David Smith es un matemático aficionado y técnico de impresión jubilado de Bridlington , Inglaterra, [1] que es mejor conocido por sus descubrimientos relacionados con los monotiles aperiódicos que ayudaron a resolver el problema de Einstein . [2] [3]
Smith descubrió un polígono de 13 lados en noviembre de 2022 mientras usaba un paquete de software llamado PolyForm Puzzle Solver para experimentar con diferentes formas. [4] Después de experimentar más con recortes de cartón, se dio cuenta de que la forma parecía teselar, pero aparentemente sin lograr nunca un patrón regular. [2]
Smith se puso en contacto con Craig S. Kaplan, de la Universidad de Waterloo, para avisarle de este posible descubrimiento de un monóculo aperiódico . [4] Apodaron a la forma recién descubierta "el sombrero", debido a su parecido con un sombrero de fieltro . [1] Kaplan procedió a inspeccionar más a fondo la forma de polikita. Durante este tiempo, Smith le informó a Kaplan que había descubierto otra forma, a la que apodó "la tortuga", que parecía tener las mismas propiedades de teselación aperiódica. [1]
A mediados de enero de 2023, Kaplan contrató al desarrollador de software Joseph Samuel Myers de Cambridge y al matemático Chaim Goodman-Strauss de la Universidad de Arkansas para ayudar a completar la prueba. [5] Myers se dio cuenta de que "el sombrero" y "la tortuga" eran de hecho parte del mismo continuo de formas, que poseían las mismas propiedades de mosaico aperiódico pero con lados de longitudes variables. [2]
El equipo publicó sus pruebas en un artículo preimpreso llamado 'Un monotilo aperiódico' en marzo de 2023. [6]
Smith envió un correo electrónico a Kaplan menos de una semana después de la publicación de su artículo para informarle de las propiedades aparentes de una nueva forma. [7] Esta forma, apodada "el espectro", se encontró en el punto medio del espectro de formas del equipo publicado en su artículo. Era una anomalía dentro del espectro de formas, ya que producía un patrón periódico cuando se la combinaba con su reflejo. Sin embargo, Smith había descubierto que produciría un patrón aperiódico cuando se la combinaba sin su reflejo. [8]
El equipo trabajó en una prueba que confirmó la propiedad de mosaico aperiódico quiral del "espectro" y publicó un artículo de preimpresión en mayo de 2023. [8] [9]