1149/1.2749091.
  53. ^ van Hove, Ruud P.; Sierevelt, Inger N.; van Royen, Barend J.; Nolte, Peter A. (2015). "Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature". BioMed Research International. 2015: 1–9. doi:10.1155/2015/485975. ISSN 2314-6133. PMC 4637053. PMID 26583113.
  54. ^ Santecchia, Eleonora; Hamouda, A. M. S.; Musharavati, Farayi; Zalnezhad, Erfan; Cabibbo, Marcello; Spigarelli, Stefano (2015). "Wear resistance investigation of titanium nitride-based coatings". Ceramics International. 41 (9, Part A): 10349–10379. doi:10.1016/j.ceramint.2015.04.152. ISSN 0272-8842.
  55. ^ Matthews, A. (1985). "Titanium Nitride PVD Coating Technology". Surface Engineering. 1 (2): 93–104. doi:10.1179/sur.1985.1.2.93. ISSN 0267-0844.
  56. ^ K, Namsheer; Rout, Chandra Sekkha (2021). "Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications". RSC Advances. 11 (10): 5659–5697. Bibcode:2021RSCAd..11.5659K. doi:10.1039/D0RA07800J. PMC 9133880. PMID 35686160.
  57. ^ Das, Tapan K.; Prusty, Smita (2012). "Review on Conducting Polymers and Their Applications". Polymer-Plastics Technology and Engineering. 51 (14): 1487–1500. doi:10.1080/03602559.2012.710697. ISSN 0360-2559.
  58. ^ Swager, Timothy M. (2017). "50th Anniversary Perspective : Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future". Macromolecules. 50 (13): 4867–4886. Bibcode:2017MaMol..50.4867S. doi:10.1021/acs.macromol.7b00582. ISSN 0024-9297.
  59. ^ Beygisangchin, Mahnoush; Abdul Rashid, Suraya; Shafie, Suhaidi; Sadrolhosseini, Amir Reza; Lim, Hong Ngee (2021-06-18). "Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review". Polymers. 13 (12): 2003. doi:10.3390/polym13122003. ISSN 2073-4360. PMC 8234317. PMID 34207392.
  60. ^ de Groot, R. A.; Mueller, F. M.; Engen, P. G. van; Buschow, K. H. J. (1983-06-20). "New Class of Materials: Half-Metallic Ferromagnets". Physical Review Letters. 50 (25): 2024–2027. Bibcode:1983PhRvL..50.2024D. doi:10.1103/PhysRevLett.50.2024. ISSN 0031-9007.
  61. ^ Coey, J. M. D.; Venkatesan, M. (2002-05-15). "Half-metallic ferromagnetism: Example of CrO2 (invited)". Journal of Applied Physics. 91 (10): 8345–8350. doi:10.1063/1.1447879. ISSN 0021-8979.
  62. ^ Zhai, Enzi; Liang, Tianyu; Liu, Ruizi; Cai, Mingyang; Li, Ran; Shao, Qiming; Su, Cong; Lin, Yuxuan Cosmi (2024-08-01). "The rise of semi-metal electronics". Nature Reviews Electrical Engineering. 1 (8): 497–515. doi:10.1038/s44287-024-00068-z. ISSN 2948-1201.
  63. ^ Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin (2018-01-22). "Weyl and Dirac semimetals in three-dimensional solids". Reviews of Modern Physics. 90 (1): 015001. arXiv:1705.01111. Bibcode:2018RvMP...90a5001A. doi:10.1103/RevModPhys.90.015001. ISSN 0034-6861.
  64. ^ Wang, Yang; N. Mansour; A. Salem; K.F. Brennan & P.P. Ruden (1992). "Theoretical study of a potential low-noise semimetal-based avalanche photodetector". IEEE Journal of Quantum Electronics. 28 (2): 507–513. Bibcode:1992IJQE...28..507W. doi:10.1109/3.123280.
  65. ^ Bubnova, Olga; Zia, Ullah Khan; Wang, Hui (2014). "Semi-Metallic Polymers". Nature Materials. 13 (2): 190–4. Bibcode:2014NatMa..13..190B. doi:10.1038/nmat3824. PMID 24317188. S2CID 205409397.
  66. ^ a b Cox 1997, pp. 73–89
  67. ^ Cox 1997, pp. 32, 63, 85
  68. ^ Podosek 2011, p. 482
  69. ^ Padmanabhan 2001, p. 234
  70. ^ Rehder 2010, pp. 32, 33
  71. ^ Hofmann 2002, pp. 23–24
  72. ^ Hadhazy 2016
  73. ^ Choptuik, Lehner & Pretorias 2015, p. 383
  74. ^ Cox 1997, pp. 83, 91, 102–103
  75. ^ "Los Alamos National Laboratory – Sodium". Retrieved 2007-06-08.
  76. ^ "Los Alamos National Laboratory – Aluminum". Retrieved 2007-06-08.
  77. ^ a b The Recycling Rates of Metals: A Status Report Archived 2016-01-01 at the Wayback Machine 2010, International Resource Panel, United Nations Environment Programme
  78. ^ Tread lightly: Aluminium attack Carolyn Fry, Guardian.co.uk, 22 February 2008.
  79. ^ Metal Stocks in Society: Scientific Synthesis Archived 2016-01-01 at the Wayback Machine 2010, International Resource Panel, United Nations Environment Programme
  80. ^ Reardon, Arthur C. (2011). Metallurgy for the non-metallurgist. Materials Park, Ohio: ASM International. pp. 73–84. ISBN 978-1-61503-845-9. OCLC 780082219.
  81. ^ Tylecote, R. F. (1992). A History of Metallurgy, Second Edition. London: Maney Publishing, for the Institute of Materials. ISBN 978-1-902653-79-2. Archived from the original on 2015-04-02.
  82. ^ Thornton, C.; Lamberg-Karlovsky, C. C.; Liezers, M.; Young, S. M. M. (2002). "On pins and needles: tracing the evolution of copper-based alloying at Tepe Yahya, Iran, via ICP-MS analysis of Common-place items". Journal of Archaeological Science. 29 (12): 1451–1460. Bibcode:2002JArSc..29.1451T. doi:10.1006/jasc.2002.0809.
  83. ^ Kaufman, Brett. "Metallurgy and Archaeological Change in the Ancient Near East". Backdirt: Annual Review. 2011: 86.
  84. ^ Akanuma, H. (2005). "The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman-Kalehöyük, Turkey". Anatolian Archaeological Studies. 14. Tokyo: Japanese Institute of Anatolian Archaeology: 147–158.
  85. ^ "Ironware piece unearthed from Turkey found to be oldest steel". The Hindu. Chennai, India. 2009-03-26. Archived from the original on 2009-03-29. Retrieved 2009-03-27.
  86. ^ Gabriel, RA (1990). The Culture of War: Invention and Early Development. Westport CT: Greenwood Publishing Group. p. 108. ISBN 978-0-313-26664-5.
  87. ^ Knauth, P. (1976). The Metalsmiths, revised edition. London: Time-Life International. pp. 133, 137.
  88. ^ Published in The Delineator, Sept. 1909. Reprinted as the introduction to Rewards and Fairies in 1910.
  89. ^ Georgius Agricola, De Re Metallica (1556) Tr. Herbert Clark Hoover & Lou Henry Hoover (1912); Footnote quoting De Natura Fossilium (1546), p. 180
  90. ^ Hanaor, D.A.H.; Hu, L.; Kan, W.H.; Proust, G.; Foley, M.; Karaman, I.; Radovic, M. (2016). "Compressive performance and crack propagation in Al alloy/Ti2AlC composites". Materials Science and Engineering: A. 672: 247–256. arXiv:1908.08757. doi:10.1016/j.msea.2016.06.073.

Further reading

Enlaces externos