stringtranslate.com

Modelo de solvatación COSMO

Superficie COSMO de una molécula de pentaacrilato (rojo = negativo, verde = capa de equilibrio positivo).
Superficie de densidad de carga del ácido 4-nitrobenzoico. Calculado con COSMO.

COSMO [1] [2] (COnductor-like Screening MOdel) es un método de cálculo para determinar la interacción electrostática de una molécula con un disolvente . COSMO es un modelo continuo dieléctrico [1] [3] [4] [5] (también conocido como modelo de solvatación continua). Estos modelos se pueden utilizar en química computacional para modelar los efectos de solvatación . COSMO se ha convertido en un método popular para estos modelos de solvatación en los últimos años. El formalismo COSMO es similar al método propuesto anteriormente por Hoshi et al. [1] [6] El enfoque COSMO se basa, como muchos otros modelos de continuo dieléctrico, en la segmentación de la superficie de una molécula [3] (generalmente denominado enfoque SAS de 'superficie accesible a disolventes').

Los modelos de solvatación continua, como COSMO, tratan cada disolvente como un continuo con permitividad . Los modelos de solvatación continua se aproximan al disolvente mediante un continuo dieléctrico, que rodea las moléculas del soluto fuera de una cavidad molecular. En la mayoría de los casos se construye como un conjunto de esferas centradas en átomos con radios aproximadamente un 20% mayores que el radio de Van der Waals . Para el cálculo real, la superficie de la cavidad se aproxima mediante segmentos, por ejemplo, hexágonos, pentágonos o triángulos.

A diferencia de otros modelos de solvatación continua, COSMO deriva las cargas de polarización del continuo, causadas por la polaridad del soluto, a partir de una aproximación de conductor escalado. Si el disolvente fuera un conductor ideal, el potencial eléctrico en la superficie de la cavidad debería desaparecer. Si se conoce la distribución de la carga eléctrica en la molécula, por ejemplo mediante química cuántica, entonces es posible calcular la carga en los segmentos de superficie. Para disolventes con constante dieléctrica finita, esta carga es menor en aproximadamente un factor :

El factor es aproximadamente

donde el valor de debe establecerse en 0,5 para moléculas neutras y en 0,0 para iones, consulte la derivación original. [2] El valor de se establece erróneamente en 0 en la popular reimplementación C-PCM de COSMO en gaussiano.

A partir de las cargas del disolvente así determinadas y de la distribución de carga conocida de la molécula, se puede calcular la energía de la interacción entre el disolvente y la molécula del soluto.

El método COSMO se puede utilizar para todos los métodos de química teórica en los que se puede determinar la distribución de carga de una molécula, por ejemplo, cálculos semiempíricos, cálculos del método Hartree-Fock o cálculos de la teoría funcional de la densidad (física cuántica). [1]

Variantes e implementaciones

COSMO se ha implementado en varios códigos de química cuántica o semiempíricos como ADF , GAMESS-US , Gaussian , MOPAC , NWChem , TURBOMOLE y Q-Chem . También se ha desarrollado una versión COSMO del modelo continuo polarizable PCM [ cita requerida ] . Dependiendo de la implementación, los detalles de la construcción de la cavidad y los radios utilizados, los segmentos que representan la superficie de la molécula y el valor de la función de escala dieléctrica pueden variar, lo que a veces causa problemas en cuanto a la reproducibilidad de los resultados publicados.

Comparación con otros métodos.

Mientras que los modelos basados ​​en la expansión multipolar de la distribución de carga de una molécula se limitan a moléculas pequeñas, cuasi esféricas o elipsoidales, el método COSMO tiene la ventaja (como muchos otros modelos de continuo dieléctrico) de que puede aplicarse a moléculas grandes y de forma irregular. estructuras moleculares.

A diferencia del modelo continuo polarizable (PCM), que utiliza las condiciones de contorno dieléctricas exactas, el método COSMO utiliza la función de escala aproximada . Aunque la escala es una aproximación, resultó proporcionar una descripción más precisa de la llamada carga periférica, reduciendo el error correspondiente. Una comparación del método [7] de COSMO y el formalismo de ecuación integral PCM (IEFPCM), que combina las condiciones de frontera dieléctricas exactas con un error de carga periférica reducido, mostró que las diferencias entre los métodos son pequeñas en comparación con las desviaciones de los datos de solvatación experimentales. Los errores introducidos al tratar un disolvente como un continuo y, por lo tanto, ignorar efectos como los enlaces de hidrógeno o la reorientación, son más relevantes para reproducir datos experimentales que los detalles de los diferentes métodos de solvatación del continuo.

Ver también

Referencias

  1. ^ abcd A., Klamt; G., Schüürmann (1993). "COSMO: un nuevo enfoque para el cribado dieléctrico en disolventes con expresiones explícitas para la energía de cribado y su gradiente". J. química. Soc . 2 (5). Perkin Trans.2: 799–805. doi :10.1039/P29930000799.
  2. ^ ab Klamt, Andreas (2005). De la química cuántica a la termodinámica en fase fluida y el diseño de fármacos . Boston, MA, Estados Unidos: Elsevier. ISBN 9780444519948.
  3. ^ ab Herbert, John M. (23 de marzo de 2021). "Métodos del continuo dieléctrico para la química cuántica". WIREs Ciencia molecular computacional . 11 (4). arXiv : 2203.06846 . doi :10.1002/wcms.1519. ISSN  1759-0876. S2CID  233629977.
  4. ^ Cramer, Christopher J. (2004). Fundamentos de la química computacional: teorías y modelos (2ª ed.). Chichester, West Sussex, Inglaterra: Wiley. ISBN 0-470-09182-7. OCLC  55887497.
  5. ^ Frank, Jensen (2017). Introducción a la química computacional . John Wiley e hijos. ISBN 978-1-118-82599-0. OCLC  989360916.
  6. ^ Hoshi, Hajime; Sakurai, Minoru; Inoue, Yoshio; Chûjô, Riichirô (15 de julio de 1987). "Efectos de los medios sobre la estructura electrónica molecular. I. La formulación de una teoría para la estimación de una estructura electrónica molecular rodeada por un medio anisotrópico". La Revista de Física Química . 87 (2): 1107-1115. Código bibliográfico : 1987JChPh..87.1107H. doi : 10.1063/1.453343. ISSN  0021-9606.
  7. ^ Klamt, A.; Moyá, C.; Palomar, J. (2015). "Una comparación completa de los métodos de solvatación continua IEFPCM y SS (V) PE con el enfoque COSMO". Revista de Teoría y Computación Química . 11 (9): 4220–4225. doi : 10.1021/acs.jctc.5b00601. PMID  26575917.