stringtranslate.com

FOXP3

FOXP3 ( forkhead box P3), también conocida como escurfina , es una proteína implicada en las respuestas del sistema inmunológico . [5] Miembro de la familia de proteínas FOX , FOXP3 parece funcionar como un regulador maestro de la vía reguladora en el desarrollo y función de las células T reguladoras . [6] [7] [8] Las células T reguladoras generalmente reducen la respuesta inmune. En el cáncer, un exceso de actividad de las células T reguladoras puede impedir que el sistema inmunológico destruya las células cancerosas. En las enfermedades autoinmunes, una deficiencia de la actividad de las células T reguladoras puede permitir que otras células autoinmunes ataquen los propios tejidos del cuerpo. [9] [10]

Si bien aún no se ha establecido el mecanismo de control preciso, las proteínas FOX pertenecen a la familia de reguladores transcripcionales de cabeza de horquilla/ hélice alada y se presume que ejercen control a través de interacciones similares de unión al ADN durante la transcripción . En los sistemas modelo de células T reguladoras, el factor de transcripción FOXP3 ocupa los promotores de los genes implicados en la función reguladora de las células T y puede inhibir la transcripción de genes clave tras la estimulación de los receptores de células T. [11]

Estructura

Los genes FOXP3 humanos contienen 11 exones codificantes . Los límites exon- intrón son idénticos en las regiones codificantes de los genes humanos y de ratón. Mediante análisis de secuencia genómica, el gen FOXP3 se asigna al brazo p del cromosoma X (específicamente, X p 11.23). [5] [12]

Fisiología

Foxp3 es un marcador específico de células T reguladoras naturales ( nTregs , un linaje de células T ) y de células T reguladoras adaptativas/inducidas (a/iTregs), identificadas también por otros marcadores menos específicos como CD25 o CD4 5RB. [6] [7] [8] En estudios con animales, las Treg que expresan Foxp3 son fundamentales en la transferencia de la tolerancia inmunitaria , especialmente la autotolerancia. [13]

La inducción o administración de células T positivas para Foxp3 ha conducido, en estudios con animales, a marcadas reducciones en la gravedad de las enfermedades (autoinmunes) en modelos de diabetes , esclerosis múltiple , asma , enfermedad inflamatoria intestinal , tiroiditis y enfermedad renal . [14] Los ensayos en humanos que utilizan células T reguladoras para tratar la enfermedad de injerto contra huésped han demostrado eficacia. [15] [16]

Trabajos posteriores han demostrado que las células T son de naturaleza más plástica de lo que se pensaba originalmente. [17] [18] [19] Esto significa que el uso de células T reguladoras en la terapia puede ser riesgoso, ya que la célula T reguladora transferida al paciente puede transformarse en células T auxiliares 17 (Th17), que son más bien proinflamatorias. que las células reguladoras. [17] Las células Th17 son proinflamatorias y se producen en entornos similares a los a/iTregs. [17] Las células Th17 se producen bajo la influencia de TGF-β e IL-6 (o IL-21), mientras que las a/iTreg se producen bajo la influencia únicamente de TGF-β, por lo que la diferencia entre un proinflamatorio y un pro- El escenario regulatorio es la presencia de una única interleucina. Los laboratorios de inmunología están debatiendo la IL-6 o la IL-21 como la molécula de señalización definitiva. Los estudios murinos apuntan a la IL-6, mientras que los estudios en humanos han demostrado la IL-21. [ cita necesaria ] Foxp3 es el principal factor de transcripción que controla las células T reguladoras (células T reg o CD4 + ). [20] Las células CD4 + son leucocitos responsables de proteger a los animales de invasores extraños como bacterias y virus. [20] Los defectos en la capacidad de funcionamiento de este gen pueden causar el síndrome IPEX (IPEX), también conocido como síndrome de autoinmunidad-inmunodeficiencia ligado al cromosoma X, así como numerosos cánceres. [21] Si bien las células CD4 + están fuertemente reguladas y requieren múltiples factores de transcripción como STAT -5 y AhR para activarse y funcionar correctamente, Foxp3 ha sido identificado como el regulador maestro para el linaje Treg . [20] Foxp3 puede actuar como activador o supresor transcripcional dependiendo de qué factores transcripcionales específicos, como las desacetilasas y las histonas acetilasas , actúan sobre él. [20] También se sabe que el gen Foxp3 convierte células T vírgenes en células T reg , que son capaces de tener capacidades supresoras in vivo e in vitro, lo que sugiere que Foxp3 es capaz de regular la expresión de moléculas mediadoras de supresión. [20] Aclarar los objetivos genéticos de Foxp3 podría ser crucial para la comprensión de las capacidades supresoras de las células T reg .

Fisiopatología

En las enfermedades humanas, se encuentran alteraciones en el número de células T reguladoras (y en particular en aquellas que expresan Foxp3) en varios estados patológicos. Por ejemplo, los pacientes con tumores tienen un exceso relativo local de células T positivas para Foxp3 que inhibe la capacidad del cuerpo para suprimir la formación de células cancerosas. [22] Por el contrario, los pacientes con una enfermedad autoinmune como el lupus eritematoso sistémico (LES) tienen una disfunción relativa de las células Foxp3 positivas. [23] El gen Foxp3 también está mutado en el síndrome IPEX ( inmunodisregulación , poliendocrinopatía y enteropatía ligada al cromosoma X ) . [24] [25] Muchos pacientes con IPEX tienen mutaciones en el dominio forkhead de unión al ADN de FOXP3. [26]

En ratones, una mutación Foxp3 (una mutación de cambio de marco que da como resultado una proteína que carece del dominio forkhead) es responsable de 'Scurfy', un mutante recesivo de ratón ligado al cromosoma X que resulta letal en machos hemicigotos de 16 a 25 días después del nacimiento. [5] Estos ratones tienen una proliferación excesiva de linfocitos T CD 4 + , una infiltración multiorgánica extensa y una elevación de numerosas citoquinas . Este fenotipo es similar a aquellos que carecen de expresión de CTLA-4 , TGF-β , enfermedad humana IPEX o deleción del gen Foxp3 en ratones ("ratones casposos"). La patología observada en ratones con caspa parece ser el resultado de una incapacidad para regular adecuadamente la actividad de las células T CD4 + . En ratones que sobreexpresan el gen Foxp3, se observan menos células T. Las células T restantes tienen respuestas proliferativas y citolíticas deficientes y una producción deficiente de interleucina-2 , aunque el desarrollo tímico parece normal. El análisis histológico indica que los órganos linfoides periféricos , particularmente los ganglios linfáticos , carecen de la cantidad adecuada de células. [ cita necesaria ]

Papel en el cáncer

Además del papel de Foxp3 en la diferenciación reguladora de las células T, múltiples líneas de evidencia han indicado que Foxp3 desempeña un papel importante en el desarrollo del cáncer.

Se ha informado de una regulación negativa de la expresión de Foxp3 en muestras de tumores derivados de pacientes con cáncer de mama, próstata y ovario, lo que indica que Foxp3 es un potencial gen supresor de tumores. La expresión de Foxp3 también se detectó en muestras de tumores derivados de tipos de cáncer adicionales, incluidos cánceres de páncreas, melanoma, hígado, vejiga, tiroides y cuello uterino. Sin embargo, en estos informes no se analizó ningún tejido normal correspondiente, por lo que no quedó claro si Foxp3 es una molécula pro o antitumoral en estos tumores. [ cita necesaria ]

Dos líneas de evidencia funcional respaldan firmemente que Foxp3 sirve como factor de transcripción supresor de tumores en el desarrollo del cáncer. Primero, Foxp3 reprime la expresión de los oncogenes HER2, Skp2, SATB1 y MYC e induce la expresión de los genes supresores de tumores P21 y LATS2 en células de cáncer de mama y próstata. En segundo lugar, la sobreexpresión de Foxp3 en líneas celulares de melanoma, [ cita necesaria ] glioma, cáncer de mama, próstata y ovario induce profundos efectos inhibidores del crecimiento in vitro e in vivo. Sin embargo, esta hipótesis debe investigarse más a fondo en estudios futuros. [ cita necesaria ]

Foxp3 es un reclutador de otras enzimas antitumorales como CD39 y CD8 . [21] La sobreexpresión de CD39 se encuentra en pacientes con múltiples tipos de cáncer, como melanoma , leucemia , cáncer de páncreas , cáncer de colon y cáncer de ovario . [21] Esta sobreexpresión puede estar protegiendo a las células tumorales, permitiéndoles crear su "fase de escape". [21] La “fase de escape” de un tumor canceroso es donde el tumor crece rápidamente y se vuelve clínicamente invisible al independizarse de la matriz extracelular y crear su propio microambiente tumoral inmunosupresor. [21] Las consecuencias de que una célula cancerosa alcance la “fase de escape” es que le permite evadir completamente el sistema inmunológico, lo que reduce la inmunogenicidad y la capacidad de ser detectada clínicamente, lo que le permite progresar y extenderse por todo el cuerpo. También se sabe que algunos pacientes con cáncer presentan un mayor número de células CD4 + mutadas . Estas células mutadas producirán grandes cantidades de TGF-β e IL- 10 (un factor de crecimiento transformante β y una citoquina inhibidora respectivamente) que suprimirán las señales al sistema inmunológico y permitirán el escape del tumor. [21] Por lo tanto, el polimorfismo de Foxp3 (rs3761548) podría contribuir al desarrollo de cáncer como el cáncer gástrico al influir en la actividad de las células Treg y la secreción de citoquinas inmunomoduladoras como IL-10 , IL-35 y TGF-β . [27] En un experimento, un péptido sintético de 15 unidades, P60, pudo inhibir la capacidad de funcionamiento de Foxp3. P60 hizo esto ingresando a las células y luego uniéndose a Foxp3, donde dificulta la capacidad de Foxp3 para trasladarse al núcleo. [28] Debido a esto, Foxp3 ya no pudo suprimir adecuadamente los factores de transcripción NF -kB y NFAT ; ambos son complejos proteicos que regulan la transcripción del ADN, la producción de citocinas y la supervivencia celular. [28] Esto inhibiría la capacidad de una célula para realizar apoptosis y detener su propio ciclo celular, lo que potencialmente podría permitir que una célula cancerosa afectada sobreviva y se reproduzca.

autoinmune

Las mutaciones o alteraciones de la vía reguladora de Foxp3 pueden provocar enfermedades autoinmunes específicas de órganos, como la tiroiditis autoinmune y la diabetes mellitus tipo 1 . [29] Estas mutaciones afectan a los timocitos que se desarrollan dentro del timo . Regulados por Foxp3, son estos timocitos los que, durante la timopoyesis , son transformados en células Treg maduras por el timo. [29] Se descubrió que los pacientes que padecen la enfermedad autoinmune lupus eritematoso sistémico (LES) poseen mutaciones en Foxp3 que afectan el proceso de timopoyesis, impidiendo el desarrollo adecuado de las células T reg dentro del timo. [29] Estas células T reg que funcionan mal no están reguladas eficientemente por sus factores de transcripción , lo que hace que ataquen células que están sanas, lo que lleva a estas enfermedades autoinmunes específicas de órganos. Otra forma en que Foxp3 ayuda a mantener el sistema autoinmune en la homeostasis es mediante la regulación de la expresión de moléculas mediadoras de la supresión. Por ejemplo, Foxp3 puede facilitar la translocación de adenosina extracelular al citoplasma. [30] Lo hace reclutando CD39 , una enzima limitante de la velocidad que es vital en la supresión de tumores para hidrolizar el ATP a ADP con el fin de regular la inmunosupresión en diferentes poblaciones de células. [30]

Ver también

Referencias

  1. ^ abc GRCh38: Ensembl lanzamiento 89: ENSG00000049768 - Ensembl , mayo de 2017
  2. ^ abc GRCm38: Ensembl lanzamiento 89: ENSMUSG00000039521 - Ensembl , mayo de 2017
  3. ^ "Referencia humana de PubMed:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed del ratón:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ abc Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (enero de 2001). "La alteración de una nueva proteína de hélice alada y cabeza de horquilla, la escurfina, da como resultado el trastorno linfoproliferativo fatal del ratón casposo". Genética de la Naturaleza . 27 (1): 68–73. doi :10.1038/83784. PMID  11138001. S2CID  13389419.
  6. ^ ab Hori S, Nomura T, Sakaguchi S (febrero de 2003). "Control del desarrollo de células T reguladoras mediante el factor de transcripción Foxp3". Ciencia . 299 (5609): 1057–61. Código bibliográfico : 2003 Ciencia... 299.1057H. doi : 10.1126/ciencia.1079490. PMID  12522256. S2CID  9697928.
  7. ^ ab Fontenot JD, Gavin MA, Rudensky AY (abril de 2003). "Foxp3 programa el desarrollo y función de las células T reguladoras CD4 + CD25 +". Inmunología de la naturaleza . 4 (4): 330–6. doi :10.1038/ni904. PMID  12612578. S2CID  3343021.
  8. ^ ab Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (marzo de 2005). "Especificación del linaje de células T reguladora mediante el factor de transcripción forkhead foxp3". Inmunidad . 22 (3): 329–41. doi : 10.1016/j.immuni.2005.01.016 . PMID  15780990.
  9. ^ Josefowicz SZ, Lu LF, Rudensky AY (enero de 2012). "Células T reguladoras: mecanismos de diferenciación y función". Revista Anual de Inmunología . 30 (enero): 531–64. doi : 10.1146/annurev.immunol.25.022106.141623. PMC 6066374 . PMID  22224781. 
  10. ^ Zhang L, Zhao Y (junio de 2007). "La regulación de la expresión de Foxp3 en células T CD4 (+) CD25 (+) reguladoras: múltiples vías en el camino". Revista de fisiología celular . 211 (3): 590–7. doi : 10.1002/jcp.21001 . PMID  17311282.
  11. ^ Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (febrero de 2007). "Ocupación de Foxp3 y regulación de genes diana clave durante la estimulación de células T". Naturaleza . 445 (7130): 931–5. Código Bib :2007Natur.445..931M. doi : 10.1038/naturaleza05478. PMC 3008159 . PMID  17237765. 
  12. ^ Bennett CL, Yoshioka R, Kiyosawa H, Barker DF, Fain PR, Shigeoka AO, Chance PF (febrero de 2000). "El síndrome de poliendocrinopatía, disfunción inmune y diarrea ligado al cromosoma X se asigna a Xp11.23-Xq13.3". Revista Estadounidense de Genética Humana . 66 (2): 461–8. doi :10.1086/302761. PMC 1288099 . PMID  10677306. 
  13. ^ Ohki H, Martin C, Corbel C, Coltey M, Le Douarin NM (agosto de 1987). "Tolerancia inducida por injertos de epitelio tímico en aves". Ciencia . 237 (4818): 1032–5. Código bibliográfico : 1987 Ciencia... 237.1032O. doi : 10.1126/ciencia.3616623. PMID  3616623.
  14. ^ Suri-Payer E, Fritzsching B (agosto de 2006). "Células T reguladoras en enfermedades autoinmunes experimentales". Seminarios Springer en Inmunopatología . 28 (1): 3–16. doi :10.1007/s00281-006-0021-8. PMID  16838180. S2CID  9828603.
  15. ^ Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE (enero de 2011). "Infusión de células T reguladoras expandidas ex vivo en adultos trasplantados con sangre de cordón umbilical: perfil de seguridad y cinética de detección". Sangre . 117 (3): 1061–70. doi : 10.1182/sangre-2010-07-293795. PMC 3035067 . PMID  20952687. 
  16. ^ Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, Del Papa B, Zei T, Ostini RI, Cecchini D, Aloisi T, Perruccio K, Ruggeri L, Balucani C, Pierini A, Sportoletti P , Aristei C, Falini B, Reisner Y, Velardi A, Aversa F, Martelli MF (abril de 2011). "Las Treg previenen la EICH y promueven la reconstitución inmune en el trasplante de HLA haploidéntico". Sangre . 117 (14): 3921–8. doi : 10.1182/sangre-2010-10-311894 . PMID  21292771.
  17. ^ abc Zhou L, Chong MM, Littman DR (mayo de 2009). "Plasticidad de la diferenciación del linaje de células T CD4 +". Inmunidad . 30 (5): 646–55. doi : 10.1016/j.immuni.2009.05.001 . PMID  19464987.
  18. ^ Bluestone JA, Mackay CR, O'Shea JJ, Stockinger B (noviembre de 2009). "La plasticidad funcional de los subconjuntos de células T". Reseñas de la naturaleza. Inmunología . 9 (11): 811–6. doi :10.1038/nri2654. PMC 3075537 . PMID  19809471. 
  19. ^ Murphy KM, Stockinger B (agosto de 2010). "Plasticidad de las células T efectoras: flexibilidad ante circunstancias cambiantes". Inmunología de la naturaleza . 11 (8): 674–80. doi :10.1038/ni.1899. PMC 3249647 . PMID  20644573. 
  20. ^ abcde Rudensky AY (mayo de 2011). "Células T reguladoras y Foxp3". Revisiones inmunológicas . 241 (1): 260–8. doi :10.1111/j.1600-065X.2011.01018.x. PMC 3077798 . PMID  21488902. 
  21. ^ abcdef Hori S, Nomura T, Sakaguchi S (febrero de 2003). "Control del desarrollo de células T reguladoras mediante el factor de transcripción Foxp3". Ciencia . 299 (5609): 1057–61. Código bibliográfico : 2003 Ciencia... 299.1057H. doi : 10.1126/ciencia.1079490. PMID  12522256. S2CID  9697928.
  22. ^ Beyer M, Schultze JL (agosto de 2006). "Células T reguladoras en el cáncer". Sangre . 108 (3): 804–11. doi : 10.1182/sangre-2006-02-002774 . PMID  16861339.
  23. ^ Alvarado-Sánchez B, Hernández-Castro B, Portales-Pérez D, Baranda L, Layseca-Espinosa E, Abud-Mendoza C, Cubillas-Tejeda AC, González-Amaro R (septiembre de 2006). "Células T reguladoras en pacientes con lupus eritematoso sistémico". Revista de autoinmunidad . 27 (2): 110–8. doi :10.1016/j.jaut.2006.06.005. PMID  16890406.
  24. ^ Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (enero de 2001). "La desregulación inmune, poliendocrinopatía, enteropatía, síndrome ligado al cromosoma X (IPEX) es causada por mutaciones de FOXP3". Genética de la Naturaleza . 27 (1): 20-1. doi :10.1038/83713. PMID  11137993. S2CID  205097191.
  25. ^ Plitas G, Rudensky AY (9 de marzo de 2020). "Células T reguladoras en el cáncer". Revisión anual de la biología del cáncer . 4 (1): 459–477. doi : 10.1146/annurev-cancerbio-030419-033428 .
  26. ^ van der Vliet HJ, Nieuwenhuis EE (2007). "IPEX como resultado de mutaciones en FOXP3". Inmunología clínica y del desarrollo . 2007 : 89017. doi : 10.1155/2007/89017 . PMC 2248278 . PMID  18317533. 
  27. ^ Ezzeddini R, Somi MH, Taghikhani M, Moaddab SY, Masnadi Shirazi K, Shirmohammadi M, Eftekharsadat AT, Sadighi Moghaddam B, Salek Farrokhi A (febrero de 2021). "Asociación del polimorfismo Foxp3 rs3761548 con la concentración de citocinas en pacientes con adenocarcinoma gástrico". Citocina . 138 : 155351. doi : 10.1016/j.cyto.2020.155351. ISSN  1043-4666. PMID  33127257. S2CID  226218796.
  28. ^ ab Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T, López-Sagaseta J, Guembe L, Sarobe P, Prieto J, Borrás-Cuesta F, Lasarte JJ (noviembre de 2010). "Un péptido inhibidor de FOXP3 altera la actividad de las células T reguladoras y mejora la eficacia de la vacuna en ratones". Revista de Inmunología . 185 (9): 5150–9. doi : 10.4049/jimmunol.1001114 . PMID  20870946.
  29. ^ abc Hori S, Nomura T, Sakaguchi S (febrero de 2003). "Control del desarrollo de células T reguladoras mediante el factor de transcripción Foxp3". Ciencia . 299 (5609): 1057–61. Código bibliográfico : 2003 Ciencia... 299.1057H. doi : 10.1126/ciencia.1079490. PMID  12522256. S2CID  9697928.
  30. ^ ab Cai XY, Ni XC, Yi Y, He HW, Wang JX, Fu YP, Sun J, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ (octubre de 2016). "La sobreexpresión de CD39 en el carcinoma hepatocelular es un indicador independiente de un mal resultado después de una resección radical". Medicamento . 95 (40): e4989. doi :10.1097/md.0000000000004989. PMC 5059057 . PMID  27749555. 

Otras lecturas

enlaces externos