stringtranslate.com

5,56 × 45 mm OTAN

El 5,56 × 45 mm OTAN ( nomenclatura oficial OTAN 5,56 OTAN , comúnmente pronunciado FYV -fyv-six ) es una familia de cartuchos intermedios de percusión central con cuello de botella sin reborde desarrollados a fines de la década de 1970 en Bélgica por FN Herstal . [5] Consiste en los cartuchos SS109, L110 y SS111. El 28 de octubre de 1980, bajo STANAG 4172, se estandarizó como el segundo cartucho de fusil de servicio estándar para las fuerzas de la OTAN, así como para muchos países no pertenecientes a la OTAN. [5] [6] [7] Aunque no son idénticos, la familia de cartuchos 5,56 × 45 mm OTAN se derivó de y es dimensionalmente similar al cartucho .223 Remington diseñado por Remington Arms a principios de la década de 1960.

Historia

Los cartuchos 7,62×51 mm OTAN y 5,56×45 mm OTAN comparados con una batería AA

En 1954, el cartucho de fusil 7,62 x 51 mm NATO [8] fue seleccionado como el primer cartucho estándar para fusil NATO. En el momento de la selección, hubo críticas de que la potencia de retroceso del 7,62 x 51 mm NATO, cuando se disparaba desde un fusil de servicio moderno ligero portátil en modo totalmente automático, no permitía un control suficiente, es decir, los disparos automáticos posteriores no alcanzaban el objetivo previsto, sino que se dispersaban a su alrededor. [9]

Los británicos tenían pruebas abundantes a través de su propia experimentación con cartuchos intermedios desde 1945, y estaban a punto de adoptar el cartucho .280 (7 mm) cuando se hizo la selección del 7,62 × 51 mm (.308) como estándar de la OTAN. La empresa FN también había estado involucrada en el desarrollo del cartucho .280, incluido el desarrollo de una versión del FN FAL en .280. [10] Las preocupaciones sobre el retroceso y la efectividad general del 7,62 mm fueron desestimadas por los EE. UU., y las otras naciones de la OTAN aceptaron que la estandarización era más importante que la selección de un cartucho que fuera ideal en otros aspectos. [5]

Casquillos de fusil de servicio: (de izquierda a derecha) 7,62×54 mm R , 7,62×51 mm OTAN , 7,62×39 mm , 5,56×45 mm OTAN, 5,45×39 mm

El desarrollo del cartucho que finalmente se convertiría en el .223 Remington (a partir del cual se desarrollaría el 5,56 mm NATO) estaría intrínsecamente vinculado al desarrollo de un nuevo rifle de combate ligero. El cartucho y el rifle fueron desarrollados como una unidad por Fairchild Industries, Remington Arms y varios ingenieros que trabajaban hacia un objetivo desarrollado por el Comando del Ejército Continental de los EE. UU . (CONARC). El trabajo de desarrollo inicial comenzó en 1957. Se creó un proyecto para crear un arma de fuego de pequeño calibre y alta velocidad (SCHV). Eugene Stoner de Armalite fue invitado a reducir el diseño del AR-10 (7,62 mm). Winchester también fue invitado a participar. [5] [11] Los parámetros que fueron solicitados por CONARC:

Earle Harvey, de la Armería de Springfield, alargó el casquillo del cartucho .222 Remington para cumplir con los requisitos. En ese momento se lo conocía como .224 Springfield. Simultáneamente con el proyecto SCHV, la Armería de Springfield estaba desarrollando un fusil de 7,62 mm. Se le ordenó a Harvey que cesara todo trabajo en el SCHV para evitar cualquier competencia por los recursos.

Eugene Stoner , de Armalite (una división de Fairchild Industries), había recibido el encargo de producir una versión a escala reducida del diseño del AR-10 de 7,62 mm. En mayo de 1957, Stoner hizo una demostración con fuego real del prototipo del AR-15 para el general Willard G. Wyman , comandante en jefe de la CONARC. Como resultado, la CONARC ordenó fusiles para probar. Stoner y Frank Snow, de Sierra Bullet, comenzaron a trabajar en el cartucho .222 Remington. Utilizando una calculadora balística, determinaron que una bala de 55 granos tendría que dispararse a 3300 pies/s (1006 m/s) para lograr el rendimiento necesario a 500 yardas. [5]

Robert Hutton (editor técnico de la revista Guns & Ammo ) comenzó a desarrollar una carga de pólvora para alcanzar el objetivo de 3300 pies/s (1006 m/s). Utilizó DuPont IMR4198, IMR3031 y una pólvora Olin para preparar las cargas. Las pruebas se realizaron con un rifle Remington 722 con un cañón Apex de 22 pulgadas. Durante una demostración pública, la bala penetró con éxito el casco de acero estadounidense como se requería. Pero las pruebas mostraron que las presiones en la recámara eran excesivamente altas. [5] [11]

Stoner se puso en contacto con Winchester y Remington para aumentar la capacidad de los casquillos. Remington creó un cartucho más grande llamado ".222 Special", que se cargaba con pólvora DuPont IMR4475. [5] Durante las pruebas paralelas del T44E4 (futuro M14 ) y el AR-15 en 1958, el T44E4 experimentó 16 fallos por cada 1000 disparos, en comparación con los 6,1 del AR-15. [5]

Debido a que se estaban desarrollando varios cartuchos de calibre .222 diferentes para el proyecto SCHV, el 222 Special pasó a llamarse .223 Remington en 1959. En mayo de ese año, se publicó un informe que indicaba que los escuadrones de cinco a siete hombres armados con fusiles AR-15 tenían mayores probabilidades de acertar que los escuadrones de 11 hombres armados con fusiles M-14. En un picnic del 4 de julio, el general de la Fuerza Aérea Curtis LeMay disparó un AR-15 y quedó muy impresionado con él. Ordenó varios de ellos para reemplazar las carabinas M2 que estaban en uso en la Fuerza Aérea. En noviembre, las pruebas en el campo de pruebas de Aberdeen mostraron que la tasa de fallas del AR-15 había disminuido a 2,5 fallas por cada 1000 rondas, lo que resultó en la aprobación del M-16 para las pruebas de la Fuerza Aérea. [5]

Las pruebas de puntería realizadas en 1961 comparando el M-16 con el M-14 indicaron que el 43% de los tiradores del M-16 alcanzaron la calificación de "experto", mientras que solo el 22% de los tiradores del M-14 lo lograron. Posteriormente, el general LeMay encargó 80.000 rifles. [5]

En la primavera de 1962, Remington presentó las especificaciones del .223 Remington al Instituto de Fabricantes de Armas y Municiones Deportivas (SAAMI). En julio de 1962, las pruebas operativas finalizaron con una recomendación para la adopción del fusil M-16 con recámara para .223 Remington. [5]

En septiembre de 1963, el cartucho .223 Remington fue aceptado oficialmente y denominado "Cartucho, bala de 5,56 mm, M193". La especificación incluye una bala diseñada por Remington y el uso de pólvora IMR4475, lo que dio como resultado una velocidad inicial de 3250 pies/s (991 m/s) y una presión en la recámara de 52 000 psi. [5]

En 1970, los miembros de la OTAN firmaron un acuerdo para seleccionar un segundo cartucho de menor calibre para reemplazar el cartucho 7,62 × 51 mm OTAN. [12] De los cartuchos ofrecidos, el .223 Remington (M193) fue la base para un nuevo diseño creado por FN Herstal. El cartucho creado por FN se denominó "5,56 × 45 mm OTAN" con una designación militar de SS109 en la OTAN y M855 en los EE. UU. [13] Estos nuevos cartuchos de bola SS109 requerían una velocidad de giro de 228 mm (1 en 9 pulgadas), mientras que para estabilizar adecuadamente el proyectil trazador L110 más largo se requería una velocidad de giro aún más rápida, de 178 mm (1 en 7 pulgadas). [5]

El cartucho belga SS109 de 62 gramos fue elegido para su estandarización como el segundo cartucho estándar de fusil de la OTAN, lo que dio lugar al STANAG 4172 de octubre de 1980. El SS109 utilizaba una bala de 62 gramos con camisa metálica completa y punta de acero dulce de siete granos para desplazar el centro de gravedad hacia atrás, aumentando la estabilidad de vuelo y, por lo tanto, las posibilidades de alcanzar el objetivo con la punta primero a distancias más largas, en parte para cumplir con el requisito de que la bala pudiera penetrar a través de un lado de un casco M1 estadounidense de la Segunda Guerra Mundial a 500 yardas (457 m) (que también era el requisito para el 7,62 × 51 mm OTAN). No se utilizó un casco real para las pruebas de desarrollo, sino una placa de acero dulce SAE 1010 o SAE 1020, posicionada para ser alcanzada exactamente a 90 grados. Tenía una velocidad inicial ligeramente menor, pero un mejor rendimiento a larga distancia debido a una mayor densidad seccional y un coeficiente de arrastre superior.

El cartucho .223 Remington inspiró una tendencia internacional hacia cartuchos de servicio militar relativamente pequeños, livianos y de alta velocidad que permiten a un soldado llevar más munición por el mismo peso en comparación con sus cartuchos predecesores más grandes y pesados, tienen un alcance máximo favorable a quemarropa o características de "batalla cero", y producen un empuje de cerrojo relativamente bajo y un impulso de retroceso libre , lo que favorece el diseño de armas livianas y la precisión del fuego automático. [10] [14] [15]

Dimensiones del cartucho

El calibre 5,56×45 mm OTAN tiene una capacidad de cartucho de 1,85 ml (28,5 granos de H2O ) .

Sección transversal OTAN de 5,56 × 45 mm

Dimensiones máximas del cartucho OTAN de 5,56 × 45 mm , todos los tamaños en milímetros (mm) [16] [17]

La velocidad de giro del estriado para este cartucho es de 177,8 mm (1 en 7 pulgadas), 6 ranuras de giro a la derecha, Ø de las pistas = 5,56 milímetros (0,219 pulgadas), Ø de las ranuras = 5,69 milímetros (0,224 pulgadas). [6]

Según la norma STANAG 4172 y las directrices oficiales de prueba de la OTAN, la vaina 5,56×45 mm OTAN puede soportar una presión de servicio piezoeléctrica de hasta 420,0 MPa (60.916 psi). En las organizaciones reguladas por la OTAN, cada combinación de cartuchos de fusil tiene que probarse a 537,5 MPa (77.958 psi) para certificar su puesta en servicio. [18] La norma STANAG 4172 define el cartucho de bola belga SS109 como el cartucho de referencia de la OTAN y añade una cantidad considerable de requisitos técnicos, como una presión mínima de 88,0 MPa (12.763 psi) en el puerto de gas a 280 milímetros (11,0 pulgadas) a lo largo del cañón de prueba estándar de 508 milímetros (20,0 pulgadas) de largo y una sensibilidad del fulminante que no están definidas por las normas y recomendaciones de munición civiles de CIP y SAAMI . [6]

La alianza militar de la OTAN utiliza una clase de procedimientos reconocidos específicos de la OTAN para controlar la seguridad y la calidad de la munición de las armas de fuego, llamada prueba EPVAT de la OTAN . Las organizaciones civiles CIP y SAAMI utilizan procedimientos de prueba menos exhaustivos que la OTAN. El Manual de prueba e inspección de la OTAN AC/225 (LG/3-SG/1) D/8 estipula que cada arma y componente considerado vulnerable a los efectos de un cambio rápido de presión, por ejemplo, cañones, bloques de cierre y cerrojos, se probará disparando un cartucho seco a un mínimo corregido de 25% de sobrepresión y un cartucho engrasado a un mínimo corregido de 25% de sobrepresión. Una sobrepresión del 25% significa un 25% por encima de la presión de servicio resultante para el 5,56×45 mm OTAN hasta 430,0 MPa (62.366 psi) (Pmax ) de presión de servicio piezoeléctrico. La presión de servicio se define como la presión media generada por el cartucho de servicio a una temperatura de 21 °C (70 °F). Esta prueba de alta presión se lleva a cabo con el arma y la munición acondicionadas a una temperatura ambiente de 21 °C (70 °F). Cada arma se probará individualmente, a partir de un lote de munición que produce una presión de recámara media corregida mínima. El requisito de presión de prueba corregida (presión de servicio (Pmax ) + 25%) para el 5,56×45 mm OTAN como el STANAG 4172 es de 537,3 MPa (77.929 psi) (PE) de presión piezoeléctrica. Esta presión debe registrarse en un cañón EPVAT de diseño OTAN con un transductor Kistler 6215, [19] [20] Transductor HPI GP6 [21] o mediante un equipo que cumpla los requisitos de CIP. [18]

La SAAMI estadounidense indica que la presión media máxima (MAP) para el cartucho .223 Remington es de 55 000 psi (379,2 MPa) con una desviación de hasta 58 000 psi (399,9 MPa). [22]

Configuraciones de cañones de rifle

Cuando el 5,56×45 mm OTAN se adoptó como estándar en 1980, la OTAN eligió una relación de torsión del estriado de 178 mm (1:7) para la recámara del 5,56×45 mm OTAN para estabilizar adecuadamente el proyectil trazador relativamente largo L110/M856 5,56×45 mm OTAN. [5] [23] [24] En ese momento, los EE. UU. convirtieron todos los rifles en inventario reemplazando los cañones y todos los nuevos rifles militares estadounidenses desde entonces se han fabricado con esta relación. [25]

En los EE. UU., los fabricantes de rifles tipo AR pueden especificar cañones con recámaras para .223 Remington, .223 Wylde, 223 Noveske o 5,56×45 mm OTAN en longitudes que van desde pistola (7,5") hasta rifle largo (24"). Estos cañones también están disponibles con estrías que van desde 356 mm (1 en 14") hasta 178 mm (1 en 7"). Los fabricantes estadounidenses se están moviendo hacia 5,56×45 mm OTAN y 178 mm (1 en 7"), lo que garantizará la menor responsabilidad. [25] Es posible que aquellos con recámara para .223 Remington no tengan un estriado lo suficientemente rápido como para estabilizar las balas más largas de 5,56×45 mm OTAN que van hasta 77 gramos. Algunas cargas de caza de .223 Remington llegan a 90 granos. [25] [26]

Actuación

5,56 mm OTAN junto a otros cartuchos y un billete de 1 dólar estadounidense
Cartuchos de 5,56 × 45 mm OTAN en un cargador STANAG

El cartucho 5,56×45 mm NATO SS109/M855 (NATO: SS109; EE. UU.: M855) con balas estándar de núcleo de plomo de 62 gr. con penetrador de acero penetrará aproximadamente de 38 a 51 cm (15 a 20 pulgadas) en tejido blando en circunstancias ideales. Como sucede con todos los proyectiles con forma de spitzer , es propenso a desviarse en el tejido blando. Sin embargo, a velocidades de impacto superiores a aproximadamente 762 m/s (2500 pies/s), puede desviarse y luego fragmentarse en la canaladura (la ranura de engarce alrededor del cilindro de la bala). [27] Estos fragmentos pueden dispersarse a través de la carne y el hueso, infligiendo lesiones internas adicionales. [28]

La fragmentación , si se produce, produce un daño mucho mayor al tejido humano que el que sugieren las dimensiones y velocidades de las balas. Este efecto de fragmentación depende en gran medida de la velocidad y, por lo tanto, de la longitud del cañón : las carabinas de cañón corto generan menos velocidad inicial y, por lo tanto, pierden eficacia para herir a distancias mucho más cortas que los rifles de cañón más largo. [29]

Los defensores de la teoría del choque hidrostático sostienen que la onda de choque de una bala de alta velocidad produce efectos de herida más allá del tejido directamente aplastado y desgarrado por la bala y los fragmentos. [30] [31] [32] Sin embargo, otros sostienen que el daño tisular causado por el choque hidrostático es un mito. Los críticos sostienen que las ondas de presión sónicas no causan disrupción tisular y que la formación de cavidades temporales es la causa real de la disrupción tisular atribuida erróneamente a las ondas de presión sónicas. [33]

La bala SS109/M855 NATO puede penetrar hasta 3 mm (0,12 pulgadas) de acero a 600 metros. [34] Según Nammo, un productor de municiones finlandés-noruego, el cartucho perforante de blindaje 5,56×45 mm NATO M995 puede penetrar hasta 12 mm (0,47 pulgadas) de acero RHA a 100 metros. [35]

El Laboratorio de Investigación Balística del Ejército de los EE. UU. midió un coeficiente balístico (G7 BC) de 0,151 y un factor de forma (G7 i ) de 1,172 para el proyectil de bola SS109/M855. [36]

El ejército sueco ha medido las velocidades de las balas de los cartuchos militares SS109/M855 a 4 m (13,1 pies) de la boca del cañón disparados desde distintas longitudes de cañón.

Crítica

Se ha debatido mucho sobre el supuesto bajo rendimiento de la bala en el blanco en lo que respecta al poder de detención , la letalidad y el alcance. Algunas de estas críticas se han utilizado para defender un cartucho de tamaño intermedio entre los tamaños 5,56 y 7,62 OTAN [37], mientras que las críticas sobre la mala penetración de la barrera y la precisión se han utilizado para apoyar el cartucho M855A1 EPR. [4] Podría decirse que las críticas sobre el alcance, la precisión y la letalidad están relacionadas con el cambio en la longitud del cañón y la torsión entre el M16 y el M4 . Los primeros cartuchos 5,56 (el M193 original) se optimizaron para un cañón de 20 pulgadas (51 cm) con una torsión de 1:12. En 1980, STANAG 4172 definió la recámara 5,56 × 45 mm OTAN y su estriado de torsión 1:7 que lo acompaña. [38] El cañón más corto de 14,5 pulgadas (37 cm) de la carabina M4 (con un giro 1:7 conforme a STANAG 4172 y munición M855/SS109 de 5,56 municiones^) genera una velocidad inicial significativamente menor, lo que reduce la probabilidad de que la bala se desvíe (se desvíe, se fragmente o se expanda) en el objetivo y provoque heridas menos significativas.

Las operaciones de combate de los últimos meses han vuelto a poner de relieve las deficiencias terminales de rendimiento de las balas M855 FMJ de 5,56 x 45 mm y 62 gramos. Estos problemas se han manifestado principalmente como una incapacitación inadecuada de las fuerzas enemigas a pesar de haber sido impactadas varias veces por balas M855. Estas fallas parecen estar asociadas con las balas que salen del cuerpo del soldado enemigo sin desviarse ni fragmentarse. Esta falla en desviarse y fragmentarse puede deberse a velocidades de impacto reducidas, como cuando se disparan con armas de cañón corto, o cuando aumenta el alcance. También puede ocurrir cuando las balas pasan a través de un tejido mínimo, como una extremidad o el pecho de una persona delgada y desnutrida, ya que la bala puede salir del cuerpo antes de tener la oportunidad de desviarse y fragmentarse. Además, las balas del tipo SS109/M855 se fabrican en muchos países en numerosas plantas de producción. Aunque todos los tipos SS109/M855 deben ser de 62 gramos, Las balas FMJ construidas con un penetrador de acero en la punta tienen una composición, un grosor y un peso relativos de las camisas, los penetradores y los núcleos bastante variables, al igual que los tipos y la posición de las estrías. Debido a las diferencias significativas en la construcción entre las balas de la categoría SS109/M855, el rendimiento terminal es bastante variable, con diferencias observadas en la guiñada, la fragmentación y las profundidades de penetración. [39]

Perfiles de heridas en gelatina balística
Nota: las imágenes no están a la misma escala

Si las balas de 5,56 mm no se desvían (se desvían, fragmentan o deforman) dentro del tejido, los resultados son heridas menos significativas que pueden no causar una pérdida de sangre o daño suficiente para detener de inmediato el ataque o los avances del objetivo. Esto es cierto para algunas balas FMJ de 5,56 × 45 mm a distancias extendidas. Como se esperaba, con menores efectos de herida, la incapacitación rápida es poco probable: los soldados enemigos pueden seguir representando una amenaza para las fuerzas amigas y los sospechosos violentos pueden seguir siendo un peligro para el personal de las fuerzas del orden y el público. Esta falla de las balas de 5,56 × 45 mm de la OTAN para desviarse puede ser causada por velocidades de impacto reducidas como cuando se disparan desde armas de cañón corto o cuando aumenta la distancia al objetivo. La falla de desvío y fragmentación también puede ocurrir cuando las balas pasan solo por tejido mínimo, como una extremidad o el pecho de un individuo delgado y de baja estatura, ya que la bala puede salir del cuerpo antes de que tenga la oportunidad de desviarse y fragmentarse. En 2006, el Equipo de Productos Integrados de Balística de Heridas de Servicio Conjunto (JSWB-IPT), que incluía expertos de la comunidad de usuarios de las fuerzas del orden militar, cirujanos traumatólogos, balísticos aéreos, ingenieros de armas y municiones y otros especialistas científicos, dilucidó otros dos problemas de guiñada: las variaciones del ángulo de ataque (AOA) entre diferentes proyectiles, incluso dentro del mismo lote de munición, así como las variaciones de guiñada de la flota entre diferentes rifles. Estos problemas de guiñada eran más notorios a corta distancia y eran más frecuentes con ciertos calibres y estilos de bala, siendo los más susceptibles la munición 5,56×45 mm NATO FMJ como SS109/M855 y M193.

—Martín  Fackler [40]

El cartucho SS109/M855 de 5,56×45 mm de la OTAN fue diseñado para un máximo rendimiento cuando se dispara desde un cañón de 508 mm (20,0 pulgadas) de largo, al igual que el cartucho M193 original de 5,56 mm. Los experimentos con cañones de mayor longitud de hasta 610 mm (24,0 pulgadas) no dieron como resultado ninguna mejora o una disminución de las velocidades iniciales del cartucho SS109/M855. Los cañones más cortos producen una mayor firma de ruido y destello, y la adición de un supresor a un rifle de la familia AR de cañón corto puede hacerlo poco confiable, ya que el tiempo reducido para que el propulsor se queme en el cañón y los niveles más altos de presión inicial en la entrada del supresor pueden causar ciclos más rápidos y problemas de alimentación. A menos que el puerto de gas pueda regularse o ajustarse para presiones más altas, los supresores para armas de fuego de cañón corto de 5,56×45 mm de la OTAN deben ser más grandes y pesados ​​que los modelos para rifles de longitud estándar para funcionar de manera confiable. Los cartuchos SS109/M855 disparados desde cañones de menos de 254 mm (10,0 pulgadas) de longitud no tienen suficiente energía de velocidad inicial para causar daños extremos que ocurren solo a velocidades terminales de más de 750 m/s (2500 pies/s) en el impacto, lo que reduce la capacidad de causar heridas. [41] [42]

En comparación con los calibres más grandes, los defensores del proyectil 5,56×45 mm OTAN sostienen que los estudios en animales sobre los efectos de las heridas del proyectil 5,56×45 mm OTAN en comparación con el 7,62×39 mm han descubierto que el proyectil 5,56×45 mm OTAN es más dañino, debido al comportamiento posterior al impacto del proyectil de 5,56 mm, que resulta en una mayor cavitación de los tejidos blandos. [43] El ejército de los EE. UU. sostuvo en 2003 que la falta de letalidad a corta distancia del proyectil 5,56×45 mm OTAN era más una cuestión de percepción que de hecho. Con pares controlados y una buena ubicación del disparo en la cabeza y el pecho, el objetivo generalmente era derrotado sin problemas. La mayoría de los fallos fueron el resultado de golpear al objetivo en áreas no vitales, como las extremidades. Sin embargo, una minoría de fallos se produjo a pesar de múltiples impactos en el pecho. [44]

Algunos han sostenido que la ubicación del disparo es el parámetro más importante para determinar la letalidad de una bala. La dificultad con el 5,56x45mm NATO a largas distancias se ha atribuido al entrenamiento; [45] Las unidades suecas de la ISAF dependían de las ametralladoras pesadas .50 BMG para disparos a larga distancia debido a su resistencia a factores como el alcance y la deriva del viento. Por lo tanto, el bajo rendimiento se atribuye a errores en la estimación del alcance y el viento, la orientación del objetivo, la posición de disparo y el estrés bajo el fuego, factores que se pueden resolver mediante el entrenamiento. [46] [45]

Mejoras

Se han logrado avances en la munición de 5,56 mm. El ejército estadounidense había adoptado para su uso limitado una bala "Match" de 77 granos (5,0 g), tipo clasificado como Mk 262. La bala pesada y de construcción ligera se fragmenta con mayor violencia a corta distancia y también tiene un rango de fragmentación más largo. [47] Originalmente diseñada para su uso en el Mk 12 SPR , la munición ha encontrado el favor de las unidades de fuerzas especiales [48] que buscaban un cartucho más efectivo para disparar desde sus carabinas M4A1. Las cargas disponibles comercialmente que utilizan estas balas más pesadas (y más largas) pueden ser prohibitivamente caras y costar mucho más que la munición militar excedente. Además, estas cargas pesadas para el calibre sacrifican cierta capacidad de penetración en comparación con la munición M855 (que tiene una punta penetradora de acero). El rendimiento de la munición militar de 5,56 × 45 mm generalmente se puede categorizar como casi completamente dependiente de la velocidad para herir de manera efectiva. Las balas OTM pesadas mejoran la capacidad de causar heridas en los tejidos blandos a expensas de la penetración en objetivos duros o barreras. [ cita requerida ]

Las Fuerzas Especiales de los EE. UU. habían buscado crear un proyectil que aumentara la potencia de los cañones de las carabinas M4 y los cañones compactos SCAR-L , al mismo tiempo que aumentaba el rendimiento en objetivos duros. Los esfuerzos de desarrollo llevaron a la creación del Mk318. La bala utiliza un diseño de punta abierta para infligir daño en los tejidos blandos y tiene una parte trasera de latón para penetrar objetivos duros. La punta y el núcleo de plomo se fragmentan constantemente incluso cuando se utilizan cañones cortos, mientras que la parte trasera se mueve una vez que la parte delantera impacta. [49] Tiene un rendimiento más consistente porque no depende de la guiñada como el M855; la punta se fragmenta al impactar y el penetrador trasero sólido continúa moviéndose relativamente recto. Esto hace que el Mk318 sea efectivo contra el personal con o sin armadura corporal. El proyectil también aumenta la precisión, de 3 a 5 minutos de ángulo (MOA) con el M855 desde un cañón M4A1 a 1,71 MOA a 300 yardas y 1,67 MOA a 600 yardas desde un cañón SCAR-L de 14 pulgadas (360 mm). [50]

En general, el ejército de los EE. UU. adoptó la bala M855A1 en 2010 para reemplazar a la M855. La razón principal fue la presión para usar balas sin plomo. La bala de plomo se reemplaza por una bala de aleación de cobre en una camisa de estirado inverso, con un penetrador de acero endurecido que se extiende más allá de la camisa, lo que reduce la contaminación por plomo al medio ambiente. La M855A1 ofrece varias mejoras además de estar libre de plomo. Es un poco más precisa, tiene una mejor consistencia de efecto en lo que respecta a la capacidad de herir y tiene una mayor capacidad de penetración. El proyectil de 62 granos (4,0 g) puede penetrar mejor las paredes de acero, ladrillo, hormigón y mampostería, así como los chalecos antibalas y las láminas de metal. Penetra 38  pulgadas (9,5 mm) de acero dulce a 350 metros, lo que el M855 solo puede hacer a 160 metros. El propulsor se quema más rápido, lo que reduce el fogonazo y proporciona una mayor velocidad inicial, una característica importante cuando se dispara desde una carabina M4 de cañón corto . Aunque el M855A1 es más caro de producir, se considera que su rendimiento lo compensa. Un posible peligro es que genere una presión mucho mayor en la recámara cuando se dispara, lo que disminuye la vida útil de las piezas y aumenta el riesgo de falla catastrófica del arma (aunque esto aún no ha ocurrido). [51] [52]

Los marines estadounidenses adoptaron el Mk318 a principios de 2010 debido a los retrasos con el M855A1. Esta fue una medida temporal hasta que el M855A1 estuvo disponible para ellos, lo que ocurrió a mediados de 2010 cuando el Ejército comenzó a recibir las municiones. Tanto el Mk318 como el M855A1 pesan lo mismo y tienen un rendimiento similar, y ambos tienen un mejor rendimiento que el M855 contra todos los objetivos. SOCOM gastó menos dinero en desarrollar el Mk318 y es marginalmente mejor que el M855A1 en algunas situaciones, pero cuesta más por munición. El Ejército gastó más en desarrollar el M855A1, que funciona tan bien o casi tan bien como el Mk318, pero es más barato por munición y tiene la ventaja de no tener plomo. Mientras que SOCOM busca constantemente mejor equipo, el Ejército y los marines tienen muchas más tropas a las que abastecer y comprar más munición que SOCOM. [53]

Alternativas

Si la bala de 5,56 mm se mueve demasiado lentamente para desviarse, expandirse o fragmentarse de manera confiable en el impacto, el tamaño de la herida y el potencial de incapacitar a una persona se reducen en gran medida. Ha habido numerosos intentos de crear un cartucho intermedio que aborde las quejas sobre la falta de poder de detención del 5,56 NATO junto con la falta de controlabilidad observada en los rifles que disparan 7,62 NATO en modo automático. Algunos cartuchos alternativos como el 300 AAC Blackout (7,62 × 35 mm) se centran en la penetración y el poder de detención a distancias cortas sacrificando el rendimiento a larga distancia. Estos calibres están diseñados para ser interoperables con el 5,56 al mantener dimensiones similares, lo que permite que se utilicen en un rifle con recámara de 5,56 con un simple cambio de cañón.

A finales de 2004, el 6,8 mm Remington SPC (6,8 × 43 mm) se utilizaba de forma limitada entre los operadores especiales estadounidenses. [ cita requerida ] Sin embargo, no se adoptó para un uso generalizado debido a la resistencia de los funcionarios a cambiar los calibres. [54] En 2007, tanto el SOCOM como el Cuerpo de Marines de EE. UU. decidieron no utilizar armas con recámara en 6,8 × 43 mm debido a problemas logísticos y de coste. [55]

En abril de 2022, el Ejército de los EE. UU. seleccionó un nuevo fusil y una ametralladora ligera como parte del Programa de Armas de Escuadrón de Próxima Generación . Reemplazarán las armas de 5,56 mm, ya que están recamaradas en 6,8 × 51 mm Fury , que tiene mayor precisión y alcance, al mismo tiempo que es más letal que 5,56 × 45 mm OTAN y 7,62 × 51 mm OTAN contra amenazas emergentes. [56]

5,56 mm OTAN frente a .223 Remington

Las dimensiones exteriores de los cartuchos 5,56 mm NATO y .223 Remington son idénticas. [13] [57] Si bien los cartuchos son idénticos, salvo por la carga de pólvora, la guía de la recámara, es decir, el área donde comienza el estriado, está cortada en un ángulo más agudo en algunas recámaras comerciales .223. Debido a esto, un cartucho cargado para generar presiones de 5,56 mm en una recámara de 5,56 mm puede desarrollar presiones que excedan los límites SAAMI cuando se dispara desde una recámara .223 Remington de guía corta. Como las recámaras difieren, los calibres de espacio libre utilizados para las dos recámaras difieren. [58]

Caja de latón

Las especificaciones dimensionales de los casquillos de latón de calibre 5,56 NATO y .223 comerciales son idénticas. Los casquillos tienden a tener una capacidad de casquillo similar cuando se miden, con variaciones debidas principalmente a la marca, no a la designación 5,56 vs. .223. El resultado de esto es que no existe tal cosa como "cañón de latón de calibre 5,56" o "cañón de .223", las diferencias en los cartuchos radican en las clasificaciones de presión y en la longitud del cable de la recámara, no en la forma o el grosor del latón. [59] [60]

En julio de 2012, el Ejército de los EE. UU. solicitó a los proveedores que suministraran casquillos alternativos para reducir el peso de un proyectil M855A1 de 5,56 mm en al menos un 10 por ciento, así como para los proyectiles 7,62 NATO y .50 BMG . Los casquillos deben mantener todos los requisitos de rendimiento cuando estén completamente ensamblados, ser capaces de ser utilizados por la Planta de Municiones del Ejército de Lake City , y deben fabricarse en cantidades totales de aproximadamente 45 millones por año. Se espera que la munición con casquillo de polímero sea una tecnología de casquillo liviano probable. [61] Una versión híbrida de polímero/metal de un casquillo de cartucho convencional sería más gruesa que los casquillos regulares y reduciría la cantidad de espacio para el propulsor, [62] aunque ciertos polímeros podrían ser termodinámicamente más eficientes y no perder energía en el casquillo o la recámara cuando se disparan. [63]

Presión

El CIP define las presiones máximas de servicio y prueba de prueba del cartucho .223 Remington iguales a las del 5,56 mm NATO, a 430 MPa (62.366 psi). Esto difiere de la especificación de presión máxima SAAMI para el .223 Remington de 380 MPa (55.114 psi), debido a que los protocolos de prueba CIP miden la presión utilizando una vaina perforada, en lugar de una vaina intacta con un pistón conformado, junto con otras diferencias. [64] La OTAN utiliza los protocolos de prueba de presión EPVAT de la OTAN para sus especificaciones de munición para armas pequeñas. [20] [65] Las diferencias en la metodología de prueba han llevado a una confusión generalizada, sin embargo, cuando se mide con equipos de medición idénticos utilizando metodologías idénticas, el .223 Remington produce presiones promedio máximas aproximadamente 5.000 psi más bajas que el 5,56 NATO. [13]

Cámara

La recámara de 5,56 mm NATO, conocida como recámara NATO o mil-spec, tiene un guía más largo, que es la distancia entre la boca del cartucho y el punto en el que el estriado se acopla a la bala. La recámara de .223 Remington, conocida como recámara SAAMI, puede tener un guía más corto y solo se requiere que se pruebe a la presión más baja de la recámara SAAMI. Para abordar estos problemas, existen varias recámaras patentadas, como la recámara Wylde (Rock River Arms) [66] o la recámara ArmaLite , que están diseñadas para manejar tanto 5,56 × 45 mm NATO como .223 Remington por igual. El guía de la recámara de CIP mínima de .223 Remington también difiere de la especificación de la recámara de 5,56 mm NATO. Los casquillos y las recámaras del .223 Remington y del 5,56×45 mm NATO tienen prácticamente las mismas dimensiones, pero debido a que el .223 Remington está diseñado para soportar presiones mucho más bajas que el 5,56×45 mm NATO, las balas no son completamente intercambiables. Disparar una bala del 5,56×45 mm NATO desde un rifle con recámara para el .223 Remington podría resultar perjudicial o fatal para el usuario, así como para el arma; sin embargo, la munición del .223 Remington se puede disparar de forma segura desde casi cualquier rifle con recámara para el 5,56×45 mm NATO, ya que los rifles especificados para la OTAN pueden soportar presiones de recámara mucho más altas que las que el .223 Remington es capaz de producir. [ cita requerida ]

El uso de cartuchos comerciales .223 Remington en un rifle con recámara de 5,56 mm OTAN debería funcionar de manera confiable, pero hasta hace poco, se creía que esto era menos preciso que cuando se disparaba desde un arma con recámara .223 Remington debido al cable más largo. [67] Aunque eso puede haber sido cierto a principios de la década de 1960 cuando se desarrollaron las dos rondas, pruebas recientes han demostrado que los rifles con recámara en 5,56 × 45 mm OTAN también pueden disparar munición .223 con tanta precisión como los rifles con recámara en .223 Remington, y la recámara de 5,56 × 45 mm OTAN tiene la ventaja adicional de poder disparar con seguridad ambos calibres. [68] El uso de cartuchos de especificación militar de 5,56 × 45 mm OTAN (como el M855) en un rifle con recámara .223 Remington puede provocar un desgaste y estrés excesivos en el rifle e incluso ser inseguro, y SAAMI recomienda no realizar esta práctica. [69] [70] Algunos rifles comerciales marcados como ".223 Remington" son de hecho adecuados para munición 5,56×45 mm OTAN, como muchas variantes comerciales del AR-15 y el Ruger Mini-14 (marcado ".223 cal", excepto el modelo Mini-14 "Target", que solo dispara .223), pero siempre se debe consultar al fabricante para verificar que esto sea aceptable antes de intentarlo, y se deben buscar signos de presión excesiva (como aplanamiento o manchas de gas en los cebadores) en las pruebas iniciales con munición 5,56×45 mm OTAN. [71]

El receptor superior (al que se fija el cañón con su recámara) y el receptor inferior son partes completamente separadas en los rifles estilo AR-15. Si el receptor inferior tiene estampado el calibre .223 o 5.56, no garantiza que el conjunto superior esté clasificado para el mismo calibre, porque el receptor superior y el inferior en el mismo rifle pueden, y con frecuencia lo hacen, provenir de diferentes fabricantes, particularmente en el caso de rifles vendidos a civiles o rifles de segunda mano que han sido reparados con repuestos. Dado que todas las piezas son intercambiables, un tirador debe tener mucho cuidado de verificar si hay marcas de 5.56×45 mm en el cañón antes de intentar disparar munición de 5.56×45 mm de la OTAN. [ cita requerida ]

En términos más prácticos, a partir de 2010 la mayoría de los proveedores de piezas AR-15 diseñan sus conjuntos superiores completos (que no deben confundirse con los superiores despojados donde no se incluye el cañón) para que admitan ambos calibres con el fin de satisfacer la demanda del mercado y evitar posibles problemas. Algunos fabricantes han comenzado a ofrecer una recámara híbrida .223 Wylde diseñada para admitir de manera óptima ambos cartuchos. [ cita requerida ]

Capacidad de munición para comparación de peso

Los primeros enfrentamientos entre el AK-47 y el fusil M14 se produjeron a principios de la guerra de Vietnam . Los informes del campo de batalla indicaban que el M14 era incontrolable en modo automático y que los soldados no podían llevar suficiente munición para mantener la superioridad de fuego sobre el AK-47. [72] Se necesitaba un reemplazo, como resultado, el Ejército se vio obligado a reconsiderar una solicitud de 1957 del general Willard G. Wyman , comandante del Comando del Ejército Continental de los EE. UU. (CONARC) para desarrollar un fusil de fuego selectivo de calibre .223 (5,56 mm) que pesara 6 libras (2,7 kg) cuando se cargara con un cargador de 20 balas. [ cita requerida ]

Colt ArmaLite AR-15 Modelo 01 con cargador de 20 balas
Un M16A1 con cargador de 30 balas

Esta solicitud finalmente resultó en el desarrollo de una versión reducida del Armalite AR-10 , llamada rifle ArmaLite AR-15 . [73] [74] [75] Durante las pruebas se encontró que un equipo de 5 a 7 hombres armados con los ArmaLite AR-15 tenía la misma potencia de fuego que un equipo de 11 hombres armado con M14. [76] Además, los soldados armados con ArmaLite AR-15 podían llevar casi tres veces más munición que los armados con M14 (649 balas frente a 220 balas). [76] El ArmaLite AR-15, designado oficialmente Rifle, calibre 5,56 mm, M16 , fue adoptado más tarde por las fuerzas de infantería de EE. UU. como el rifle estándar. [5] [10]

A continuación se muestra una tabla que compara rifles basados ​​en una carga máxima de munición en cargadores de caja de 10 kg (22 lb).

5,56 mm OTAN frente a 7,62 mm OTAN

Comparación de 7,62 mm OTAN , 5,56 mm OTAN y 9 mm Parabellum

La probabilidad de impacto se refiere a la capacidad de un soldado de concentrarse en disparar a pesar del retroceso y el ruido de su arma, que es notablemente diferente entre los dos cartuchos. El 7,62 NATO tiene el doble de energía de impacto que el 5,56 NATO, lo que es preferible si un objetivo está protegido por un blindaje de nivel superior, especialmente a una distancia "media". Si no es así, ambos proyectiles normalmente penetran satisfactoriamente a través de enemigos hasta 600 metros, aproximadamente. Un proyectil 5,56 NATO disparado desde un cañón de 20 pulgadas (510 mm) tiene una trayectoria más plana que un proyectil 7,62 NATO disparado desde un cañón de igual longitud, mientras que el 5,56 NATO disparado desde un cañón de 14,5 pulgadas (370 mm) tiene la misma trayectoria que el 7,62 NATO desde un cañón de 20 pulgadas, así como el mismo tiempo de vuelo. Un proyectil 7,62 OTAN alcanza el 50 por ciento de su velocidad a 80 mm (3,1 pulgadas) del cañón cuando se dispara, por lo que reducir la longitud del cañón para el combate cuerpo a cuerpo da como resultado una mayor presión en la boca del cañón y un mayor ruido y destello en la boca del cañón. [45] [46]

Cartuchos militares

Imágenes de munición estadounidense calibre 5,56 × 45 mm OTAN

Australia

Las configuraciones de embalaje para las cajas de munición tipo M2A1 incluyen 1.080 cartuchos sueltos, 900 cartuchos divididos en dieciocho paquetes de película de plástico que contienen cincuenta cartuchos cada uno, 600 cartuchos en bandoleras que contienen cargadores de 15 cartuchos y 800 cartuchos enlazados divididos en cuatro cinturones de 200 cartuchos cada uno que pueden contener un solo tipo de munición o una mezcla de tipos de munición (por ejemplo, cuatro cartuchos de bala seguidos de un cartucho trazador). [82] [83] [84]

A menos que se indique lo contrario, todas las municiones que se enumeran a continuación son producidas por Thales Australia. Desde 2012, la producción de municiones de Thales Australia se lleva a cabo a través de su filial Australian Munitions. [85]

Austria

Bélgica

Canadá

Francia

Municiones fabricadas por GIAT.

Alemania

Japón

Sudáfrica

Las configuraciones de embalaje para todos los tipos de munición c.  2010 consistían en una caja de plástico 8217 que contenía 2700 balas divididas en nueve bolsas de PVC de diez cajas de treinta balas cada una y una caja M2A1 convencional que contenía 800 balas divididas en cuarenta cajas de veinte balas cada una. Para la munición enlazada, las configuraciones consistían en una caja de plástico 7716 que contenía 2000 balas enlazadas divididas en cinco cajas de plástico 7815 de dos cintas de 200 balas cada una y una caja M2A1 convencional que contenía 800 balas enlazadas divididas en cuatro cintas de 200 balas cada una. [99] A menos que se indique lo contrario, toda la munición enumerada es o fue producida por Pretoria Metal Pressings, que es una división de Denel .

Suiza

Reino Unido

La munición militar se suministra generalmente en cajas de munición H83 que contienen 800 [102] [103] o 900 cartuchos, que contienen ya sea cajas de cartón de veinte cartuchos cada una, cajas de cartón de treinta cartuchos cada una (solo H83 de 900 cartuchos), o bandoleras de nailon con cinco bolsillos que contienen tres cargadores de diez cartuchos cada uno para un total de 150 cartuchos por bandolera (solo H83 de 900 cartuchos). Además de estas configuraciones H83, los cartuchos de fogueo pueden venir en cajas de madera encuadernadas con alambre que contienen 1000 cartuchos en cajas de veinte cartuchos. [104] La munición enlazada se suministra en cajas H83 que contienen cintas de la cantidad deseada y configuración de enlace (por ejemplo, una caja de 800 cartuchos que consta de cintas dispuestas en una secuencia de cuatro cartuchos de bala seguidos de un cartucho trazador). [105] [ se necesita una mejor fuente ]

Estados Unidos

Cartuchos M855 y M856 en una cinta de munición que utiliza eslabones desintegrables M27

La munición militar se empaquetaba exclusivamente en cajas de 20 cartuchos entre 1963 y 1966. A finales de 1966, se introdujeron el cargador de 10 cartuchos y el adaptador de carga del cargador y la munición comenzó a empaquetarse en cargadores en bandoleras. Las configuraciones de empaquetado típicas para las cajas de munición tipo M2A1 incluyen 840 cartuchos de munición esférica en cargadores de 10 cartuchos, [119] 1140 cartuchos de munición de fogueo en cajas [120] y 800 cartuchos enlazados independientemente de la naturaleza de la munición. [121] Las capacidades típicas de las cajas de madera encuadernadas con alambre incluyen 1680 cartuchos [122] [123] y 1600 cartuchos. [124]

Ejército de EE.UU.

Fuerza Aérea de Estados Unidos

Marina de los EE. UU. y Cuerpo de Marines de los EE. UU.

SS109/M855

En 1970, la OTAN decidió estandarizar un segundo calibre de fusil. Se realizaron pruebas entre 1977 y 1980 utilizando el XM777 estadounidense de 5,56 mm, el SS109 belga de 5,56 mm, el 4,85×49 mm británico y el 4,7×33 mm sin vaina alemán . No se pudo llegar a un acuerdo sobre ningún arma, ya que muchas eran prototipos, pero se descubrió que el SS109 era el mejor cartucho y se estandarizó el 28 de octubre de 1980. El SS109 se desarrolló en la década de 1970 para el fusil FN FNC y la ametralladora FN Minimi . Para aumentar el alcance de la Minimi, se creó el cartucho para penetrar 3,5 mm de acero a 600 metros. El SS109 tenía una punta de acero y una parte trasera de plomo y no era necesario que penetrara el blindaje corporal. Los cañones requerían al menos una torsión de fusil de 1:9, pero necesitaban una torsión de fusil de 1:7 para disparar munición trazadora. [45] [46] [50] Los EE. UU. designaron al cartucho SS109 como M855 y lo utilizaron por primera vez en el rifle M16A2. El proyectil de 62 granos era más pesado que el anterior M193 de 55 granos. Si bien el M855 tenía una mejor capacidad de penetración de blindaje, es menos probable que se fragmente después de impactar en un objetivo blando. Esto disminuye la transferencia de energía cinética al objetivo y reduce la capacidad de herir. [132] El M855 depende de la guiñada, lo que significa que depende del ángulo en el que impacta en el objetivo. Si está en un buen ángulo, el proyectil gira al entrar en el tejido blando, rompiéndose y transfiriendo su energía a lo que golpea. Si impacta en un mal ángulo, podría atravesarlo y no transferir su energía completa. [52] El SS109 fue diseñado para perforar cascos de acero a larga distancia desde el Minimi, no para mejorar el rendimiento terminal en el tejido blando de rifles o carabinas. [40] En Irak, las tropas que se enfrentaron a los insurgentes a menos de 150 yardas descubrieron que las balas M855 no proporcionaban suficiente poder de detención. Además de no causar efectos letales con dos o más balas, no penetraban eficazmente los parabrisas de los vehículos, incluso con muchas balas disparadas a una distancia extremadamente corta. [133] En Afganistán, las tropas descubrieron que las balas M855 también sufrían a largas distancias. Aunque los fusiles de 5,56 mm tienen un alcance efectivo de 450 a 600 metros, el rendimiento de la bala M855 cae drásticamente más allá de los 300 metros. Los alcances son incluso más cortos para las carabinas de cañón corto. La mitad de los ataques con armas pequeñas se lanzaron desde distancias de 300 a 900 metros. [134] Un M855 disparado desde una carabina M4 tiene un rendimiento severamente degradado más allá de los 150 metros. [40]

El alcance máximo efectivo de un fusil M4 con proyectiles M855 es de 500 m (547 yd), con un alcance máximo efectivo de área de 600 m (656 yd). Estas son las mayores distancias a las que se puede esperar que los proyectiles impacten con precisión en el objetivo, no las distancias a las que tienen efectividad terminal contra ellos. Debido a que el M855 depende de la guiñada, requiere inestabilidad en vuelo para deformarse al impactar en el objetivo. Es más estable en vuelo entre 150 y 350 m (164 y 383 yd), lo que potencialmente reduce su efectividad si impacta a un enemigo entre esas distancias. Además de esto, las pruebas han demostrado que las balas de 5,56 mm se fragmentan de manera más confiable cuando viajan a más de 2500 ft/s (760 m/s). Desde cañones de fusiles y ametralladoras de 508 mm (20 in) de longitud completa, las balas exhiben velocidades superiores a 760 m/s (2500 ft/s) hasta 200 m (219 yd). Una M855 disparada desde una carabina M4 de cañón más corto exhibe una velocidad de bala de 769 m/s (2522 ft/s) a una distancia de 150 m (164 yd). Incluso si impacta a velocidades óptimas, el 70 por ciento de las balas de 5,56 mm no comenzarán a desviarse hasta 120 mm (4,7 in) de penetración en el tejido. Un 15 por ciento más comienza a desviarse después de esa distancia, por lo que hasta el 85 por ciento de las balas que impactan no comienzan a fragmentarse hasta casi 12,7 cm (5 in) de penetración. Contra combatientes de baja estatura o delgados, la M855 tiene pocas posibilidades de desviarse antes de atravesar limpiamente y dejar una cavidad de herida no más grande que la propia bala. Los factores de ángulo y velocidad de impacto, distancia de inestabilidad y penetración antes del giro reducen considerablemente la efectividad predecible del proyectil en situaciones de combate. [135]

M855A1

Munición de rendimiento mejorado M855A1 y su proyectil ecológico (sin plomo)

El proyectil de rendimiento mejorado (EPR) M855A1 se presentó en junio de 2010. Cuenta con un proyectil sin plomo de 62 granos (4,0 g) con un núcleo de cobre sólido y está diseñado para su uso en rifles con cañones más cortos, como la carabina M4. Proporciona un rendimiento más consistente en comparación con el M855. [126]

Despliegue

El 24 de junio de 2010, el Ejército de los Estados Unidos anunció que había comenzado a enviar su nuevo cartucho de 5,56 mm, el M855A1 Enhanced Performance Round (EPR), a zonas de combate activas. Durante las pruebas, el M855A1 tuvo un mejor rendimiento que la munición de bola M80 7,62×51 mm OTAN contra ciertos tipos de objetivos (en particular, acero endurecido). Sin embargo, esto se debió a la adición del penetrador de acero al proyectil M855A1 en comparación con el núcleo de aleación de plomo estándar del proyectil M80 y no es una comparación precisa entre los dos cartuchos. El Arsenal Picatinny del Ejército de los Estados Unidos declaró que el nuevo M855A1 ofrece una capacidad mejorada para atacar objetivos duros, un rendimiento más consistente a todas las distancias, una mayor confiabilidad, una precisión mejorada, un menor destello en la boca del cañón y una mayor velocidad en comparación con el proyectil SS109/M855. Además, el Ejército afirmó que la nueva munición M855A1 está diseñada para su uso en carabinas M4 , pero también debería ofrecer un rendimiento mejorado en fusiles M16 y ametralladoras ligeras M249 . El nuevo proyectil de 62 granos (4 g) utilizado en la munición M855A1 tiene un núcleo de cobre con una punta penetrante de "cono apilado" de acero de 19 granos (1,2 g). El cartucho M855A1 a veces se denomina " munición verde " porque dispara un proyectil sin plomo. [125] [126] [136] [137] [138] [139] No es necesariamente más letal que el SS109/M855, pero funciona de manera más consistente cada vez que impacta en un objetivo blando y conserva su rendimiento a distancias más largas. El EPR puede penetrar una barrera de acero dulce de 38  pulgadas (9,5 mm) de espesor desde un M4 a 350 m (380 yd) y desde un M16 a 400 m (440 yd). En comparación con el SS109/M855, las velocidades iniciales del M855A1 aumentan un poco a 3150 pies/s (960 m/s) (+37 pies/s (11 m/s)) para el M16 y 2970 pies/s (910 m/s) (+54 pies/s (16 m/s)) para la carabina M4 . [3] La balística para ambas rondas es similar y no requiere que las armas se vuelvan a poner a cero, pero si lo hacen, el EPR puede ser ligeramente más preciso. El penetrador de punta de acero del M855A1 está notablemente separado de la camisa de la bala y puede girar, pero esto es parte del diseño y no afecta el rendimiento. El M855A1 cuesta solo 5 centavos más por bala que el M855. [140] La bala M855A1 tiene una  longitud 18 in (3,2 mm) mayor que la SS109/M855. [141] Debido a que el acero y el cobre son menos densos que el plomo, la bala se alarga dentro de la vaina para lograr el mismo peso que su predecesora. [10]La bala más larga y la cubierta de extracción inversa la hacen más estable y precisa en vuelo. Su punta de acero está expuesta desde la cubierta y bronceada para resistir la corrosión. La punta es dentada y más grande que la punta de acero del M855. La composición de la bala del M855A1, una mejor aerodinámica y mayores presiones de prueba le dan un rango efectivo extendido para penetración y rendimiento terminal. [142] Si bien la efectividad a diferentes distancias aumenta, el M855A1 no aumenta los rangos efectivos en los que se espera que las armas alcancen sus objetivos. La munición de rendimiento mejorado se hizo para que coincidiera casi con la trayectoria del M855 para ayudar en la consistencia del entrenamiento: el coeficiente balístico SS109/M855 (G7 BC) de 0,151 se mejoró a 0,152 para el M855A1 [143] , pero los rangos para obtener los efectos deseados se extienden en gran medida. [144]

El Cuerpo de Marines de los Estados Unidos compró 1,8 millones de cartuchos en 2010, con planes de adoptar el cartucho para reemplazar los cartuchos MK318 SOST provisionales utilizados en Afganistán cuando se retrasó el proyecto M855A1. [145] El Cuerpo de Marines planea adoptar el cartucho M855A1 en 2018; aunque las pruebas revelaron que causó "algunos problemas de durabilidad" con el fusil automático de infantería M27 de los Marines , el arma sigue siendo "operativamente adecuada" al disparar el cartucho. [146]

En un día de prensa en el Aberdeen Proving Ground el 4 de mayo de 2011, se dieron informes sobre el rendimiento del M855A1 en el campo desde que se entregó 11 meses antes. Una ventaja principal que brinda el proyectil es su rendimiento constante contra objetivos blandos. Mientras que el antiguo SS109/M855 dependía de la guiñada, lo que significa que su efectividad depende de su ángulo de guiñada cuando impacta en un objetivo, el M855A1 ofrece la misma efectividad en un objetivo blando sin importar su ángulo de guiñada. El nuevo propulsor SMP-842 en el proyectil se quema más rápido en el cañón más corto de la carabina M4 , lo que garantiza un menor fogonazo en la boca del cañón y una mayor velocidad en la boca del cañón. El M855A1 pudo penetrar 38 pulgadas (9,5 mm) de placa de acero dulce a 300 m (330 yd). El proyectil incluso penetró unidades de mampostería de hormigón, similares a bloques de hormigón, a 75 m (82 yd) desde un M16 y a 50 m (55 yd) desde un M4, algo que el M855 no podía hacer a esas distancias. Su precisión se mantiene y a veces aumenta, ya que fue capaz de disparar un grupo 2 pulgadas mejor a 600 m (660 yd). Febrero de 2011 fue la primera vez que se utilizó el M855A1 más que el M855, y aproximadamente 30 millones de proyectiles M855A1 se han desplegado desde junio de 2010 hasta mayo de 2011. [147]

The M855A1 was put to the test at the 2012 National Rifle Association's National High-Power Rifle Championship at Camp Perry, Ohio in August 2012. The shooter for the Army was Rob Harbison, a contractor supporting small caliber ammunition capability development at Fort Benning Georgia. This was a special event for the Project Manager for Maneuver Ammunition Systems and the Army's Maneuver Center of Excellence as it was an opportunity to showcase the capabilities of the Enhanced Performance Round. With an M16 loaded with M855A1 ammo, Harbison fired a perfect 200 points in the Coast Guard Trophy Match, which is 20 shots fired from the sitting position at 200 yards, finishing 17th out of 365 competitors. He also scored a perfect 100 on the final string of ten shots during the Air Force Cup Trophy Match, fired at 600 yards from the prone position, which is 10 shots in a row within the 12-inch, 10-point ring at 600 yards with combat ammunition. Harbison was happy with the performance of the EPR, with his scores showing that the Army's newest general purpose round is accurate enough to go toe-to-toe in the competition with the best ammo that can be bought or hand-loaded. Harbison even said, "I don't think I could have scored any higher if I was using match-grade competition ammunition."[148] The M855A1 was not fired from 1:7 rifled barrels used in standard Army rifles, but special Army Marksmanship Unit (AMU) match-grade 1:8 rifled barrels, which produce more accurate results when firing 62-grain rounds.[141]

From fielding in June 2010 to September 2012, Alliant Techsystems delivered over 350 million M855A1 Enhanced Performance Rounds.[149]

Since its introduction, the M855A1 has been criticized for its St. Mark's SMP842 (former WC842) ball propellant causing increased fouling of the gun barrel. Post-combat surveys have reported no issues with the EPR in combat. A series of tests found no significant difference in fouling between the old M855 and the M855A1. However, manufacturers have reported "severe degradation" to barrels of their rifles using the M855A1 in tests.[150] The Army attributes pressure and wear issues with the M855A1 to problems with the primer, which they claim to have addressed with a newly designed primer.[151] It uses a modified four-pronged primer anvil for more reliable powder ignition,[142] with a stab crimp rather than a circumferential crimp to better withstand the new load's higher chamber pressure,[141] increased from 55,000 psi (379.2 MPa) to 62,000 psi (427.5 MPa).[62][152] During Army carbine testing, the round caused "accelerated bolt wear" from higher chamber pressure and increased bore temperatures. Special Operator testing saw cracks appear on locking lugs and bolts at cam pin holes on average at 6,000 rounds, but sometimes as few as 3,000 rounds during intense automatic firing. Firing several thousand rounds with such high chamber pressures can lead to degraded accuracy over time as parts wear out; these effects can be mitigated through a round counter to keep track of part service life. Weapons with barrel lengths shorter than the M4 firing the M855A1 also experience 50 percent higher pressures than a full-length M16 rifle barrel, which can cause port erosion that can boost the automatic fire rate, increasing the likelihood of jams.[141]

From June 2010 to June 2013, issuing of the M855A1 Enhanced Performance Round removed 1,994 metric tons of lead from the waste stream. 2.1 grams (32 gr) of lead are eliminated from each M855A1 projectile.[153]

Mk 262

The Mk 262 is a match-quality round manufactured by Black Hills Ammunition made originally for the Special Purpose Rifle (SPR). It uses a 77-grain (5.0 g) Sierra MatchKing bullet that is more effective at longer ranges than the standard issue M855 round.

In 1999, SOCOM requested Black Hills Ammunition to develop ammunition for the Mk 12 SPR that SOCOM was designing. For the rifle to be accurate out to 700 yards, Black Hills "militarized" a cartridge that used the Sierra 77 grain OTM (Open Tip Match) projectile; it switched from a .223 Remington to 5.56 mm case, increased pressure loading, crimped and sealed the primer, and added a flash retardant to the powder. The Mk 262 MOD 0 was adopted in 2002. Issues came up in development including reliability problems in different temperatures and when the weapon got dirty, and cycling issues in cold weather due to the slightly shorter barrel of the SPR compared to the full-length M16A2 barrel. The problems were addressed with a slower burning powder with a different pressure for use in the barrel, creating the Mk 262 MOD 1 in 2003. During the product improvement stage, the new propellant was found to be more sensitive to heat in weapon chambers during rapid firings, resulting in increased pressures and failure to extract. This was addressed with another powder blend with higher heat tolerance and improved brass. Also during the stage, Black Hills wanted the bullet to be given a cannelure, which had been previously rejected for fear it would affect accuracy. It was eventually added for effective crimping to ensure that the projectile would not move back into the case and cause a malfunction during auto-load feeding. Although the temperature sensitive powder and new bullet changed specifications, the designation remained as the MOD 1.[154]

According to US DoD sources, the Mk 262 round is capable of making kills at 700 meters. Ballistics tests found that the round caused "consistent initial yaw in soft tissue" between 3 and 4 in at ranges from 15 feet to 300 meters. Apparently it is superior to the standard M855 round when fired from an M4 or M16 rifle, increasing accuracy from 3–5 minutes of angle to 2 minute of angle. It possesses superior stopping power, and can allow for engagements to be extended to up to 700 meters when fired from an 18-inch barrel. It appears that this round can drastically improve the performance of any AR-15 weapon chambered to .223/5.56 mm. Superior accuracy, wounding capacity, stopping power and range have made this the preferred round of many special forces operators, and highly desirable as a replacement for the older, Belgian-designed 5.56×45mm SS109/M855 NATO round. In one engagement, a two-man special forces team reported 75 kills with 77 rounds.[155] The Mk 262 has a higher ballistic coefficient than the M855 of (G1)0.362 / (G7)0.181, meaning it loses less velocity at long-range.[143]

Black Hills also produces the MK262 Mod-1C for sale in the US civilian market under Product Code D556N9.[156]

Mk318

Following early engagements in Afghanistan and Iraq, U.S. Special Operations Forces reported that M855 ammunition used in M4A1 rifles was ineffective. In 2005, the Pentagon issued a formal request to the ammunition industry for "enhanced" ammunition. The only business that responded was the Federal Cartridge Company, owned by Alliant Techsystems. Working with the Naval Surface Warfare Center Crane Division, the team created performance objectives for the new ammo: increased consistency from shot to shot regardless of temperature changes, accuracy out of an M4A1 better than 2 minute of angle (2 inches at 100 yards, 6.3 inches at 300 yards), increased stopping power after passing through "intermediate barriers" like walls and car windshields, increased performance and decreased muzzle flash out of shorter barrel FN SCAR rifles, and costs close to the M855. The first prototypes were delivered to the government in August 2007. Increased velocity and decreased muzzle flash were accomplished by the type of powder used. The design of the bullet was called the Open Tip Match Rear Penetrator (OTMRP). The front of it is an open tip backed up by a lead core, while the rear half is solid brass. When the bullet hits a hard barrier, the front half of the bullet crushes against the barrier, breaking it so the penetrating half of the bullet can go through and hit the target. With the lead section penetrating the target and the brass section following, it was referred to as a "barrier blind" bullet.[49][157]

Officially designated the Mk318 MOD 0 "Cartridge, Caliber 5.56mm Ball, Carbine, Barrier", and called SOST (Special Operations Science and Technology) ammunition, the 62-grain bullet fragments consistently, even out of a 10.5 in barrel. The lead portion fragments in the first few inches of soft tissue, then the solid copper rear penetrates 18 in of tissue (shown though ballistic gelatin) while tumbling. Out of a 14" in barrel, the Mk318 has a muzzle velocity of 2,925 ft/s (892 m/s).[49][157]

In February 2010, the U.S. Marine Corps adopted the Mk318 for use by infantry. To be fielded by an entire branch of the military, the round is classified as having an "open-tip" bullet, similar to the M118LR 7.62 NATO round. The SOST bullet uses a "reverse drawn" forming process. The base of the bullet is made first, the lead core is placed on top of it, and then the jacketing is pulled up around the lead core from bottom to tip. Conventional, and cheaper, bullets are made with the method of the jacket drawn from the nose to an exposed lead base. The reverse drawn technique leaves an open tip as a byproduct of the manufacturing process, and is not specifically designed for expansion or to affect terminal ballistics. The Pentagon legally cleared the rounds for Marine use in late January. The Marines fielded the Mk318 gradually and in small numbers. Initial studies showed that insurgents hit by it suffered larger exit wounds, although information was limited. SOST rounds were used alongside M855 rounds in situations where the SOST would be more effective.[49][157][158] In July 2010, the Marines purchased 1.8 million M855A1 Enhanced Performance Rounds, in addition to millions of Mk318 rounds in service, as part of its effort to replace its M855 ammo.[159] As of May 2015, Marine combat units still deployed with a mixture of both SOST and M855 rounds.[160]

As the issue of environmentally friendly ammo grew, the Marines looked to see if the Mk318's lead could be replaced while still meeting specifications. They found that by replacing the lead with copper and slightly stretching the jacket around to crimp the nose even more, the bullet's ballistic coefficient increased. To avoid visual confusion with the Mk 262 round, the bullet was entirely nickel-plated for a silver color; the enhanced silver-colored copper jacketed, open tip match, 62-grain projectile was named the Mk318 MOD 1.[161]

5.6mm Gewehr Patrone 90

Ready ammunition of the Swiss Army. Soldiers equipped with the SIG 550 assault rifle used to be issued 50 rounds of ammunition in a sealed can, to be opened only upon alert and for use while en route to join their unit. This practice was stopped in 2007.[162]
Swiss Army Gw Lsp Pat 90 tracer rounds

The 5.6mm Gewehr Patrone 90 or 5,6mm Gw Pat 90 (5.6 mm Rifle Cartridge 90), is the standard round used by the Swiss military in its rifle, the SIG SG 550. The cartridge is also known as the Cart 5,6mm 90 F (French: Cartouche pour Fusil / Italian: Cartuccia per Fucile) to the French- and Italian-speaking Swiss militiamen. The Swiss refer to the round as the 5.6 mm Gw Pat 90, although it is interchangeable with the 5.56×45mm NATO and .223 Remington round. The Gw Pat 90 round firing a 4.1 g (63 gr) FMJ bullet is optimized for use in 5.56 mm (.223 in) caliber barrels with a 254 mm (1:10 in) twist rate.

The Gw Pat 90 was designed for the SIG SG 550 when it came into production in 1987, replacing the SIG SG 510. Previous experience of a change in standard rifle had proved that changing the distance of fire for the training ranges was more expensive than the design of a new ammunition; this prompted the design of a cartridge nominally capable at 300 meters. The cartridge was also designed to reduce pollution by controlling lead emissions.[163] The bullet was originally clad with a nickel alloy jacket, however, this was found to cause excessive barrel wear, so in 1998 the nickel jackets were replaced with tombac jackets. In addition, in 1999 a copper plug was added to the base of the bullet to address environmental concerns.[163]

As of 2009 the ammunition was produced by RUAG Ammotec, a subsidiary of the RUAG group.[164] It is manufactured in three variations: the standard FMJ round, the tracer round, and a blank round.

The FMJ cartridge has a Copper-Zinc alloy case and uses a double base propellant. The bullet is a 4.1 g (63 gr) tombac jacketed FMJ projectile with a G1 ballistic coefficient of 0.331 (ICAO) / 0.337 (Army Metro). The projectile contains approximately 95% Pb, 2% Sb, 3% Cu, and was designed for terminal ballistic instability. The required accuracy for Gw Pat 90 ammunition out of factory test barrels is 63 mm (0.72 MOA) for 10 rounds (100% radius measurement method) out to 300 m. The Gw Pat 90 cartridge dimensions are in accordance with the civilian C.I.P. standards for the .223 Remington C.I.P. chambering.[165]

The Gw Pat 90 is used both in the Swiss military and in sport shooting. The very high level of individual training in the Swiss militia (every single soldier bearing a weapon has to shoot in order to maintain his ability once a year; see Gun laws in Switzerland) and the overall use of the Gw Pat 90 by the many Swiss citizens who shoot in competitions and for amusement has resulted in significant input on its usage. Over 1 billion cartridges had been produced as of 2005.

See also

References

  1. ^ "Téléchargement" [Downloads]. C.I.P. (in French). Archived from the original on 12 March 2008. Retrieved 17 October 2008.
  2. ^ "MIL-C-9963F, Military Specification: Cartridge, 5.56mm, Ball, M193". 1999.
  3. ^ a b Clark, Philip (April 2012). "M855A1 Enhanced Performance Round (EPR)" (PDF). Maneuver Ammunition Systems. Archived from the original (PDF) on 25 January 2017.
  4. ^ a b Woods, Jeffrey K. (4 May 2011). "M855A1 Enhanced Performance Round (EPR) Media Day" (PDF). Defense Technical Information Center. Archived (PDF) from the original on 25 February 2017. Retrieved 29 December 2017.
  5. ^ a b c d e f g h i j k l m n o p Watters, Daniel. "A 5.56 x 45mm "Timeline"". The Gun Zone. Archived from the original on 9 February 2004. Retrieved 6 March 2017.
  6. ^ a b c "STANAG 4172 5.56 mm Ammunition (Linked or Otherwise)" (PDF). NATO Military Agency for Standardization. May 1993. Archived from the original (PDF) on 12 November 2020. Retrieved 12 November 2020.
  7. ^ Arvidsson, Per G. (2008). "NATO Infantry Weapons Standardization" (PDF). NATO Army Armaments Group. Archived from the original (PDF) on 1 December 2012.
  8. ^ Barnes, Frank C. (1972). Cartridges of the World. Northfield, IL: DBI Books. p. 37. ISBN 978-0-695-80326-1.
  9. ^ Tong, David (2006). "U.S. Rifle, cal. 7.62mm, M14". Chuckhawks.com. Archived from the original on 25 February 2017. Retrieved 6 March 2017.
  10. ^ a b c d "Assault Rifles and Their Ammunition: History and Prospects". Anthony G. Williams. April 2014. Archived from the original on 2 June 2014.
  11. ^ a b c Barnes, Frank C. (2016). Cartridges of the World. Iola, WI: Krause Publishing. p. 88. ISBN 978-1-4402-4265-6.
  12. ^ a b Hogg, Ian V. Jane's Infantry Weapons 1986-87. p. 362.
  13. ^ a b c Towsley, Bryce (4 March 2013). ".223 Remington Vs. 5.56: What's in a Name?". American Rifleman. Archived from the original on 2 February 2017. Retrieved 6 March 2017.
  14. ^ "An Improved Battlesight Zero for the M4 Carbine and M16A2 Rifle". AR15.com. 1999. Archived from the original on 25 October 2011. Retrieved 11 September 2007.
  15. ^ "TM 9-1005-319-10 (2010) - Operator's Manual for Rifle, 5.56 MM, M16A2/M16A3/M4 (Battlesight Zero pages 48-55)" (PDF). AR15.com. Archived (PDF) from the original on 8 February 2014. Retrieved 3 June 2014.
  16. ^ NATO EPVAT testing
  17. ^ QuickLOAD
  18. ^ a b "Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 1" (PDF). UK Ministry of Defence. 20 May 2005. Archived from the original (PDF) on 16 July 2011.
  19. ^ "Defining Parameters for Ballistic High Pressure Sensors" (PDF). Kistler Group. Archived from the original (PDF) on 23 February 2012. Retrieved 15 November 2020.
  20. ^ a b "Type 6215 Quartz High-Pressure Sensor for Ballistic Pressure Measurement to 6,000 bar" (PDF). Kistler Group. Archived from the original (PDF) on 21 April 2023 – via Industrial Engineering News Europe.
  21. ^ "HPI Piezoelectric High Pressure Transducers – GP Series including NATO Approval" (PDF). HPI GmbH. Archived (PDF) from the original on 9 October 2022.
  22. ^ "SAAMI Pressures". Leverguns.com. Archived from the original on 14 October 2007. Retrieved 29 November 2007.
  23. ^ "Armalite / Colt AR-15 / M16 M16A1 M16A2 M16A3 M16A4 assault rifle (USA)". Modern Firearms.net. 27 October 2010. Archived from the original on 7 March 2017. Retrieved 7 March 2017.
  24. ^ "Some Skinny on the NATO 5.56mm L110/M856 Tracer Round". LaissezFirearm.info. May 1998. Archived from the original on 17 April 2023. Retrieved 13 February 2022.
  25. ^ a b c Wood, Keith (17 November 2016). "How to Pair Barrel Twist Rates with Bullets". Guns & Ammo. Archived from the original on 25 April 2017. Retrieved 7 March 2017.
  26. ^ ".22 Caliber (.224) 90 GR. HPBT Match". Sierra Bullets.com. Archived from the original on 27 April 2015. Retrieved 4 August 2017.
  27. ^ Kneubuehl, Beat P., ed. (2011). Wound Ballistics: Basics and Applications. p. 128.
  28. ^ "Reading Gunshot Patterns". National Institute of Health. 16 February 2006. Archived from the original on 24 August 2010. Retrieved 14 October 2010.
  29. ^ Fackler, Martin L. (19 May 2015). "Patterns of Military Rifle Bullets". TTK Ciar's MBT Resources. Archived from the original on 2 December 2013. Retrieved 27 November 2013.
  30. ^ Chamberlin, F. T. (1966). "Gun Shot Wounds". In Ackley, Parker O. (ed.). Handbook for Shooters and Reloaders, Vol. II. Salt Lake City, Utah: Plaza Publishing.
  31. ^ Sturtevant, B. (1998). "Shock Wave Effects in Biomechanics". Sādhanā. 23 (5–6): 579–596. doi:10.1007/BF02744581. S2CID 120104102. Archived from the original on 2 June 2023. Retrieved 15 April 2023.
  32. ^ Rose, Alexander (2009). American Rifle: A Biography. pp. 375–376.
  33. ^ Fackler, Martin (Winter 1991). "The Shockwave Myth" (PDF). Wound Ballistics Review: 38. Archived from the original (PDF) on 28 May 2008.
  34. ^ "Ammunition". Pd Igman D.D. Konjic Bosnia & Herzegovina. Archived from the original on 25 March 2008. Retrieved 8 January 2011.
  35. ^ "5.56mm (.22 Cal)". Nammo AS. Archived from the original on 11 November 2007.
  36. ^ Williams, Anthony G. "The Case for a General-Purpose Rifle and Machine Gun Cartridge (GPC)" (PDF). Military Guns & Ammunition. Archived from the original (PDF) on 6 November 2015. Retrieved 31 December 2015.
  37. ^ Avery, Joseph P. (July–August 2012). "An Army Outgunned: Physics Demands A New Basic Combat Weapon" (PDF). Military Review. Archived (PDF) from the original on 29 December 2017. Retrieved 29 December 2017.
  38. ^ "STANAG 4172" (PDF). Archived from the original (PDF) on 25 May 2023.
  39. ^ "Performance of .223 and 5.56 Ammunition". AR15.com. Archived from the original on 28 May 2009.
  40. ^ a b c Bolding, Damon (6 January 2012). "Do We Need a New Service Rifle Cartridge?". Small Arms Defense Journal. Vol. 3, no. 1. Archived from the original on 21 September 2013.
  41. ^ Dater, Philip H. & Wong, Jason (8 February 2012). "Barrel Length Studies in 5.56mm NATO Weapons". Small Arms Defense Journal. Vol. 4, no. 1. Archived from the original on 3 December 2013.
  42. ^ Dater, Philip H. & Wong, Jason M. "Effects of Barrel Length on Bore Pressure, Projectile Velocity and Sound Measurement" (PDF). US Defense Technical Information Center (DTIC). Archived from the original (PDF) on 4 March 2016. Retrieved 16 November 2014.
  43. ^ Liu, YQ; Wu, BJ; Xie, GP; Chen, ZC; Tang, CG; Wang, ZG (1982). "Wounding effects of two types of bullets on soft tissue of dogs". Acta Chir. Scand. Suppl. 508: 211–221. PMID 6952680.
  44. ^ "Soldier Weapons Assessment Team Report 6-03" (PDF). U.S. Army Infantry Center. Archived from the original (PDF) on 14 July 2011. Retrieved 5 March 2011.
  45. ^ a b c d Arvidsson, Per (6 January 2012). "Is There a Problem with the Lethality of the 5.56 NATO Caliber?". Small Arms Defense Journal. Archived from the original on 12 October 2013. The conclusion was that shot placement is the most important parameter, and that this is achieved through good and realistic training...Summary...To increase small arms lethality, nations must better train their soldiers...If nations want to engage targets at long range, then it is not about rifle caliber, projectile or barrel length, it is all about more training...
  46. ^ a b c Arvidsson, Per G. "Is there a problem with the lethality of the 5.56 NATO caliber?" (PDF). NATO Armory Armaments Group, NATO Weapons and Sensors Working Group. Archived from the original (PDF) on 4 October 2013. Retrieved 31 August 2013. [Note: PowerPoint style briefing slides by Per G. Arvidsson. Archive.org does not back up the full document but only the first slide.] This is another copy.
  47. ^ The Small Arms Review vol.10, no.2 November 2006
  48. ^ Jane's International Defense Review: IDR., Volume 39, Issues 1–6. p. 86. (2006).
  49. ^ a b c d "Mk 318 Mod 0: A Better Bullet, No Matter What They Call It". Cheaper Than Dirt.com. 27 November 2011. Archived from the original on 30 August 2013.
  50. ^ a b Parks, W. Hays (7 October 2013). "A Way Forward in Contemporary Understanding of the 1899 Hague Declaration on Expanding Bullets". Small Arms Defense Journal. Vol. 5, no. 3. Archived from the original on 14 October 2013.
  51. ^ "Weapons: The Water Is Still Safe To Drink". StrategyPage. 10 August 2012. Archived from the original on 12 August 2012.
  52. ^ a b "Dual Path Strategy Series: Part III – Soldier Battlefield Effectiveness" (PDF). PEO Soldier. August 2011. Archived from the original (PDF) on 28 May 2014. Retrieved 26 October 2013.
  53. ^ "Weapons: PC Bullets Survive Afghanistan". Strategy Page. 13 May 2011. Archived from the original on 15 December 2013.
  54. ^ Dunnigan, James (8 January 2012). "Another 7.62mm Bullet For M-16s". Strategy Page. Archived from the original on 11 September 2013.
  55. ^ Lamothe, Dan. "Corps to pass on Army upgrades to M4". Marine Corps Times. Archived from the original on 25 September 2010. Retrieved 13 September 2010.
  56. ^ "Army awards Next Generation Squad Weapon contract". U.S. Army Public Affairs. 19 April 2022.
  57. ^ ".223 Remington and 5.56x45mm NATO Chamber dimensions differences". ImageShack. Archived from the original on 15 March 2014.
  58. ^ "NATO Chamber Headspace Gages Available for 5.56 NATO and 7.62 NATO" (PDF). Forster Products. Archived from the original (PDF) on 9 October 2022.
  59. ^ "223 Rem + 223 AI Cartridge Guide". 6mmBR. Archived from the original on 26 August 2011. Retrieved 26 August 2011.
  60. ^ "5.56 vs .223 – What You Know May Be Wrong". LuckyGunner. 22 June 2012. Archived from the original on 27 June 2013. Retrieved 13 June 2013.
  61. ^ Johnson, Steve (20 July 2012). "Army wants lightweight cartridge cases". The Firearm Blog. Archived from the original on 21 September 2013.
  62. ^ a b Bolding, Damon (24 October 2013). "The Army's Individual Carbine Competition: What's Next?". Small Arms Defense Journal. Vol. 5, no. 3. Archived from the original on 29 October 2013.
  63. ^ Bolding, Damon (26 March 2014). "The 6.5×40 Cartridge: Longer Reach for the M4 & M16". Small Arms Defense Journal. Vol. 6, no. 1. Archived from the original on 8 April 2014.
  64. ^ "Cartridge Pressure Standards". K.W. Kleimenhagen. Archived from the original on 8 August 2013. Retrieved 14 June 2013.
  65. ^ "NATO Small Arms Ammunition Interchangeability via Direct Evidence Testing" (PDF). DTIC. 9 May 2007. Archived from the original (PDF) on 15 February 2010. Retrieved 10 February 2008.
  66. ^ "What is a Wylde Chamber?". Rock River Arms. Archived from the original on 17 February 2007.
  67. ^ Nowak, Paul (4 May 2001). ".223 Rem VS 5.56mm". Winchester Ammunition. Archived from the original on 5 May 2008.
  68. ^ Sweeney, Patrick (March–April 2013). "Chamber Reality Check". Peterson's Rifle Shooter. Vol. 16, no. 2. pp. 32–36.
  69. ^ "Unsafe Arms and Ammunition Combinations". SAAMI. 1998. Archived from the original on 5 March 2009.
  70. ^ Speir, Dean (25 August 2005). "SAAMI on 5.56 v. .223 Remington". The Gun Zone. Archived from the original on 13 June 2006. Retrieved 8 January 2011.
  71. ^ "Technical Note 45: 5.56 NATO vs SAAMI .223 Remington Chambers". Armalite Inc. 4 December 2002. Archived from the original on 17 August 2007.
  72. ^ Emerson, Lee (10 October 2006). "M14 Rifle History and Development" (PDF). imageseek.com. Archived from the original (PDF) on 15 December 2017.
  73. ^ Kern, Danford Allan (2006). The influence of organizational culture on the acquisition of the M16 rifle (PDF) (MMAS). Fort Leavenworth, Kansas: US Army Command and General Staff College. Archived from the original (PDF) on 5 November 2013 – via m-14parts.com.
  74. ^ Kokalis, Peter G. "Retro AR-15" (PDF). NoDak Spud. Archived (PDF) from the original on 29 October 2013.
  75. ^ Ezell, Edward Clinton (1983). Small Arms of the World. New York: Stackpole Books. pp. 46–47. ISBN 978-0-88029-601-4.
  76. ^ a b Rifle Squad Armed with a Light Weight High Velocity Rifle (Final Report) (PDF) (Report). Fort Ord, California: U.S. Army Combat Experimentation Center. 24 June 1959. Archived (PDF) from the original on 8 May 2018 – via Forgotten Weapons.
  77. ^ "AK 47 Technical Description - Manual". 30 September 2010. Archived from the original on 28 March 2012. Retrieved 23 August 2012 – via Scribd.
  78. ^ a b Dockery, Kevin (2007). Future Weapons. p. 102.
  79. ^ a b c d e Dockery, Kevin (2007). Future Weapons. New York City: Berkley Publishing Group. ISBN 978-0-425-21215-8.
  80. ^ "AKM (AK-47) Kalashnikov modernized assault rifle, caliber 7.62mm". Izhmash. 2 September 2001. Archived from the original on 6 October 2014. Retrieved 23 August 2012.
  81. ^ KE = 1/2mv2, where m is in kilograms and v is in metres per second.
  82. ^ a b "5.56 MM F1 BALL AMMUNITION (August 2012)" (PDF). Australian Munitions. August 2012. Retrieved 24 July 2023.
  83. ^ "5.56 MM F1 BALL AMMUNITION (August 2019)" (PDF). Australian Munitions. August 2019. Retrieved 24 July 2023.
  84. ^ a b c d e f g h i "AUSTRALIAN MUNITIONS PRODUCT RANGE AND SPECIFICS (August 2019)" (PDF). Australian Munitions. August 2019. Retrieved 24 July 2023.
  85. ^ "Thales Australia creates munitions group". United Press International. 6 September 2012. Retrieved 31 October 2018.
  86. ^ "Improving In-Service Small Arms Systems – An Australian Experience" (PDF). Thales Australia. 1 June 2011. Archived from the original (PDF) on 20 October 2016. Retrieved 13 January 2012 – via DTIC.
  87. ^ Bolding, Damon (4 March 2013). "Testing & Evaluating the EF88 Assault Rifle". Small Arms Defense Journal. Vol. 5, no. 1. Archived from the original on 3 December 2013.
  88. ^ a b "Written Answers: Defence, Ammunition". Parliamentary Debates (Hansard). House of Commons. 13 February 1986. col. 549.
  89. ^ Hogg, Ian V. Jane's Infantry Weapons 1986-87. p. 363.
  90. ^ "Small Caliber Ammunition". General Dynamics Canada. Archived from the original on 5 June 2023.
  91. ^ Bundeswehr Ausbildungskommando. "Das Gewehr G36" (PDF) (in German). Archived from the original (PDF) on 17 April 2023 – via Instandsetzungsbataillon 141. (DM11 trajectory tables at page 92 assuming V0 = 920 m/s, V800 = 301 m/s)
  92. ^ a b c d e f "Product catalog of Metallwerk Elisenhütte GmbH" (PDF). 2015. Archived (PDF) from the original on 9 October 2022.
  93. ^ "89式5.56mm小銃". Retrieved 27 April 2024.
  94. ^ "旭精機工業株式会社". Retrieved 27 April 2024.
  95. ^ "89式5.56mm普通弾(C)". Retrieved 27 April 2024.
  96. ^ "89式5.56mm普通弾(C),リンク". Retrieved 27 April 2024.
  97. ^ "DSEI Japan 2023: Japanese MoD Unveils New 5.56 mm High-Power Ammunition". 22 March 2023.
  98. ^ "DSEI Japan 2023: JGSDF's New Howa Type 20 Rifle on Display". 24 March 2023.
  99. ^ a b c d e f g Denel PMP (c. 2010). DENEL PMP Products Brochure. pp. 4–5.
  100. ^ a b c d e f g h i j k l m "5.56 X 45 (.223 Remington) - RSA". Cartridge Collector.net. Retrieved 21 November 2021.
  101. ^ "SANDF replenishes ammunition". DefenceWeb.co.za. 28 March 2011. Retrieved 20 July 2021.
  102. ^ a b Ministry of Defence (United Kingdom) (2013). "Chapter 29, Storage Regulations for Cadet Units Holding SAA Only, Annex A, Identification of SAA from its Package Markings". Joint Service Publication 482, Ministry of Defence Explosives Regulations (PDF) (4 ed.). p. 1. Archived (PDF) from the original on 9 October 2022. Retrieved 26 July 2021.
  103. ^ "5.56mm Ball". BAE Systems. 21 August 2015. Archived from the original on 9 July 2023. Retrieved 8 July 2023.
  104. ^ a b c Ministry of Defence (United Kingdom) (2014). Army Code No. 71807-C, Cadet Training, The L98A2 Cadet GP Rifle (5.56 mm), L86A2 Light Support Weapon and Associated Equipment.
  105. ^ Chittock, Andrew (21 January 2011). "5.56mm link 5ball 1 tracer the tracer have red tips". Alamy. Retrieved 8 July 2023.
  106. ^ a b c d "Written Answers: Defence: Sennybridge Range". Parliamentary Debates (Hansard). House of Commons. 26 July 1993. col. 737–739. Archived from the original on 20 July 2021. Retrieved 27 July 2021.
  107. ^ "Small Arms Ammunition". BAE Systems. Archived from the original on 11 December 2021.
  108. ^ a b c d "British Military Cartridges: The 5.56x45mm". Military Cartridges. Archived from the original on 26 August 2012. Retrieved 1 May 2012.
  109. ^ Ministry of Defence (United Kingdom) (2013). "Chapter 27, Free From Explosives Regulations". Joint Service Publication 482, Ministry of Defence Explosives Regulations (PDF) (4 ed.). p. 9. Archived (PDF) from the original on 9 October 2022. Retrieved 1 April 2021.
  110. ^ a b Ministry of Defence (United Kingdom) (2013). "Chapter 2, Range design criteria and specifications". Joint Service Publication 403, Handbook of Defence Land Ranges Safety (PDF) (3 ed.). p. 3. Archived (PDF) from the original on 9 October 2022. Retrieved 27 July 2021.
  111. ^ a b c d e f g h i j k l m n o p q "The Cartridge Researcher No. 561" (PDF). European Cartridge Research Association. January 2012. Archived from the original (PDF) on 20 October 2022. Retrieved 12 April 2022.
  112. ^ "Hirtenberger 5.56mm L3A1 Ball box for UK". General Ammunition Discussion - International Ammunition Association Web Forum. 21 June 2019. Retrieved 11 February 2022.
  113. ^ a b Home Office (2017). "Body Armour Standard (2017)" (PDF). Retrieved 27 July 2021.
  114. ^ a b c Williams, Anthony G. (8 March 2016). "BAE Systems develops improved small-calibre ammunition for UK military" (PDF). Aerospace, Defense & Security. Archived (PDF) from the original on 9 October 2022. Retrieved 21 February 2022.
  115. ^ a b Conflict Armament Research (2015). "Non-state Armed Groups in the Central African Republic - Types and sources of documented arms and ammunition" (PDF). Archived (PDF) from the original on 9 October 2022. Retrieved 27 July 2021.
  116. ^ "701577419 - Army Special Operations Brigade Rifle Procurement and Support of an Armalite Rifle (AR) platform Alternative Individual Weapon (AIW) System". Find a Tender. Archived from the original on 17 April 2023.
  117. ^ Ministry of Defence (United Kingdom) (2013). "Chapter 27, Free From Explosives Regulations". Joint Service Publication 482, Ministry of Defence Explosives Regulations (PDF) (4 ed.). p. 12. Archived (PDF) from the original on 9 October 2022. Retrieved 1 April 2021.
  118. ^ "New Ammo for British Troops: UK Develops More Effective 5.56mm and 7.62mm Ammunition". The Firearm Blog. 23 August 2016. Archived from the original on 8 April 2023.
  119. ^ Cpl. Aneshea S. Yee (30 January 2013). "Alpha Co. Table Two". DVIDS. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  120. ^ Staff Sgt. Joy Dulen (17 October 2012). "Best Warrior Competition 2012". DVIDS. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  121. ^ Lance Cpl. Aaron J. Rock (27 September 2006). "060927-M-1152R-033". United States Marine Corps. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  122. ^ Strasser, Ben (5 December 2008). "Ammo load". Wright-Patterson Air Force Base. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  123. ^ Senior Airman Shandresha Mitchell (23 April 2015). "MacDill has munitions…?". MacDill Air Force Base. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  124. ^ Senior Airman Joao Marcus Costa (1 July 2022). "35th Munitions Flight conducts retrograde". 5th Air Force. Archived from the original on 8 July 2023. Retrieved 8 July 2023.
  125. ^ a b "M855A1 Enhanced Performance Round (EPR)" (PDF). U.S. Army Sustainment Command. Archived from the original (PDF) on 22 September 2013.
  126. ^ a b c "Small Caliber Ammunition Enhancing Capabilities" (PDF). DTIC. 20 May 2010. Archived from the original (PDF) on 30 November 2012. Retrieved 8 November 2012.
  127. ^ "Armament Systems and Ammunition". Northrop Grumman. Archived from the original on 27 March 2023.
  128. ^ USAF Technical Manual TO-11W3-5-5-1, Rifle, 5,56mm, M16. Office of the Secretary of the Air Force. 31 August 1963.
  129. ^ "5.56MM Reduced Ricochet Limited Penetration (RRLP), MK 255 Mod 0" (PDF). DTIC. Archived from the original (PDF) on 19 July 2013. Retrieved 6 November 2013.
  130. ^ Lamothe, Dan (16 February 2010). "Corps to use more lethal ammo in Afghanistan". Marine Corps Times. Archived from the original on 22 April 2010.
  131. ^ "U.S. Navy Small Arms Ammunition Advancements" (PDF). DTIC. 2009. Archived from the original (PDF) on 11 October 2010.
  132. ^ Chivers, C.J. (2 November 2009). "How Reliable Is the M-16 Rifle?". The New York Times. Archived from the original on 22 July 2011.
  133. ^ Cox, Matthew (2 April 2010). "Army won't field deadlier Corps round". Army Times. Archived from the original on 5 September 2013.
  134. ^ "Future Infantry Small Arms". Anthony G. Williams. September 2012. Archived from the original on 26 December 2012.
  135. ^ Ehrhart, Thomas P. (21 May 2009). Increasing Small Arms Lethality in Afghanistan: Taking Back the Infantry Half Kilometer (PDF). Fort Leavenworth, Kansas: School of Advanced Military Studies. pp. 25–28. Archived from the original (PDF) on 17 May 2023.
  136. ^ "Army begins shipping improved 5.56mm cartridge". Picatinny Arsenal. 24 June 2010. Archived from the original on 1 June 2013.
  137. ^ "'Green Ammo' Heads to Afghanistan". Military Daily News. 24 June 2010. Archived from the original on 23 August 2010. Retrieved 4 July 2010.
  138. ^ "U.S. Army Issues New M855A1 Ammo to Troops in Afghanistan". Accurate Shooter. 29 June 2010. Archived from the original on 12 August 2011. Retrieved 4 July 2010.
  139. ^ ""Green" bullets from Picatinny Arsenal in NJ to be used in Afghanistan". Daily Record. 27 June 2010.[permanent dead link]
  140. ^ Bolding, Damon (9 January 2012). "Infantry Weapons Conference Report". Small Arms Defense Journal. Vol. 3, no. 2. Archived from the original on 8 November 2014.
  141. ^ a b c d Plaster, John L. (21 May 2014). "Testing The Army's M855A1 Standard Ball Cartridge". American Rifleman. Archived from the original on 11 October 2014.
  142. ^ a b Slowik, Max (6 September 2012). "New M855A1 Enhanced Performance Round smashing expectations". Guns.com. Archived from the original on 3 December 2013.
  143. ^ a b Bolding, Damon (26 March 2014). "The 6.5×40 Cartridge: Longer Reach for the M4 & M16". Small Arms Defense Journal. Vol. 6, no. 1. Archived from the original on 23 January 2015. Retrieved 14 January 2015.
  144. ^ Woods, Jeffrey K. (26 November 2010). "Evolution of the M855A1 Enhanced Performance Round". U.S. Army. Archived from the original on 20 April 2014.
  145. ^ Lamothe, Dan; Cox, Matthew (12 July 2010). "Corps takes a new look at green bullet". Marine Corps Times. Archived from the original on 16 July 2010. Retrieved 12 July 2010.
  146. ^ Schogol, Jeff (11 December 2017). "New in 2018: Corps adopts M855A1 round". Marine Corps Times. Archived from the original on 11 December 2017.
  147. ^ Lopez, Todd C. (9 May 2011). "Picatinny's Enhanced Performance Round as effective as M855 round – consistently". Picatinny Arsenal. Archived from the original on 13 September 2012.
  148. ^ Kowal, Eric (28 August 2012). "Army's newest general purpose round shows accuracy in rifle competition". U.S. Army. Archived from the original on 22 September 2013.
  149. ^ "ATK Delivers More than 350 Million 5.56mm Enhanced Performance Rounds". Alliant Techsystems. 13 September 2012. Archived from the original on 5 October 2012.
  150. ^ Freedberg, Sydney J. Jr. (14 June 2013). "Army Killed New Carbine Because It Wasn't Twice As Reliable As Current M4". Breaking Defense. Archived from the original on 19 June 2013.
  151. ^ "Data Dump: Army 'Black Tip' Ammo". Military.com. 5 May 2011. Archived from the original on 21 September 2013.
  152. ^ "The M855A1". Small Arms Solutions, LLC. 12 November 2017. Archived from the original on 21 April 2023.
  153. ^ Calloway, Audra (1 July 2013). "Picatinny ammo goes from regular to unleaded". U.S. Army. Archived from the original on 6 July 2013.
  154. ^ Bolding, Damon (5 March 2014). "Black Hills Ammunition". Small Arms Defense Journal. Vol. 6, no. 1. Archived from the original on 25 October 2014.
  155. ^ Fortier, David (July 2005). "Evolution of an AR - A look where the M16/AR-15 platform is headed". Guns & Ammo. Archived from the original on 15 September 2011.
  156. ^ "5.56x45mm - 77 gr OTM - Black Hills (D556N9 - MK262 Mod 1-C) - 500 Rounds". Black Hills Ammunition. Archived from the original on 6 February 2023.
  157. ^ a b c Johnson, Steve (17 February 2010). "USMC adopt new 5.56mm MK318 MOD 0 ammunition". The Firearm Blog. Archived from the original on 10 November 2012.
  158. ^ Johnson, Steve (27 May 2010). "Marines slow to field new ammo". The Firearm Blog. Archived from the original on 14 November 2012.
  159. ^ Johnson, Steve (14 July 2010). "Marines take a look at the new M855A1 round". The Firearm Blog. Archived from the original on 14 November 2012.
  160. ^ Sanborn, James K. (4 May 2015). "Army, Marines face new pressure to use same ammunition". Military Times. Archived from the original on 6 May 2015.
  161. ^ Bolding, Damon (30 January 2015). "Sal Fanelli: The Interview". Small Arms Defense Journal. Vol. 6, no. 4. Archived from the original on 7 February 2015.
  162. ^ "Soldiers can keep guns at home but not ammo". Swissinfo.ch. 27 September 2007. Archived from the original on 2 October 2012. Retrieved 16 March 2015.
  163. ^ a b "Swiss Ammunition Enterprise". Cybershooters. 11 October 2003. Archived from the original on 29 August 2016. Retrieved 6 June 2015.
  164. ^ "Swiss Ammunition Enterprise". Swissmun.com. Archived from the original on 12 May 2008. Retrieved 29 May 2009.
  165. ^ "5.56 mm x 45 SINTOX® SWISS ORDNANCE cartridge fact sheet" (PDF). RUAG Ammotec. Archived from the original (PDF) on 17 June 2009.

Further reading

External links